用户名: 密码: 验证码:
金、铂基催化剂催化若干重要化学反应的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源与资源问题是21世纪人类所面临的主要挑战之一,为缓解能源危机、减少环境污染,世界各国均将开发高效、清洁新能源作为高新技术研发的重点.燃料电池(Fuel Cell)是一种纯正的绿色清洁能源,被认为是21世纪能源之星,美国《时代周刊》将其列为高科技之首.近年来,在全球低碳经济的背景下,燃料电池的研发和商业化进程有加快趋势.
     直接甲醇燃料电池(Direct Methanol Fuel Cell, DMFC)和直接甲酸燃料电池(Direct Formic Acid Fuel Cell, DFAFC),由于各方面的优良性能日益受到广泛关注,作为一种可行的潜在能源可应用于许多领域。Pt和Pt族贵金属被认为是甲醇和甲酸氧化最有效的电催化剂,被广泛用作DMFC和DFAFC阳极和阴极电极材料。然而,众所周知的是纯Pt催化剂通常存在两个主要缺点,一是催化剂成本高、资源有限,二是甲醇、甲酸在低温氧化过程中,容易被CO组分中毒,致使催化剂不能重复使用。这些缺点是制约DMFC/DFAFC规模化应用的重要瓶颈,因此寻找催化活性好、稳定性高、抗中毒能力强的新型阳极催化剂已成为DMFC/DFAFC研究中迫切需要解决的关键性科学问题。
     最近的研究表明,在Pt的基础上加入第二种金属形成的二元复合双金属催化剂,其性能明显好于纯Pt催化剂,能够显著增加对甲酸电化学氧化的催化活性,并且减少了贵金属Pt的用量,降低了催化剂成本.这为DFAFC催化剂的设计提供了新的思路,使人们认识到利用金属之间的增效作用、开发Pt、Pd基双金属或多金属催化剂,是改进甲酸电化学氧化性能的重要手段之一.但有关的分子机理尚不十分清楚,一些实验现象尚不能得以合理解释。
     本论文追踪国际研究前沿,瞄准DMFC/DFAFC研究中迫切需要解决的关键科学问题,着眼于在原子分子水平上理解铂基催化剂催化甲酸电化学氧化的微观机理。通过密度泛函理论计算研究了Au、Pt单金属和双金属团簇及表面的结构和性能,阐明了它们与CH3OH、HCOOH等小分子相互作用的微观机制,探讨了CH3OH、HCOOH催化氧化的各种反应路径,分析了反应的热力学和动力学性质,识别了甲酸氧化过程中各种活性中间体和过渡态结构的相对稳定性,阐明了控制催化剂活性的关键因素,完善了甲酸电化学氧化的理论模型,从而为DMFC/DFAFC新型阳极催化剂的开发和设计奠定了一定的理论基础、提供了一定的理论指导.
     主要研究内容及创新性研究结果归纳如下:
     1.研究了纯铂团簇Pt3和金、铂二元团簇PtAu2催化的甲醇脱氢反应,结果表明Pt3催化的反应,其最优路径是CH3OH→CH2OH→CH2O→CHO→CO,氧化过程需要2个Pt原子的协同作用,决速步骤的能垒是12.99kcal/mol;而PtAu2催化的反应,最优路径是CH3OH→CH3O→CH2O→CHO→CO,决速步骤的能垒是21.42kcal/mol在PtAu2中,Pt是活性中心,CO在PtAu2上比Pt3上更容易移除,从而在一定程度上解释了为什么二元的PtAu催化剂对甲醇的氧化具有改进的催化活性。
     2.研究了甲醇在中性的、负电荷和正电荷的Au3团簇上的裂解反应。结果表明,Au3和Au3+催化的反应通过4个连续的脱氢步骤进行,即CH3OH→CH3O→CH2O→CHO→CO,而Au3-催化的反应通过2个脱氢步骤进行,即CH30H→CH2O→CO。负电荷的团簇明显地减少了CO(甲醇完全脱氢的产物)在团簇上的结合能力,而中性和正电荷的团簇与CO有强的相互作用,容易使催化剂中毒。此外,正电荷团簇催化的反应比中性和负电荷团簇催化的反应的能垒高。因此,选择能够使Au纳米粒子带负电荷的底物可以改进催化剂催化性能,增强其抗中毒能力。
     3.研究了甲醇在PtAu(11l)二元金属表面上催化氧化的CO路径和非CO路径。结果表明,在PtAu(111)面上的CO比其在纯Pt(111)面上拥有更大的吸附能,并且在二元的PtAu(111)金属面上的非CO路径比CO路径在能量上更有利。以上这些计算的结果说明PtAu二元金属催化剂对甲醇氧化改进的电催化性能应该归因于主要反应路径从纯Pt面上的CO路径转变成PtAu二元金属面上的非CO路径,而不是归因于在PtAu催化剂上的CO比其在纯Pt催化剂上更容易移除。
     4.研究了甲酸(HCOOH)在水溶液中PtAu(111)表面上的氧化机理,计算了直接路径和间接路径的微观机理,并与纯Pt表面的结果进行了比较。直接路径涉及HCOOH脱氢形成CO2,相应的能垒是15.5kcal/mol;间接路径涉及HCOOH脱水形成CO中间体,相应的能垒是99.2kcal/mol。在Pt(111)面上直接路径和间接路径计算的能垒分别是58和32.9kcal/mol。理论计算的结果表明,二元的PtAu(111)表面明显地增加了两个路径的能垒差,从Pt(111)面上的27.1kcal/mol增加到83.7kcal/mol,因此PtAu(111)表面可以阻碍间接路径的发生,从而减少CO的形成几率。理论计算的结果合理地解释了实验现象,二元的PtAu催化剂比纯Pt催化剂对HCOOH氧化显示出更高的催化活性和抗中毒能力。
     5.建立了甲酸氧化的新的理论模型。由于甲酸分子可以通过分子间氢键形成各种稳定的二聚体结构,稳定化能可达15kcal/mol,我们猜测甲酸的电化学氧化可能与其二聚体结构有关,因此设计了甲酸电化学氧化的“二聚体模型”和“水助质子桥模型”。计算结果表明,一方面,吸附在催化剂表面的二聚体可以通过分子间脱水形成CO中间体,导致催化剂中毒;另一方面,甲酸分子的羰基和羟基可与溶剂中的水分子通过氢键形成氢键网络,这些分子间氢键可能对甲酸分子的电化学氧化起重要作用,水分子通过搭建质子桥协助催化反应的进行,降低反应能垒.新的理论模型改进了人们对甲酸催化氧化机理的认识,合理地解释了Pt基催化剂容易CO中毒的现象。
The problem of energy and resources challenges human in the21th century. In order to relieve energy crisis and reduce environment pollution, many countries in the world devote to exploring efficient and clean energy. Fuel cell is the green and clean energy, which is the energy star of the21th century. Time in America treat it as the most important technology. In recent years, the low carbon economy promotes development and commercialization of fuel cell.
     Direct methanol fuel cells (DMFCs) and direct formic acid fuel cells (DFAFCs), as a viable power sources with potential applications in many systems, have attracted tremendous attention because of their excellent performance in all aspects. Pt and Pt-group metals are known as the most excellent electrocatalysts for methanol and formic acid oxidation, so they are extensively used as electrode materials of both the anode and cathode of DMFCs and DFAFCs. However, it is well known that pure Pt catalysts usually suffer from two major disadvantages,(ⅰ) high cost and limited resources, and (ⅱ) poor performance durability resulted from the poisoning of CO and CO-like species produced during methanol and formic acid oxidation at low temperatures. These disadvantages are the important bottlenecks of DMFC/DFAFC's scale applications. Therefore, searching for the catalysts that are of excellent catalytic activity, good stability and improved tolerance towards CO-poisoning is becoming a challenging issue in the study of DFAFCs.
     The recent studies show that alloying Pt with another transition metal or noble metal that is generally less expensive than Pt could address these two challenging problems due to their significantly improved tolerance towards CO-poisoning and enhanced electrocatalytic activity for methanol oxidation as compared to pure Pt catalysts. This provides new thought for designing efficient catalysts used in DFAFCs, which is using the synergism among the metals and exploring the Pt-and Pd-based catalysts. However, the relevant mechanism behind the phenomenon remains unclear, and some experimental observations are still not well understood.
     The dissertation traces international research frontier, and aims at the challenging issue in the study of DMFCs/DFAFCs. This proposal aims to elucidate the molecular mechanism of formic acid electro-oxidation promoted by a series of Pt-based catalysts based on the results of the density functional theory (DFT) calculations. Our studies will pay substantial attentions on the following several aspects:(ⅰ) Au, Pt mono-metal and bimetallic clusters and surfaces'structure and performance,(ⅱ) microscopic mechanism of catalysts and CH3OH, HCOOH'interactions,(ⅲ) the mechanism details of formic acid oxidation along various possible pathways,(ⅳ) the thermodynamic and dynamical properties of the formic acid oxidation,(ⅴ) the relative stability of various activate intermediates and transition states involved along each pathway,(ⅵ) key factors controlling the catalytic activity of Pt-based catalysts, and the new and reasonable theoretical model describing the electro-oxidation of formic acid. We believe that the theoretical results would provide valuable guidance and assist for the rational design of efficient Pt-based electrocatalysts of DMFCs/DFAFCs.
     The valuable results in this dissertation can be summarized as follows:
     1. The density functional theory (DFT) calculations are carried out to study the mechanism details and the ensemble effect of methanol dehydrogenation over Pt3and PtAu2clusters, which present the smallest models of pure Pt clusters and bimetallic PtAu clusters. The energy diagrams are drawn out along both the initial O-H and C-H bond scission pathways via the four sequential dehydrogenation processes, respectively, i.e. CH3OH→CH2OH→CH2O→CHO→CO and CH3OH→CH3O→CH2O→CHO→CO, respectively. It is revealed that the reaction kinetics over PtAu2is significantly different from that over Pt3. For the Pt3-mediated reaction, the C-H bond scission pathway, where an ensemble composed of two Pt atoms is required to complete methanol dehydrogenation, is energetically more favorable than the O-H bond scission pathway, and the maximum barrier along this pathway is calculated to be12.99kcal/mol. In contrast, PtAu2cluster facilitates the reaction starting from the O-H bond scission, where the Pt atom acts as the active center throughout each elementary step of methanol dehydrogenation, and the initial O-H bond scission with a barrier of21.42kcal/mol is the bottom-neck step of methanol decomposition. Importantly, it is shown that the complete dehydrogenation product of methanol, CO, can more easily dissociate from PtAu2cluster than from Pt3cluster. The calculated results over the model clusters provide assistance to some extent for understanding the improved catalytic activity of bimetal PtAu catalysts towards methanol oxidation in comparison with pure Pt catalysts.
     2. By performing density functional theory calculations, we studied the methanol decomposition promoted by neutral, anionic, and cationic Au trimers, which represent three simplest prototypes of Au-cluster-based catalysts with different charge states. The theoretical results show that the Au3-and Au3+-mediated reactions proceed via the four successive single dehydrogenation steps CH3OH→CH3O→CH2O→CHO→CO, while Au3--mediated reaction occurs through two double dehydrogenation steps CH3OH→CH2O→CO. The additional negative charge remarkably reduces the binding capability of CO (the completely dehydrogenated product of methanol) on the cluster, and thus is favorable for reducing the catalyst poisoning by CO. In contrast, the neutral and positively charged clusters present strong interaction with CO, making the catalyst is easily poisoned by CO. Furthermore, the reaction promoted by the cationic cluster shows a much higher energy barrier than those by the neutral and anionic clusters. So selecting suitable substrates that make Au nanoparticles negatively charged may be a promising strategy for promoting methanol oxidation.
     3. By performing density functional theory calculations, we have studied the CO pathway and non-CO pathway of the methanol oxidation on the PtAu(111) bimetallic surface. CO is shown to possess larger adsorption energy on the PtAu(111) surface than that on the pure Pt(111) surface, and the non-CO pathway on the bimetallic surface is found to be energetically more favorable than the CO pathway. These calculated results propose that the improved electrocatalytic activity of PtAu bimetallic catalysts for methanol oxidation should be attributed to the alternation in the major reaction pathway from the CO pathway on pure Pt surface to the non-CO pathway on the PtAu bimetallic surface rather than the easier removal of CO on PtAu catalysts than that on pure Pt catalysts.
     4. By performing density functional theory calculations, we have studied the dual-path mechanism of formic acid (HCOOH) oxidation on the PtAu(111) surface in the continuum water solution phase. The direct pathway involving the dehydrogenation of HCOOH to form CO2occurs with a barrier of15.5kcal/mol, which is in contrast to the much higher barrier of99.2kcal/mol in the indirect pathway involving the dehydration of HCOOH to form CO intermediate. In comparison, the calculated barriers on Pt(111) surface in direct and indirect pathways are5.8and32.9kcal/mol, respectively. The theoretical results emphasize that bimetallic PtAu(111) surface significantly increases the barrier difference between the two pathways to83.7kcal/mol from27.1kcal/mol on the Pt(111) surface, and thus can hinder remarkably the indirect pathway. The theoretical results rationalize well the experimental finding that bimetallic PtAu catalysts show higher catalytic activity towards HCOOH oxidation than pure Pt catalysts.
     5. We establish the new and reasonable theoretical model. HCOOH molecules can form stable dimers through a variety of hydrogen-bonded structures with a formation energy up to15kcal/mol, so we conjecture that HCOOH electro-oxidation is relative with dimers'structure. We design dimer model and water assistance proton bridge model of HCOOH electro-oxidation. The theoretical results show that (ⅰ) the HCOOH dimer which adsorbs on the Pt(111) surface forms CO intermediate via intermolecular dehydration and leads to catalysts'CO-poisoning,(ⅱ) the carbonyl and hydroxyl group of HCOOH can form hydrogen bonds with surrounding water molecules, which may play an important role to HCOOH electro-oxidation, and water assistance proton bridge can promote the reaction and reduce the energy barrier. The newly proposed mechanism improves our understanding for the mechanism of catalytic HCOOH oxidation and rationalizes the easy CO poisoning of Pt-based catalysts.
引文
[1]Hutchings, G. J. J. Catal. 1985, 96,292,
    [2]Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett. 1987, 16, 405.
    [3]Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. J. Catal. 1989, 115, 301.
    [4]Hughes, M. D.; Xu, Y. J.; Jenkins, P.; McMorn, P.; Landon, P.; Enache, D. 1.; Carley, A. F.; Attard, G. A.; Hutchings, G. J.; King, F.; Stitt, E. H.; Johnston, P.; Griffin, K.; Kiely, C. J. Nature. 2005, 437,1132-113 5.
    [5]Waters, R. D.; Weimer, J. J.; Smith, J. E. Catal. Lett. 1995, 30, 181.
    [6]Xu, C.; Su, J.; Xu, X.; Liu, P.; Zhao, H.; Tian, F.; Ding, Y. J. Am. Chem. Soc. 2007, 129, 42.
    [7]Lahr, D. L.; Ceyer, S. T. J. Am. Chem. Soc. 2006, 128, 1800.
    [8]Haruta, M. Catal. Today, 1997, 36, 153-166.
    [9]Donka, A. 2002, 35(3), 82-88.
    [10]Kim, C. H.; Thompson, L. T. J. Catal. 2005, 230, 66-74.
    [ 11 ]Ueda, A.; Haruta, M. Gold Bulletin 1999, 32(1), 3-11.
    [12]Bamwenda, G. R.; Obuchi, A.; Ogata, A.; Oi, J.; Kushiyama, S.; Mizuno, K. J.M6I. Catal. A: Chemical 1997, 126, 151-159.
    [ 13 ]Ueda, A.; Haruta, M. App/. Catal. B: Environmental 1997, 12(2-3), 81-93 .
    [14]Salama, T. M.; Ohnishi, R.; Shido, T.; Ichikawa, M. J. Catal. 1996, 162, 169-178.
    [15]Chou, J.; McFarland, E. W. Chem. Comm. 2004, 1648-1649.
    [16]Stangland, E. E.; Taylor, B.; Andres, R. P.; Delgass, W. N. J. Phys. Chem. B 2005, 109, 2321-2330.
    [17]Jia, C. C.; Yin, H. M.; Ma, H. Y.; Wang, R. Y.; Ge, X. B.; Zhou, A. Q.; Xu, X. H.; Ding, Y. J. Phys. Chem. C 2009, 113, 16138-16143.
    [18]Gazsi, A.; Bansagi, T.; Solymosi, F. Catal. Left 2009, 131, 33-41.
    [19]Hu, G. R.; Chao, C. S.; Shiu, H. W.; Wang, C. T.; Lin, W. R.; Hsub, Y. J.; Luo, M. F. Phys. Chem. Chem. Phys. 2011, 13, 3281-3290.
    [20]Choi, W. C.; Woo, S. I.; Jeon, M. K.; Sohn, J. M.; Kim, M. R.;Jeon, H. J. Adv. Mater. 2005, 17, 446-451.
    [21]Wahl, R.; Mertig, M.; Raff, J.; Selenska-Pobell, S.; Pompe, W. Adv. Mater. 2001, 13, 736-740.
    [22]Wang, H.; Song, Y.; Medforth, C. J.; Shelnutt, J. A. J. Am. Chem. Soc. 2006, 128, 9284-9285.
    [23]Kardash, D.; Korzemewski, C. Langnmir 2000, 22(16), 8419-8425.
    [24]Kobayashi, T.; Babu, P. K.; Gancs, L.; Chung, J. H.; Oldfield, E.; Wieckowski, A. J. An?. Chein. Soc. 2005, 127, 14164-14165.
    [25]Peng, X.; Koczkur, K.; Nigro, S.; Chen, A. Chem. Commun. 2004, 21, 2872-2783.
    [26]Chen, Z. W.; Waje, M.; Li, W. Z.; Yan, Y. S. Angew. Chem. Int. Ed. 2007, 22(46), 4060-4063.
    [27]Tarasevich, M. R.; Sadkowski, A.; Yeager, E. In Comprehensive Treatise of Electrochemistry; Conway, B. E.; Bockris, J. O. M.; Yeager, E.; Khan, S. U. M.; White, R. E. Eds.; Plenum Press: New York, 1983, 7, p301.
    [28]Markovic, N. M.; Ross, P. N. llectrochim. Acta 2000, 25-26(13), 4101-4115.
    [29]Guo, Y. G.; Hu, J. S.; Zhang, H. M.; Liang, H. P.; Wan, L. J.; Bai. C. L. Adv. Mater. 2005,17,746-746.
    [30]Park, J.; Cheon, J. J. Am. Chem. Soc. 2001, 123, 5743-5746.
    [3)1]Choi, W. C.; Woo, S. I.; Jeon, M. K.; Sohn, J. M.; Kim, M. R.; Jeon, H. J. Adv. Mater. 2005, 17, 446-451.
    [32]Yuan, J.; Wang, K.; Xia, X. Ad>>. Funct. Mater. 2005, 15, 803-809.
    [33]Wang, Z. L.; Petroski, J. M.; Green, T. C.; EI-Sayed. M. A. J. Phys. Chein. B 1998, 102(32), 6146-6151.
    [34]Liang, H. P.; Zhang, H. M.; Hu, J. S.; Guo, Y. G.; Wan, L. J.; Bai, C. L. Angew. Chem. Int. Ed. 2004, =l3, 1540-1453.
    [35]Bock, C.; Paquet, C.; Couillard, M.; Botton, G. A.; MacDougall, B. R. J. Am. Chein. Soc. 2004, 126, 8028-8037.
    [36]Steigerwalt, E. S.; Deluga, G. A.; Lukehart, C. M. J Phys. Chein. B 2002, 106, 760-766.
    [37]Gasteiger, H. A.; Markovic N.; Ross, P. N.; Cairns, J. E. J. Phys. Chena.1994, 98, 617-625.
    [38]Stamenkovic, V. R.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M. J. Am. Chem. Soc. 2006,128,88133-8819}
    [39]Sun, S.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Science 2000, 287, 1987-1992.
    [40]Chen, M. S.; Kumar, D.; Yi, C. W.; Goodman, D. W. Science 2005, 310, 291-293.
    [41]Zhang, H.; Zelmon, D. E.; Deng, L.; Liu, H.-K.; Teo, B. K. J. Ana. Chem. Soc. 2001, 123, 11300-11301.
    [42]Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapam, S.; Smotkin, E. S.; Mallouk, T. E. Science 1998, 280, 1735-1737.
    [43]Petrii, O. A. JSolid Stale Electrochem 2008,12,609-642.
    [44]Sun, Y. P.; Xing, L.; Scott, K. JPower Sources 2010, 195, 1-10.
    [45]Luo, J.; Njoki, P. N.; Lin, Y.; Mott, D.; Wang, L. Y.; Zhong, C. J. Langmuir 2006, 22, 2892-2898.
    [46]Luo, J.; Maye, M. M.; Kariuki, N. N.; Wang, L. Y.; Njoki, P. N.; Lin, Y.; Schadt, M.; Naslund, H. R.; Zhong, C. J. Calcal Today 2005,99,291-297.
    [47]Xu, C. X.; Wang, R. Y.; Chen, M. W.; Zhang, Y.; Ding, Y. Phys Chem Chem Phys 2010, 12, 239-246.
    [48]Hernndez, P.; Montiel, M.; Ocon, P.; Fierro, J. L. G.; Wang, H.; Abruna, H. D.; Rojas, S. JPower Souces 2010, 19-5, 7959-7967.
    [49]Morante-Catacora, T. Y; Ishikawa, Y; Cabrera, C. R. J Electroanal. Chem 2008, 621, 103-112.
    [50]Neto, A. O.; Dias, R. R.; Tusi, M.; Linardi, M.; Spinace, E. V J. Power Sources 2007, 166, 87-91.
    [51]Yi, Q. F.; Zhang, J. J.; Chen, A. C.; Liu, X. P.; Xu, G. R.; Zhou, Z. H. J. Appl. Electrochem 2008, 38, 695-701.
    [52]Balakrishnan, K.; Sachdev, A.; Schwank, J. JCalal 1990, 121, 441-445.
    [53]Shen, J.Y.; Hill, J. M.; Watwe, R. M.; Podkolzin, S. G.; Dumesic, J. A. Ccrtal Left 1999, 60, 1-9.
    [54]Tang, W.; Jayaraman, S.; Jaramillo, T. F.; Stucky, G. D.; McFarland, E. W. J Phys Chem C 2009, 113, 5014-5024.
    [55]Selvarani, G; Vinod Selvaganesh, S.; Krishnamurthy, S.; Kiruthika, G V M.; Sridhar, P.; Pitchumani, S.; Shukla, A. K. JPhys Chein C 2009, 113, 7461-7468.
    [56]Guo, X.; Guo, D. J.; Qiu, X. P.; Chen, L. Q.; Zhu, W. T. Electrochemistry Communication 2008, 10, 1748-1751.
    [57]Guo, X.; Guo, D. J.; Chen, L. Q.; Zhu, W. T.; Qiu, X. P. Electrochemistry Communications 2008, 10, 1748-1751.
    [58]Hu, Y. J.; Zhang, H.; Wu, P.; Zhang, H.; Zhou, B.; Cai, C. X. Phys. Chem. Cheni. 1'hys 2011, 13, 4083-4094.
    [59]Silva, D. F.; Geraldes, A. N.; Cardoso, E. Z.; Tusi, M. M.; Linardi, M.; Spinace, E. V.; Neto, A. O.1171. J. Electrochem. Sci 2011, 6,3594-3606.
    [60]Vriezema, D. M.; Aragones, M. C.; Elemans, J. A. A. W. Chenr. Rev. 2005, 103, 1445.
    [61]Cushing, B. L.; Kolesnicheko, V. L.; Oconnor, C. J. Chem. Rev. 2004, 10-1, 3893.
    [62]Li, H. Z.; Shen, J. Z.; Yang, G. X.; Tang, Y. W.; Lu, T. H. Cheim. J. Chiu Univ. 2011, 7, 1445-1450.
    [63]Shen, J. Z.; Yang, G. X.; Tang, Y. W.; Lu, T. H. Chin. .1. Appl. Chem. 2010, 27, 869-874.
    [64]Yu, X. W.; Pickup, P. G. J. Power Sorirce.s 2008,182,124-1-')2.
    [65]MCNICOl, B. D.; Rand, D. A. J.; Williams, K. R. J. Power Soiufces 1999, 83, 15-31.
    [66]Barragan, V. M.; Heinzel, A. .1. Power Sources 2002, 10=f, 66-72.
    [67]Arico, A. S.; Srinivasan, S.; Antonucci, V. Fuel Cells 2001, 1, 133-161.
    [68]Shobba, T.; Mayanna, S. M.; Sequeira, C. A. J. Power Sources, 2002, 108(1-2), 261-264.
    [69]Zhou, W. J.; Zhou, B.; Li, W. Z. J. Power Sources 2006, 126(1-2), 16-22.
    [70]John, C.; Amphlett, B. A.; Peppley, E. J. power Sources 2001, 96(1), 204-213.
    [71]Rajesh, B.; Karthik, V.; Karthikeyan, S. J. Fue12002, 81(17),2177-2190.
    [72]Jeng, K. T.; Chen, C. W. J. Power Sources 2002, 112(2), 367-375.
    [73]Demici, U. B. J. Power Sources 2007, 169, 239-246.
    [74]Rice, C.; Ha, S.; Masel, R. I.; Waszczuk, P.; Wieckowski, A.; Barnard, T. J. Power Sources 2002, 111, 83-89.
    [75]Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Science 2007, 316, 732-735.
    [76]Yu, X. W.; Pickup, P. G. J. Power Sources 2008, 182, 124-132.
    [77]Miyake, H.; Okada, T.; Samjeske, G.; Osawa, M. Phys. Chem. Chern. Phys. 2008, 10,3662-3669.
    [78]Kim, J.; Jung, C.; Rhee, C. K.; Lim, T. H. Langmuir 2007, 23, 10831-10836.
    [79]Xu, J.B.; Zhao,T.S.; Liang, Z.X. J Power Sozrrces 2008, 185, 857-861.
    [80]陆天虹,高科技与产业化 2008, 11, 70-72.
    [81]Borkowska, Z.; Tymosiak-Zielinska, A.; Nowakowski, R. Electrochim. Acta. 2004, 49, 2613.
    [82]Xue, X. D.; Gu, L.; Song, Y. Y.; Zhu, L. W.; Chen, P.; Cao, X. B. J Solid State Chem. 2009, 182, 2912-2917.
    [83]Strbac, S.; Mitrovic, V.; Avramov-Ivic, M. Electrochini. Acta 2001, 46, 3175-3180.
    [84]Ferrin, P.; Mavrikakis, M. J. Am. Chem. Soc. 2009, 131, 14381-14389.
    [85]Zhang, J. T.; Liu, P. P.; Ma, H. Y.; Ding, Y. J. Phys. Chem. C 2007, 111, 1 0382-10388.
    [86]Jovanovic, V.; Vlajnic, G.; Popic, J.; Avramov-Ivic, M. J. Electroanal. Chem. 1997, 423, 119-124.
    [87]Tymosiak-Zielinska, A.; Shul, G.; Borkowska, Z. Eleclrochim. Acta 2004, 49, 1209-1220.
    [88]Cameron, D.; Thompson, D.; Holliday, R. J. Powei0 Sources 2003, 118, 298-303.
    [89]Choia, J. H.; Jeong, K. J.; Dongb, Y.; Hanb, J.; Limb, T. H.; Lee, J. S.; Sung, Y. E. J Power Sources 2006, 163, 71-75.
    [90]Markovic, N. M.; Ross, P. N., Surf. Sci. Rep. 2002, 45, 117-229.
    [91]Kristian, N.; Yan, Y.S.; Wang, X. Chem. Commrm. 2008, 353-355.
    [92]Peng, B.; Wang, H. F.; Liu, Z. P.; Cal, W. B. J. Phys. Chem. C 2010, 114, 3102-3107.
    [93]Zhang, L. J.; Wang, Z. Y; Xia, D. G J. Alloys Compd 2006, 426, 268-271.
    [94]McGovern, M. S.; Garnett, E. C.; Rice, C.; Masel, R. I.; Wieckowski, A. J. Power Sources 2003, 115, 35-39.
    [95]Rice, C.; Ha, S.; Masel, R. I.; Waszezuk, P.; Wieekowski, A.; Baxnard, T. J. Power Sources 2003, 115, 229-235.
    [96]Xu, C. W.; Su, Y. Z.; Tan, L. L.; Liu, Z. L.; Zhang, J. H.; Chen, S.; Jiang, S. P. Electrochim. Acta 2009, 54, 6322-6326.
    [97]Xu, j. B.; Hua, K. F.; Sun, G Z.; Wang, C.; Lv, X. Y; Wang, Y J. Electrochem. Comnna17. 2006, 8, 982-986.
    [98]Uchida, H.; Ozuka, H.; Watanabe, M. Electrochim. Acta 2002, 47, 3629-3636.
    [99]Hernandez-Femandez, P.; Montiel, M.; Ochn, P.; Fierro, J. L. G.; Wang, H.; Abruna, H. D.; Rojas, S. JPower Souces 2010, 195, 7959-7967.
    [100]Guo, D. J.; Cui, S. K. J. Colloid Interface Sci. 2009, 340, 53-57.
    [101]Zhou, X. W. ; Zhang, R. H.; Zhou, Z. Y ; Sun, S. G. J. Power Sources 2011, 196, 5844-5848.
    [102]Jiang, Q.; Jiang, L. H.; Hou, H. Y.; Qi, J.; Wang, S. L.; Sun, G. Q. J. Phys. Chem. C 2010, 114, 19714-19722.
    [103]Jiang, Q.; Jiang, L. H.; Wang, S. L.; Qi, J.; Sun, J. Q. Catal. Connmzrrr. 2010, 12, 67-70.
    [104]Neto, A. O.; Dias, R. R.; Tusi, M.; Linardi, M.; Spinace, E. V J. Power Sources 2007, 166,87-91.
    [ 105]Yi, Q. F.; Zhang, J. J.; Chen, A. C.; Liu, X. P.; Xu, G. R.; Zhou, Z. H. J. Appl. Electrochem 2008, 38,695-701.
    [106]He, W. W.; Wu, X. C.; Liu, J. B.; Zhang, K.; Chu, W. G.; Feng, L. L.; Hu, X. N.; Zhou, W. Y; Xie, X. X. J. Phys. Chem. C 2009, 113, 10505-10510.
    [107]Zhao, D.; Wang, Y H.; Yan, B.; Xu, B. Q. J. Phys. Chem. C 2009, 113, 1242-1250.
    [108]Morante-Catacora, T. Y; Ishikawa, Y; Cabrera, C. R. J Electroanal Chem 2008,621,103-112.
    [109]Luo, J.; Njoki, P. N.; Lin, Y.; Mott, D.; Wang, L. Y.; Zhong, C. J. Langmuir 2006, 22, 2892-2898.
    [110]Ferrin, P.; Mavrikakis, M. J. Arm Chem. Soc. 2009, 131,14381-14389.
    [111]Yang, L. X_; Yang, W. Y.; Cai, Q.Y. J. Phys. Chem. C 2007, Ill, 16613-16617.
    [112]Mott, D.; Luo, J.; Njoki, P. N.; Lin, Y.; Wang, L. Y.; Zhong, C. J. Catal Today 2007, 122, 378-385.
    [113]Yin, M.; Huang, Y. J.; Liang, L.; Liao, J. H.; Liu, C. P.; Xing, W. Chem. Conzmun. 2011, 47,8172-8174.
    [114]Wilhelm, S.; Vielstich, W.; Buschmann, H.; Iwasita, T. J. Electroanal. Chem. 1987,229,377-384.
    [115]Sun, S.; Clavilier, J.; Bewick, A. J. Electroanal. Chem. 1988, 240,147-159.
    [116]Samjeske, G.; Osawa, M. Angeiv. Chem., Int. Ed. 2005, 44, 5694-5698.
    [117]Mukouyama, Y.; Kikuchi, M.; Samjeske, G.; Osawa, M.; Okamoto, H. J. Phys. Chem. B 2006, 110, 11912-11917.
    [118]Chen, Y. X.; Ye, S.; Heinen, M.; Jusys, Z.; Osawa, M.; Behm, R. J. J. Phys. Chem. B 2006, 110, 9534-9544.
    [119]Chen, Y. X.; Heinen, M.; Jusys, Z.; Behm, R. J. Arrgew. Chem., lilt. Ed. 2006, 45,981-985.
    [120]Chen, Y. X.; Heinen, M_; Jusys, Z.; Behm, R. J. ChemPhysChem 2007, 8, 380-385.
    [121]Yuan, D. W.; Gong, X. G.; Wu, R. Q. J. Chem. Phys.2008, 128, 064706.
    [122]Neurock, M.; Janik, M.; Wieckowski, A. Faraday Discuss. 2008, 140, ')6')-')78.
    [123]Wang, H. F.; Liu, Z. P. J. Phys. Chem. C 2009, 113, 17502-17508.
    [124]Gao, W.; Keith, J. A.; Anton, J.; Jacob, T. J. Aim Soc. Chem. 2010, 132, 18377-18385.
    [125]Gao, W.; Keith, J. A.; Anton, J.;Jacob, T. Dalton Trans. 2010, 39,8450-8456.
    [126]Bakb, I.; Palinkas, G. Surf Sci. 2006, 600, 3809-3814.
    [127]Hartnig, C.; Grimminger, J.; Spohr, E. J. Electroanal. Chem. 2007, 607, 133-139.
    [128]Yue, C. M. Y.; Lim, K. H. Lim Catal. Lett. 2009, 128,221-226.
    [129]王广厚,上海:上海科学技术出版社,2003:1.
    [130]王广厚,物理学进展,14.121.(1994).
    [131]解士杰,韩圣浩,山东教育出版社.济南.(2001).
    [132]阎守胜,北京大学出版社.北京.(2000).
    [1]吴兴惠,项金钟,北京:电子工业出版社,2002.
    [2]Hohenberg, P.; Kohn, W. Phys. Rev.1964,136, B864-B871.
    [3]Kohn, W.; Sham, L. J. Phys. Rev.1965,140, A1133-A1138.
    [4]Hohenberg. P.; Kohn, W. Phys. Rev.1964,136, B864.
    [5]Kohn. W.; Sham, L. J. Phys. Rev. A 1965,140,1133.
    [6]Hammer, B.; Hansen, L. B., Norskov, J. K. Phys. Rev. B 1999,59(11),7413-7421.
    [7]Perdew, J. P.; Chevary, J. A.; Vosko, S. H. Phys. Rev. B 1992,46(11),6671-6687.
    [8]Kittel, C. Moscow:Nauka Press 1967,221-230.
    [9]Becke, A. D. J. Chem. Phys.1993,98 (2),1372-1377.
    [10]Frisch, M. J. et al. Gaussian 03, Revision B.05, Gaussian, Inc., Pittsburgh, P. A.; 2003.
    [11]王繁,黎乐民.物理化学学报2004,20,966.
    [12]其木苏荣.哈尔滨工业大学,2005.
    [13]Bagus, P. S.; Nelin, C. J.; Bauschlicher, C. W. Phys Rev B 1983,28,5423-5438.
    [14]Favot, F.; Corso, A. D.; Baldereschi, A. J Chem Phys 2001,114,483-488.
    [15]Mehmood, F.; Kara, A.; Rahman, T. S.; Henry, C. R. Phys Rev B 2009,79, 075422(1-6).
    [16]Eyring, H. Chem. Rev.,1935,17 (1),65-77.
    [17]Matsuzawa, N.; Seto, J.; Dixon, D. A. J. Phys. Chem. A 1997,101,9391-9398.
    [1]Parsons, R.; Vandernoot, T. J Electroanal Chem 1988, 257, 9-45.
    [2]Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E. Science 1998, 280, 1735-1737.
    [3]Petrii, O. A. J Solid State Electrochem 2008, 12, 609-642.
    [4]Sun, Y. P.; Xing, L.; Scott, K. JPower Sources 2010, 195, 1-10.
    [5]Luo, J.; Njoki, P. N.; Lin, Y.; Mott, D.; Wang, L. Y.; Zhong, C. J. Langmuir 2006, 22, 2892-2898.
    [6]Luo, J.; Maye, M. M.; Kariuki, N. N.; Wang, L. Y.; Njoki, P. N.; Lin, Y.; Schadt, M.; Naslund, H. R.; Zhong, C. J. Catal Today 2005, 99, 291-297.
    [7]Xu, C. X.; Wang, R. Y.; Chen, M. W.; Zhang, Y.; Ding, Y. Phys Chem (hen? Phys 2010, 12, 239-246.
    [8]Jusys, Z.; Kaiser, J.; Behm, R. J. E'lectrochimActa 2002, 47, 3693-3706.
    [9]Sinfelt, J. H. Bimetallic Catalysts: DiscoVeries, Concepts, and Applications: Exxon Monograph; Wiley: New York, 1983.
    [10]Sinfelt, J. H. Acc Chem Res 1987, 20, 134-139.
    [11]Ferrando, R.; Jellinek, J.; Johnston, R. L. ChemRev 2008, 108, 845-910.
    [12]Hernandez-Fernandez, P.; Montiel, M.; Ocon, P.; Fierro, J. L. G.; Wang, H.; Abruna, H. D.; Rojas, S. JPower Souces 2010, 195, 7959-7967.
    [13]Morante-Catacora, T. Y.; Ishikawa, Y.; Cabrera, C. R. J. Eleciroanal. Chem 2008, 621, 103-112.
    [14]Neto, A. O.; Dias, R.R.; Tusi, M.; Linardi, M.; Spinace, E. V J. Power Sources 2007, 166, 87-91.
    [15]Yi, Q. F.; Zhang, J. J.; Chen, A. C.; Liu, X. P.; Xu, G. R.; Zhou, Z. H. J. Appl. Electrochem 2008, 38, 695-701.
    [16]Balaknshnan, K.; Sachdev, A.; Schwank, J. JCatal 1990, 121, 441-445.
    [17]Shen, J. Y.; Hill, J. M.; Watwe, R. M.; Podkolzin, S. G.; Dumesic, J. A. Catal Lett 1998, 60, 1-9.
    [18]Tang, W.; Jayaraman, S.; Jaramillo, T. F.; Stucky, G. D.; McFarland, E. W. J Phys Chem C 2009, 113, 5014-5024.
    [19]Selvarani, G; Vinod Selvaganesh, S.; Krishnamurthy, S.; Kiruthika, G. V M.; Sridhar, P.; Pitchumani, S.; Shukla, A. K. JPhys Chem C 2009, 113, 7461-7468.
    [20]Guo, X.; Guo, D. J.; Qiu, X.P.; Chen, L. Q.; Zhu, W. T. Electrochemistry Communication 2008, 10, 1748-1751.
    [211 Guo, X.; Guo, D. J.; Chen, L. Q.; Zhu, W. T.; Qiu, X. P. Electrochemistry Communications 2008, 10, 1748-1751.
    [22]Hu, Y. J.; Zhang, H.; Wu, P.; Zhang, H.; Zhou, B.; Cal, C. X. Phys. Chem. Chem. Phys 2011, 13, 4083-4094.
    [23]Silva, D. F.; Geraldes, A. N.; Cardoso, E. Z.; Tusi, M. M.; Linardi, M.; Spinace, E. V; Neto, A. O. Irrt. J. Electrochem. Sci 2011, 6, 3594-3606.
    [24]Batista, E. A.; Malpass, G. R. P.; Motheo, A. J. lwasita, T. Electrochenr Commun 2003, 5, 843-846.
    [25]Cao, D.; Lu, G. Q.; Wieckowski, A.; Wasileski, S. A.; Neurock, M. JPhy.s Chem B 2005, 109, 11622-1163.
    [26]Hoster, H.; Iwasita, T.; Baumgartner, H.; Vielstich, W. Phys Chem Chem Phys 2001, 3, 337-246.
    [27]Housmans, T. H. M.; Koper, M. T. M. JPhys Chem B 2001, 107,8557-8567.
    [28]Housmans, T.H. M.; Wonders, A. H.; Koper, M. T. M. JPhys Client B 2006, 110, 10021-10031.
    [29]lwasita, T.; Hoster, H.; John-Anacker, A.; Lin, W. F.; Vielstich, W. Langmuir 2000, 16, 522-529.
    [30]lwasita, T. Electrochim Acta 2002, 48, 289-289.
    [31]lwasita, T. Electrochim Acta 2002, 47, 3663-3674.
    [32]Jusys, Z.; Behm, R. J. JPhys Chem B 2001, 105, 10874-10883.
    [33]Gasteiger, H. A.; Markovic, N.; Ross, P. N.; Cairns, E. J. J Phys Chem 1993, 97, 12020-12029.
    [34]Tripkovic, A. V.; Popovic, K. D.; Grgur, B. N.; Blizanac, B.; Ross, P. N.; Markovic, N. M. Electrochim Actct 2002, -l7, 3707-3714.
    [35]Kardash, D.; Korzeniewski, C.; Markovic, N. J Electroanal Chem 2001, 500, 518-523.
    [36]Davis, J. L.; Barteau, M. A. Sutrf Sci 1987, 187, 387-406.
    [37]Bagotzky, V. S.; Vassiliev, Y. B.; Khazova, O. A. J Electroanal chem 1977, 81, 229-238.
    [38]Greeley, J.; Mavrikaki s, M. J Am Chem Soc 2002, 121, 7193-7201.
    [39]Greeley, J.; Mavrikaki s, M. J Am Chent Soc 2004, 126, 3910-3919.
    [40]Watanabe, T.; Ehara, M.; Kuramoto, K.; Nakatsuji, H. Sutf Sci 2009, 603, 641-646.
    [41 ]Yuan, D. W.; Gong, X. G.; Wu, R. Q. J Chem Phys 2008, 128, 064706.
    [42]Maroun, F.; Ozanam, F.; Magnussen, O. M.; Behm, R. J. Science 2001, 293, 1811-1814.
    [43]Chen, M. S.; Kumar, D.; Yi, C. W.; Goodman, D. W. Science 2005, 310, 291-293.
    [44]Tong, Y. Y. JPhys Chem B 2005, 109, 17775-17778.
    [45]Cuesta, A. J Am Chem Soc 2006, 128, 13332-13333.
    [46]Neurock, M.; Janik, M.; Wieckowski, A. Paraday Discuss 2009, 140, 363-378.
    [47]Yuan, D. W.; Gong, X. G.; Wu, R. Q. Phys Rev B 2007, 75, 085428. [48] Fialko, E. F.; Kikhtenko, A.V.; Goncharov, V. B.; Zamaraev, K. I. J Phys
    Chem B 1997, 101, 5772-5773.
    [49]Wallace, W. T.; Whetten, R. L. .l An? Chem Soc 2002, 124, 7499-7505.
    [50]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A. Cheeseman, J. R.; Montgomery, J.A. Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C. Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmam, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P.Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K. Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L. Fox, D. J.; Keith, T.; Al- Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P M. W.; Johnson, B.; Chen, W.; Won-, M. W.; Gonzalez, C.; Pople, J. A. Gaussian03, Revision B.02. Gaussian Inc; Pittsburgh, P.A. 2003.
    [51]Becke, A. D. JChem Phys 1993, 98, 5648-5652.
    [52]Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys RehA 1988, 38, 3098-3100.
    [53]Lee, C. T.; Yang, W. T.; Parr, R. G. Phys ReV B 1988, 37, 785-789.
    [54]Hay, P. J.; Wadt, W. R. J Cheni Phys 1985, 82, 270-283.
    [55]Hay, P. J.; Wadt, W. R. J Chenn Phys 1985, 82, 299-310.
    [56]Fukui, K. JPhys Chem 1970, 74, 4161-4163.
    [57]Perdew, J. P.; Burke, K.; Ernzerhof M. Phys Rev Lett 1996, 77, 3865-3868.
    [58]Beden, B.; Morin, M. C.; Hahn, F. J F.lectroancrl Chem 1987, 229, 353-366.
    [59]Tang, W.; Jayaraman, S.; Jaramillo, T. F.; Stucky, G. D.; McFarland, E. W. JPhys Chem C 2009, 113, 5014-5024.
    [60]Ren, H.; Humbert, M. P.; Menning, C. A.; Shu, Y.Y.; Singh, U. G.; Cheng, W.C.; Chen, J. G. Applied Catalysis A: General 2010, 373, 303-309.
    [1]McNicol, B. D.; Rand, D. A. J.; Williams, K. R. J. Power Sources 1999, 83, 15-31.
    [2]V.M. Barragan and A. Heinzel, J. Power Sources 2002,104, 66-72.
    [3]Arico, A. S.; Srinivasan, S.; Antonucci, V. Fuel Cells 2001, 1, 133-161.
    [4]Xue, X. D.; Gu, L.; Song, Y. Y; Zhu, L. W.; Chen, P.; Cao, X. B. J Solid State Chem. 2009, 182, 2912-2917.
    [5]Strbac, S.; Mitrovic, V.; Avramov-Ivic, M. Electrochinz. Acta 2001, =t6, 3175-3180.
    [6]Ferrin, P.; Mavrikakis, M. .l. Anz. Chem. Soc. 2009, 131, 14381-14389.
    [7]Zhang, J. T.; Liu, P. P.; Ma, H. Y.; Ding, Y. J. Phys. Chem. C 2007, 111, 10382-10388.
    [8]Jovanovic, V.; Vlajnic, G.; Popic, J.; Avramov-Ivic, M. J. Electroanal. Chem. 1997,423, 119-124.
    [9]Tymosiak-Zielinska, A.; Shul, G.; Borkowska, Z. Electrochim. Acta 2004, 49, 1209-1220.
    [10]Cameron, D.; Thompson, D.; Holliday, R. J Po fiver Sozrrce,s 2003,118,298-303.
    [11]Minato, T.; Susaki, T.; Shiraki, S.; Kato, H. S.; Aika, K.; Kawai, M. Surf Sci 2004, 566-568, 1012-1017.
    [12]Baron, M.; Bondarchuk, O.; Stacchiola, D.; Freund, H. J.; Shaikhutdinov, S. J. Phys. Chem. C2009,113,6042-6049.
    [13]Rousseau, R.; Dietrich, G.; Kruckeberg, S.; Lutzenkirchen, K.; Marx, D.; Schweikhard, L.; Walther, C. Chenz. Phys. Lett. 1998, 295, 41-46.
    [14]Rousseau, R.; Marx, D. J. Chem. Phys. 2000, 112, 761-769.
    [15]Dietrich, G.; Krcukeberg, S.; Ltzuenkirchen, K.; Schweikhard, L.; Walther, C. J. Chem. Phys. 2000, 112, 752-760.
    [16]Li, Y. C.; Yang, C. L.; Sun, M. Y.; Li, X. X.; An, Y. P.; Wang, M. S.; Ma, X. G.; Wang, D. H. J Phys. Chem. A 2009, 113, 1353-1359.
    [17]Fialko, E. F.; Kikhtenko, A. V.; Goncharov, V. B.; Zamaraev, K. 1. J. Phys.
    Chem. B 1997, 101, 5772-5773.
    [18]Wallace, W. T.; Whetten, R. L. J Am. Chem. Soc. 2002, 124, 7499-7505.
    [19]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scusena, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J.A. Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P.Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachan, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L. Fox, D. J.; Keith, T.; Al- Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian03, Revision B.02. Gaussian Inc; Pittsburgh, P.A. 2003.
    [20]Becke, A. D. J Chem Phys 1993, 98, 5648-5652.
    [21]Becke, A. D. Phys ReVA 1988, 38, 3098-3100.
    [22]Lee, C. T.; Yang, W. T.; Parr, R. G. Phys ReVB 1988, 37, 785-789.
    [23]Hay, P. J.; Wadt, W. R. JChem Phys 1985, 82, 270-283.
    [24]Hay, P. J.; Wadt, W. R. JChem Phys 1985, 82, 299-310.
    [25]Fukui, K. JPhys Chena 1970, 74, 4161-4163.
    [1]Hogarth, M. P.; Hards, G. A. Platinum Met. Rev.1996,40,150-159.
    [2]Oetjen, H. F.; Schmidt, V. M.; Stimming, U.; Trila, F. J. Electrochem. Soc.1996, 143,3838-3842.
    [3]Hamnett, A. Catal. Today 1997,38,445-457.
    [4]Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E. Science 1998,280,1735-1737.
    [5]Ross, P. N., Jr. In Electrocatalysis, Chap.2; Lipkowski, J.; Ross, P. N., Jr. Ed, Wiley-VCH, New York 1998.
    [6]Parsons, R.; VanderNoot, T. J. Electroanal Chem.1988,257,9-45.
    [7]Jarvi, T. D.; Stuve, E. M. In Electrocatalysis; Lipkowski, J.; Ross, P. N., Ed. Wiley-VCH:New York,1998,75-153.
    [8]Hamnett, A. In Interfacial Electrochemistry, Wieckowski, A., Ed.; Marcel Dekker, Inc.:New York,1999,843-883.
    [9]Markovic, N. M.; Ross, J. P. N. Surf. Sci. Rep.2002,45,117-229.
    [10]Iwasita, T. Electrochim. Acta 2002,47,3663-3674.
    [11]Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Appl. Catal., B 2005, 56,9-35.
    [12]Paulus, U. A.; Endruschat, U.; Feldmeyer, G. J.; Schmidt, T. J.; Bonnemann, H.; Behm, R. J. J. Catal.2000,195,383-393.
    [13]Antolini, E. Mater. Chem. Phys.2003,78,563-573.
    [14]Lu, G. Q.; Wieckowski, A. Curr. Opin. Colloid Interface Sci.2000,5,95-100.
    [15]Xu, C. W.; Su, Y. Z.; Tan, L. L.; Liu, Z. L.; Zhang, J. H.; Chen, S.; Jiang, S. P. Electrochim. Acta 2009, 54, 6322-6326.
    [16]Xu, j. B.; Hua, K. F.; Sun, G Z.; Wang, C.; Lv, X. Y; Wang, Y J. Electrochem. Commun. 2006, 8, 982-986.
    [17]Uchida, H.; Ozuka, H.; Watanabe, M. Electrochim. Acta 2002, 47,3629-3636.
    [18]Hernandez-Fernandez, P.; Montiel, M.; Oc6n, P.; Fierro, J. L. G.; Wang, H.; Abruna, H. D.; Rojas, S. JPower Souces 2010, 195, 7959-7967.
    [19]Guo, D. J.; Cui, S. K. J. Colloid Interface Sci. 2009,340,53-57.
    [20]Zhou, X. W.; Zhang, R. H.; Zhou, Z. Y; Sun, S. G J. Power Sources 2011, 196, 5844-5848.
    [21]Jiang, Q.; Jiang, L. H.; Hou, H. Y; Qi, J.; Wang, S. L.; Sun, G. Q. J. Phys. Cherry. ('2010,114,19714-19722.
    [22]Jiang, Q.; Jiang, L. H.; Wang, S. L.; Qi, J.; Sun, J. Q. Catal. Commun. 2010, 12, 67-70.
    [23]Neto, A. O.; Dias, R. R.; Tusi, M.; Linardi, M.; Spinace, E. V J Poiver Sources 2007, 166,87-91.
    [24]Yi, Q. F.; Zhang, J. J.; Chen, A. C.; Liu, X. P.; Xu, G. R.; Zhou, Z. H. J. Appl. Electrochem 2008, 38,695-701.
    [25]Gasteiger, H. A.; Markovic, N.; Ross, P. N.; Cairns, E. J. J. Phy,s. Chem. 1994, 98, 617-625.
    [26]Watanabe, M.; Motoo, S. J. Electroanal. Chem. 1975, 60, 267-273.
    [27]Gasteiger, H. A.; Markovic, N. M.; Ross, P. N. J. Phys. Chem. 1995, 99, 8290-8301.
    [28]Sun, Y. P.; Xing, L.; Scott, K. JPower Sources 2010, 195,1-10.
    [29]Lu, Q. Y.; Yang, B.; Zhuang, L.; Lu, J. T. J Phys. Chem. B 2005, 109, 1715-1722.
    [30]Kim, I. T.; Lee, H. K.; Shim, J. J Natio Sci Nano Techno 2008, 8, 5302-5305.
    [31]He, W. W.; Wu, X. C.; Liu, J. B.; Zhang, K.; Chu, W. G; Feng, L. L.; Hu, X. N.; Zhou, W. Y.; Xie, X. X. J. Phys. Chem. C 2009, 113, 10505-10510.
    [32]Zhao, D.; Wang, Y H.; Yan, B.; Xu, B. Q. J. Phys. Chem. C 2009, 113, 1242-1250.
    [33]Morante-Catacora, T. Y; Ishikawa, Y; Cabrera, C. R. J. Electroanal. Chem 2008, 621,103-112.
    [34]Luo, J.; Njoki, P. N.; Lin, Y.; Mott, D.; Wang, L. Y.; Zhong, C. J. Langmuir 2006, 22, 2892-2898.
    [35]Luo, J.; Maye, M. M.; Kariuki, N. N.; Wang, L. Y.; Njoki, P. N.; Lin, Y.; Schadt, M.; Naslund, H. R.; Zhong, C. J. Catal Today 2005,99,291-297.
    [36]Xu, C. X.; Wang, R. Y.; Chen, M. W.; Zhang, Y.; Ding, Y. Phys Chem Chem Phys 2010, 12, 23 9-246.
    [37]Choi, J. H.; Park, K. W.; Park, I. S.; Kim, K.; Lee, J. S.; Sung, Y. E. J Electrochem. Soc. 2006, 153, 1812-1817.
    [38]Ferrin, P.; Mavrikakis, M. J. Am. Chem. Soc. 2009,131,14381-14389.
    [39]Guo, X.; Guo, D. J.; Qiu, X. P.; Chen, L. Q.; Zhu, W. T. Electrochem. Commzrn. 2008, 10, 1748-1751.
    [40]Tang, W.; Jayaraman, S.; Jaramillo, T. F.; Stucky, G. D.; McFarland, E. W. J. Phys. Chem. C2009,113,5014-5024.
    [41]Yang, L. X.; Yang, W. Y.; Cal, Q.Y. J. Phys. Chem. C2007,111, 16613-16617.
    [42]Mott, D.; Luo, J.; Njoki, P. N.; Lin, Y.; Wang, L. Y.; Zhong, C. J. Catal Today 2007, 122, 378-385.
    [43]Yin, M.; Huang, Y. J.; Liang, L.; Liao, J. H.; Liu, C. P.; Xing, W. Chem. Commuu. 2011, 47, 8172-8174.
    [44]Yuan, D. W.; Gong, X. G.; Wu, R. Q. J. Cheer. Phys. 2008, 128, 064706.
    [45]Park, S.; Xie, Y.; Weaver, M. J. Langmuir 2002, 18, 5792-5798.
    [46]Yajima, T.; Uchida, H.; Watanabe, M. J Phys. Chem. B 2004, 108, 2654-2659.
    [47]Chen, Y. X.; Miki, A.; Ye, S.; Sakai, H.; Osawa, M. J. Arm Chem. Soc. 2003, 125, 3680-3681.
    [48]Spendelow, J. S.; Goodpaster, J. D.; Kenis, P. J. A.; Wieckowski, A. J. Phys. Chem. B 2006, 110, 9545-9555.
    [49]Gong, X. Q.; Hu, P. J. Chem. Phy.s. 2003, 119, 6324-6334.
    [50]Batista, E. A.; Iwasita, T.; Vielstich, W. J. Phys. Chem. B 2004, 108, 14216-14222.
    [51]Fisher, G. B.; Sexton, B. A. Phys. Rev. Lett. 1980, 44, 683-686.
    [52]van der Niet, M. J. T. C.; den Dunnen, A.; Juurlink, L. B. F.; Koper, M. T. M. Angew. Chem. Int. Ed. 2010, 49, 6572-6575.
    [53]Hu, P.; King, D. A.; Lee, M. H.; Payne, M. C. Chem. Phys. Lett. 1995, 2-16, 7 3-78.
    [54]Hu, P.; King, D. A.; Crampin, S.; Lee, M. H.; Payne, M. C. Chem. Phys. Lett. 1994, 230, 501-506.
    [55]Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A,; Pederson, M. R. Singh, D. J.; Fiolhais, C. Phys. ReV. B 1992, 46, 6671-6687.
    [56]Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. ReV. Lett. 1996, 77, 3865-3868.
    [57]Payne, M. C.; Teter, M. P.; Allen, D. C.; Arias, T. A.; Joannopolous, J. D. ReV. Mod. Phys. 1992, 64, 1045-1097.
    [58]Vanderbilt, D. Phys. ReV. B 1990, 41, 7892-7895.
    [59]Govind, N.; Petersen, M.; Fitzgerald, G.; King, S. D.; Andzelm, J. Comput. Mater. Sci. 2003,28,250-258.
    [60]Wanjala, B. N.; Luo, J.; Loukrakpam, R.; Fang, B.; Mott, D.; Njoki, P. N.; Engelhard, M.;. Naslund, H. R.; Wu, J. K.; Wang, L. C.; Malis, O.; Zhong, C. J. Chem. Mater. 2010, 22, 4282-4294.
    [61]Irissou, E.; Laplante, F.; Garbarino,S.; Chaker, M.; Guay, D. J. Php. Chem. C.' 2010, 114, 2192-2199.
    [62]Du, B. C.; Tong, Y. Y. J. Phy.s. Chem. B 2005, 109, 17775-17780.
    [63]Neurock, M.; Janik, M.; Wieckowski, A. Faraday Discuss. 2009, 140, 363-378.
    [64]Bako, I.; Palinkas, G. Surf Sci. 2006, 600, 3809-3814.
    [65]Hartnig, C.; Grimminger, J.; Spohr, E. J. Flectroanal. Chem. 2007, 607, 133-139.
    [66]Grabow, L. C.; Gokhale, A. A.; Evans, S. T.; Dumesic, J. A.; Mavrikakis, M. J. I'hys. Chem. C 2008, 112, 4608-4617.
    [67]Gao, W.; Keith, J. A.; Anton, J.; Jacob, T. Dalton Tran.s. 2010, 39, 8450-8456.
    [68]Gao,W.;Zhao,M.;Jiang,Q.ChemPhysChem 2008,9,2092-2098.
    [69]Greeley,J.;Mavrikakis,M.J.Am.Chem.Soc.2002,124,7193-7201.
    [70]Greeley,J.;Mavrikakis,M.J.Am.Chem.Soc.2004,126,3910-3919.
    [71]Cuesta,A.J.Am.Chem.Soc.2006,,28,13332-13333.
    [72]Miller,D.J,;Oberg,H.;Naslund,L.A.:Anniyev,T.;Ogasawara,H.;Pettersson, L.G.M.;Nilsson,A.J.Chem.Phys.2010,133,224701.
    [73]Gao,W.;Keith,J.A.;Anton,J.;Jacob,T.J.Am.Chem.Soc.2010,32, 18377-18385.
    [1]Yu, X. W.; Pickup, P. G. J. Power Sozu0ces 2008, 182, 124-132.
    [2]Demirci, U. B. J. Power Sources 2007, 169, 239-246.
    [3]Wang, X.; Hu, J. M.; Hsing, 1. M. J. Electroanal. Chem. 2004, 562, 73-80.
    [4]Weber, M.; Wang, J. T.; Wasmus, S.; Savinell, R. F. J. Electrochena. Soc. 1996, 143,158-160.
    [5]Haan, J. L.; Masel, R. I. Electrochim. Acta 2009, 54, 4073-4078.
    [6]Zhang, L.; Lu, T.; Bao, J.; Tang, Y.; Li, C. Electrochem. Conznxzrn. 2006, 8, 1625-1627.
    [7]Uhm, S.; Chung, S. T.; Lee, J. J. Power Sources 2008,178,34-43.
    [8]Wang, X.; Tang, Y.; Gao, Y.; Lu, T. J. Power Sources 2008, 175, 784-788.
    [9]Chen, Y. X.; Heinen, M.; Jusys, Z.; Behm, R. J. Angew. Chem., Int. Ed. 2006, 45, 981-985.
    [10]Samjeskd, G.; Osawa, M. Angew. Chem., Int. Ed. 2005, 44, 5694-5698.
    [11]Samjeske, G.; Miki, A.; Ye, S.; Osawa, M. J Phys. Chem. B 2006, 110, 16559-16566.
    [12]Chen, Y.; Heinen, M.; Jusys, Z.; Behm, R. J. Langmuir 2006, 22, 10399-10408.
    [13]Lee, H.; Habas, S. E.; Sot-nodal, G. A.; Yang, P. J. Am.Chem. Soc. 2008, 130, 5406-5407.
    [14]Ji, X. L.; Lee, K. T.; Holden, R.; Zhang, L.; Zhang, J. J.; Botton, G. A.; Couillard, M.; Nazar, L. F. Nat. Chem. 2010, 2, 286-293.
    [15]Sun, S. G.; Clavilier, J.; Bewick, A. J. Electroanal. Che;z. 1988, 240, 147-159.
    [16]Lamy, C.; Leger, J. M. J Chim. Phys. Phys.-Chinz. Biol. 1991, 88,1649-1671.
    [17]Markovic, N. M.; Gasteiger, H. A.; Ross, P. N.; Jiang, X. D.; Villegas, I.; Weaver, M. J. Electrochim. Acta 1995, 40, 91-98.
    [18]Chen, Y. X.; Ye, S.; Heinen, M.; Jusys, Z.; Osawa, M.; Behm, R. J. Phys. Chem. B, 2006, 110, 9534-9544.
    [19]Miki, A.; Ye, S.; Osawa, M. Chem. Commun. 2002, I=1,1500-1501.
    [20]Samjeske, G; Miki, A.; Ye, S.; Yamakata, A.; Mukouyama, Y; Okamoto, H.; Osawa, M. J. Phys. Chem. B 2005, 109, 23509-23516.
    [21]Capon, A.; Parson, R. J. Electroanal. Chem. 1973, 44, 1-7.
    [22]Capon, A.; Parsons, R. J. Electroanal. Chem. 1973, 45,205-231.
    [23]Capon, A.; Parsons, R. J. ElectroanaL Chem. 1973, 44, 239-254.
    [24]Parsons, R.; VanderNoot, T. J. Electroanal. Chem. 1988, 257, 9-45.
    [25]Markovic, N. M.; Ross, P. N. Sur f Sci. Rep. 2002, 45, 117-230.
    [26]Rice, C.; Ha, S.; Masel, R. I.; Wieckowski, A. J. Power Sources 2003, 115, 229-235.
    [27]Waszczuk, P.; Barnard, T.M.; Rice,C.;Masel, R. I.;Wieckowski, A. Electrochem. Conznzun. 2002, 4, 599-603.
    [28]Abe, H.; Matsumoto, F.; Alden, L. R.; Warren, S. C.; Abruna, H. D.; DiSalvo, F. J. J. Am. Chem. Soc. 2008, 130, 5452-5458.
    [29]Jarvi, T. D.; Stuve, E. M. in: Lipkovski, J.; Ross, P. N. (Eds.), Electrocatalysis, Wiley-VCH, 1998,75-153.
    [30]Park, S.; Xie, Y.; Weaver, M. J. Langmuir 2002, 18, 5792-5798.
    [31]Neurock, M.; Janik, M.; Wieckowski, A. FaradayDiscuss. 2009, 140, 363-378.
    [32]Cuesta, A.; Escudero, M.; Lanova, B.; Baltruschat, H. Langnmir 2009, 25, 6500-6507.
    [33]Zhang, S.; Shao, Y. Y; Yin, G P.; Lin, Y. H. J. Power Sources 2010, 195, 1103-1106.
    [34]Li, X.; Hsing, 1. M. Electrochim. Actct 2006, 51, 3477-3483.
    [35]Rivera, E. C.; Angelo, A. C. D_; Lind, C.; Disalvo, F. J. Chem. Phys. Chem. 2003, 4, 193-199.
    [36]Matsumoto, F.; Roychowdhury, C.; DISalvo, F. J.; Abru n, H. D. J Electrochetn. Soc. 2008, 155, 148-154.
    [37]Yu, X. W.; Pickup, P. G. Electrochim. Actct 2010, 55,7354-7361.
    [38]Tripkovi c, A. V.; Popovic, K. D. J.; Lovic, J. D.; Kowal, A. Llectrochim. Acta 2007,53,887-893.
    [39]Chen, W.; Kim, J.; Sun, S.; Chen, S. Lctngnntir 2007,23,11303-11310.
    [40]Chen, G. Q.; Li, Y. H.; Wang, D.; Zheng, L.-You, G. R.; Zhong, C. J.; Yang, L. F.; Cai, F.; Cal, J. X.; Chen, B. H. J Power Sources 2011, 196, 8323- 8330.
    [41]Bai, Y. C.; Zhang, W. D. ; Chen, C. H.; Zhang, J. Q. J. Alloys Compd. 2011, 509,1029-1034.
    [42]Huang, J. S.; Hou, H. Q.; You, T. Y. Electrochem. Conamun. 2009, 11, 1281-1284.
    [43]Wang, S. Y.; Wang, X.; Jiang, S. P. Phys. Chem. Chena. Phys. 2011, 13, 6883-6891.
    [44]Columbia, M. R.; Crabtree, A. M.; Thiel, P. A. Srji f Sci. 1992, 271, 139-148.
    [45]Allouche, A. J. Chem. Phys. 2005, 122, 234704.
    [46]Wei, D. Q.; Truchon, J. F.; Sirois, S.; Salahub, D. .I. Chem. Phys. 2002, 116, 6028-6038.
    [47]Zhao, D.; Xu, B. Q. Angew. Chem. 1721. Ed. 2006, 45,4955-4959.
    [48]Sachtler, J. W. A.; Van Hove, M. A.; Bibenan, J. P.; Somorjai, G. A. Phys. Rev. Letf. 1980, 45, 1601-1603.
    [49]Obradovic, M. D.; Tripkov]c, A. V.; Gojkovic, S. L. Electrochim. Acta 2009, 55, 204-209.
    [50]Cao, D.; Lu, G Q.; Wieckowski, A.; Wasileski, S. A.; Neurock, M. J. Phys. Chem. B 2005, 109, 11622-11633.
    [51]Janik, M. J.; Neurock, M. Electrochim. Acta 2007, 52, 5517-5528.
    [52]Janik, M. J.; Taylor, C. D.; Neurock, M. Top. Catal. 2007, -l6, 306-319.
    [53]Taylor, C. D.; Wasileski, S. A.; Filhol, J. S.; Neurock, M. Phys. Rev. B: Condens. Maller Mater. Phys. 2006, 73, 165402.
    [54]Rossmeisl, J.; Norskov, J. K.; Taylor, C. D.; Janik, M. J.; Neurock, M. J. Phys. (:hem. B 2006, 110, 21833-21839.
    [55]Gao, W.; Keith, J. A.; Anton, J.; Jacob, T. J. Am. Chem. Soc. 2010, 132, 18377-18385.
    [56]Hu, P.; King, D. A.; Lee, M. H.; Payne, M. C. Chem. Phys. Lets. 1995, 2=16, 73-78.
    [57]Hu, P.; King, D. A.; Crampin, S.; Lee, M. H.; Payne, M. C. Chem. Phys. Lell. 1994, 230, 501-506.
    [58]Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. ReV. B 1992, 46,6671-6687.
    [59]Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. ReV. Left. 1996, 77,3865-3868,
    [60]Payne, M. C.; Teter, M. P.; Allen, D. C.; Arias, T. A.; Joannopolous, J. D. ReV. Mod. Phys. 1992, 64, 1045-1097.
    [61 ]Vanderbilt, D. Phys. ReV. B 1990, 41, 7892-7895.
    [62]Govind, N.; Petersen, M.; Fitzgerald, G.; King, S. D.; Andzelm, J. Comprrl. Mater. Sci. 2003,28,250-258.
    [63]Wang, H. F.; Liu, Z. P. Phy.s. Chem. C 2009, 113, 17502-17508.
    [64]Gao, W.; Keith, J. A.; Anton, J.; Jacob, T. Dalton Trans.2010,39,8450-8456.
    [65]Neurock, M; Janik, M.; Wieckowski, A. Faraday Discuss.2008,140,363-378.
    [1]Samjeske, G; Osawa, M. Angew. Chem., Int. Ed. 2005, 44, 5694.
    [2]Chen, Y X.; Heinen, M.; Jusys, Z.; Behm, R. J. Angew. Chem., Int. Ed., 2006, 45, 981.
    [3]Capon, A.; Parsons, R. J. Electroanal. Chem. 1973, 45, 205.
    [4]Sun, S.G.; Clavilier, J. J. Electtoanal. Chenz. 1988, 240, 147.
    [5]Kunimatsu, K.; Kita, H. J. Elecitoatlal. Chem. 1987, 218, 155.
    [6]Corn gan, D. S.; Weaver, M. J. J. Electroanal Chem. 1988, 241, 143.
    [7]Park, S.; Xie, Y.; Weaver, M. J. Langnmir 2002, 18, 5792.
    [8]Miki, A.; Ye, S.; Osawa, M. Chem. Commun. 2002, 14, 1500.
    [9]Macia, M. D.; Herrero, E.; Feliu, J. M. Electrochim. Acta 2002, 47, 3653.
    [10]Iwasita, T.; Xia, X. H.; Herrero, E.; Liess, H. D. Langmuir 1996, 12, 4260.
    [11]Gao, W.; Keith, J. A.; Anton, J.; Jacob, T. Dalton Trans. 2010, 39, 8450.
    [12]Gao, W.; Keith, J. A.; Anton, J.; Jacob, T. J. Am. Chem. Soc. 2010,132,18-377.
    [13]Wang, H. F.; Liu, Z. P. J. Phys. Chem. C 2009, 113, 17502.
    [14]Gianturco, F. A.; Lucchese, R. R.; Langer, J.; Martin, I.; Stano, M.; Karwasz, G.; lllenberger, E. Eur Phys. J. D 2005, 35, 417.
    [15]Qian, W.; Krimm, S. J. Phys. Chem. A 2002, 106, 6628.
    [16]Tautermann, C. S.; Loferer, M. J.; Voegele, A. F.; Liedl, K. R. J. Chem. Phys. 2004, 120, 11650.
    [17]Hu, P.; King, D. A.; Lee, M. H.; Payne, M. C. Chem. Phys. Lett. 1995, 246, 73.
    [18]Hu, P.; King, D. A.; Crampin, S.; Lee, M. H.; Payne, M. C. Chew. Phys. Lets. 1994, 230, 501.
    [19]Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phy.s. Rev. B 1992, 46, 6671.
    [20]Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev Lea. 1996, 77, 3865.
    [21]Payne, M. C.; Teter, M. P.; Allen, D. C.; Arias, T. A.; Joannopolous, J. D. Rev. Mod Phys. 1992, 6, 1045.
    [22]Cao, D.; Lu, G. Q.; Wieckowski, A.; Wasileski, S. A.; Neurock, M. .l. l'hys. Chem.B 2005,109,11622.
    [23]Janik, M. J.; Neurock, M. Electrochim. Acta,2007,52,5517.
    [24]Janik, M. J.; Taylor, C. D.; Neurock, M. Top. Catal.2007,46,306.
    [25]Taylor, C. D.; Wasileski, S. A.; Filhol, J. S.; Neurock, M. Phys. Rev. B:Condens. Matter Mater. Phys.2006,73,165402.
    [26]Rossmeisl, J.; Norskov, J. K.; Taylor, C. D.; Janik, M. J.; Neurock, M. J. Phys.Chem. B 2006,110,21833.
    [27]Vanderbilt, D.Phys. Rev B 1990,41,7892.
    [28]Govind, N.; Petersen, M.; Fitzgerald, G.; King, S. D.; Andzelm, J. Comput. Mater. Sci.,2003,28,250.
    1 Parsons R, Vandernoot T (1988) The oxidation of small organic molecules A survey of recent fuel cell related research. J Electroanal Chem 257:9-45
    2 Reddington E, Sapienza A, Gurau B, Viswanathan R, Sarangapani S, Smotkin ES, Mallouk TE (1998) Combinatorial Electrochemistry:A Highly Parallel, Optical Screening Method for Discovery of Better Electrocatalysts. Science 280:1735-1737
    3 Petrii OA (2008) Pt-Ru electrocatalysts for fuel cells:a representative review. J Solid State Electrochem 12:609-642
    4 Sun YP, Xing L, Scott K (2010) Analysis of the kinetics of methanol oxidation in a porous Pt-Ru anode. J Power Sources 195:1-10
    5 Luo J, Njoki PN, Lin Y, Mott D, Wang LY, Zhong CJ (2006) Characterization of Carbon-Supported AuPt Nanoparticles for Electrocatalytic Methanol Oxidation Reaction. Langmuir 22:2892-2898
    6 Luo J, Maye MM, Kariuki NN, Wang LY, Njoki PN, Lin Y, Schadt M, Naslund HR, Zhong CJ (2005) Electrocatalytic oxidation of methanol:carbon-supported gold-platinum nanoparticle catalysts prepared by two-phase protocol. Catal Today 99:291-297
    7 Xu CX, Wang RY, Chen MW, Zhang Y, Ding Y (2010) Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties. Phys Chem Chem Phys 12:239-246
    8 Jusys Z, Kaiser J, Behm RJ (2002) Composition and activity of high surface area PtRu catalysts towards adsorbed CO and methanol electrooxidation-A DEMS study. Electrochim Acta 47:3693-3706
    9 Sinfelt JH (1983) Bimetallic Catalysts:DiscoVeries, Concepts, and Applications: Exxon Monograph; Wiley:New York
    10 Sinfelt JH (1987) Structure of Bimetallic Clusters. Acc Chem Res 20:134-139
    11 Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys:From Theory to Applications of Alloy Clusters and Nanoparticles. Chem Rev 108:845-910
    12 Hernandez-Fernandez P, Montiel M, Ocon P, Fierro JLG, Wang H, Abruna HD, Rojas S (2010) Effect of Co in the efficiency of the methanol electrooxidation reaction on carbon supported Pt. J Power Souces 195:7959-7967
    13 Morante-Catacora TY, Ishikawa Y, Cabrera CR (2008) Sequential electrodeposition of Mo at Pt and PtRu methanol oxidation catalyst particles on HOPG surfaces. J. Electroanal. Chem 621:103-112
    14 Neto AO, Dias RR, Tusi M, Linardi M, Spinace EV (2007) Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process. J. Power Sources 166:87-91
    15 Yi QF, Zhang JJ, Chen AC, Liu XP, Xu GR, Zhou ZH (2008) Activity of a novel titanium-supported bimetallic PtSn/Ti electrode for electrocatalytic oxidation of formic acid and methanol. J. Appl. Electrochem 38:695-701
    16 Balakrishnan K, Sachdev A, Schwank J (1990) Chemisorption and FTIR study of bimetallic Pt---Au/SiO2 catalysts. J Catal 121:441-445
    17 Shen JY, Hill JM, Watwe RM, Podkolzin SG, Dumesic JA (1999) Ethylene adsorption on Pt/Au/SiO2 catalysts. Catal Lett 60:1-9
    18 Tang W, Jayaraman S, Jaramillo TF, Stucky GD, McFarland EW (2009) Electrocatalytic Activity of Gold-Platinum Clusters for Low Temperature Fuel Cell Applications. J Phys Chem C 113:5014-5024
    19 Selvarani Q Vinod Selvaganesh S, Krishnamurthy S, Kiruthika GVM, Sridhar P, Pitchumani S, Shukla AK (2009) A Methanol-Tolerant Carbon-Supported Pt-Au Alloy Cathode Catalyst for Direct Methanol Fuel Cells and Its Evaluation by DFT. J Phys Chem C 113:7461-7468
    20 Guo X, Guo DJ, Qiu XP, Chen LQ, Zhu WT (2008) A simple one-step preparation of high utilization AuPt nanoparticles supported on MWCNTs for methanol oxidation in alkaline medium. Electrochemistry Communication 10:1748-1751
    21 Guo X, Guo DJ, Chen LQ, Zhu WT, Qiu XP (2008) A simple one-step preparation of high utilization AuPt nanoparticles supported on MWCNTs for methanol oxidation in alkaline medium. Electrochemistry Communications 10:1748-1751
    22 Hu YJ, Zhang H, Wu P, Zhang H, Zhou B, Cai CX (2011) Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation. Phys. Chem. Chem. Phys 13:4083-4094
    23 Silva DF, Geraldes AN, Cardoso EZ, Tusi MM, Linardi M, Spinace EV, Neto AO (2011) Preparation of PtAu/C and PtAuBi/C Electrocatalysts Using Electron Beam Irradiation for Methanol and Ethanol Electro-Oxidation in Alkaline Medium. Int. J. Electrochem. Sci 6:3594-3606
    24 Batista EA, Malpass GRP, Motheo AJ, Iwasita T (2003) New insight into the pathways of methanol oxidation. Electrochem Commun 5:843-846
    25 Cao D, Lu GQ, Wieckowski A, Wasileski SA, Neurock M (2005) Mechanisms of Methanol Decomposition on Platinum:A Combined Experimental and ab Initio Approach. J Phys Chem B 109:11622-11633
    26 Hoster H, Iwasita T, Baumgartner H, Vielstich W (2001) Pt-Ru model catalysts for anodic methanol oxidation:Influence of structure and composition on the reactivity. Phys Chem Chem Phys 3:337-246
    27 Housmans THM, Koper MTM (2003) Methanol Oxidation on Stepped Pt[n(111)× (110)] Electrodes:A Chronoamperometric Study. J Phys Chem B 107:8557-8567
    28 Housmans THM, Wonders AH, Koper MTM (2006) Structure Sensitivity of Methanol Electrooxidation Pathways on Platinum:An On-Line Electrochemical Mass Spectrometry Study. J Phys Chem B 110:10021-10031
    29 Iwasita T, Hoster H, John-Anacker A, Lin WF, Vielstich W (2000) Methanol Oxidation on PtRu Electrodes. Influence of Surface Structure and Pt-Ru Atom Distribution. Langmuir 16:522-529
    30 Iwasita T (2002) Electrocatalysis of methanol oxidation. Electrochim Acta 48:289-289
    31 Iwasita T (2002) Electrocatalysis of methanol oxidation. Electrochim Acta 47:3663-3674
    32 Jusys Z, Behm RJ (2001) Methanol Oxidation on a Carbon-Supported Pt Fuel Cell Catalyst-A Kinetic and Mechanistic Study by Differential Electrochemical Mass Spectrometry J Phys Chem B 105:10874-10883
    33 Gasteiger HA, Markovic N, Ross PN, Cairns EJ (1993) Methanol Electrooxidation on Well-Characterized Pt-Ru Alloys. J Phys Chem 97:12020-12029
    34 Tripkovic AV, Popovic KD, Grgur BN, Blizanac B, Ross PN, Markovic NM (2002) Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions. Electrochim Acta 47:3707-3714
    35 Kardash D, Korzeniewski C, Markovic N (2001) Effects of thermal activation on the oxidation pathways of methanol at bulk Pt-Ru alloy electrodes. J Electroanal Chem 500:518-523
    36 Davis JL, Barteau MA (1987) Decarbonylation and decomposition pathways of alcohol's on Pd(111). Surf Sci 187:387-406
    37 Bagotzky VS, Vassiliev YB, Khazova OA (1977) Generalized scheme of chemisorption, electrooxidation and electroreduction of simple organic compounds on platinum group metals. J Electroanal Chem 81:229-238
    38 Greeley J, Mavrikakis M (2002) A First-Principles Study of Methanol Decomposition on Pt(111). J Am Chem Soc 124:7193-7201
    39 Greeley J, Mavrikakis M (2004) Competitive Paths for Methanol Decomposition on Pt(111). J Am Chem Soc 126:3910-3919
    40 Watanabe T, Ehara M, Kuramoto K, Nakatsuji H (2009) Possible reaction pathway in methanol dehydrogenation on Pt and Ag surfaces/clusters starting from O-H scission:Dipped adcluster model study. Surf Sci 603:641-646
    41 Yuan DW, Gong XG, Wu RQ (2008) Decomposition pathways of methanol on the PtAu(111) bimetallic surface:A first-principles study. J Chem Phys 128:064706
    42 Maroun F, Ozanam F, Magnussen OM, Behm RJ (2001) The Role of Atomic Ensembles in the Reactivity of Bimetallic Electrocatalysts. Science 293:1811-1814
    43 Chen MS, Kumar D, Yi CW, Goodman DW (2005) The Promotional Effect of Gold in Catalysis by Palladium-Gold. Science 310:291-293
    44 Tong YY (2005) A Coverage-Dependent Study of Pt Spontaneously Deposited onto Au and Ru Surfaces:Direct Experimental Evidence of the Ensemble Effect for Methanol Electro-Oxidation on Pt. J Phys Chem B 109:17775-17778
    45 Cuesta A (2006) At Least Three Contiguous Atoms Are Necessary for CO Formation during Methanol Electrooxidation on Platinum. J Am Chem Soc 128:13332-13333
    46 Neurock M, Janik M, Wieckowski A (2009) A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss 140:363-378
    47 Yuan DW, Gong XG, Wu RQ (2007) Atomic configurations of Pd atoms in PdAu(111) bimetallic surfaces investigated using the first-principles pseudopotential plane wave approach. Phys Rev B 75:085428
    48 Fialko EF, Kikhtenko AV, Goncharov VB, Zamaraev KI (1997) Similarities between Reactions of Methanol with MoxOy+ in the Gas Phase and over Real Catalysts. J Phys Chem B 101:5772-5773
    49 Wallace WT, Whetten RL (2002) Coadsorption of CO and O2 on Selected Gold Clusters:Evidence for Efficient Room-Temperature CO2 Generation. J Am Chem Soc 124:7499-7505
    50 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, AJ Austin, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian03, Revision B.02. Gaussian Inc; Pittsburgh PA
    51 Becke AD (1993) Density-functional thermochemistry. Ⅲ. The role of exact exchange. J Chem Phys 98:5648-5652
    52 Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys ReV A 38:3098-3100
    53 Lee CT, Yang WT, Parr RG (1988) Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density. Phys ReV B 37:785-789
    54 Hay PJ, Wadt WR (1985) Ab Initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270-283
    55 Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299-310
    56 Fukui K (1970) A Formulation of the Reaction Coordinate. J Phys Chem 74:4161-4163
    57 Perdew JP, Burke K, Ernzerhof M (1996) Generalized Gradient Approximation Made Simple. Phys Rev Lett 77:3865-3868
    58 Beden B, Morin MC, Hahn F (1987) "In situ" analysis by infrared reflectance spectroscopy of the adsorbed species resulting from the electrosorption of ethanol on platinum in acid medium. J Electroanal Chem 229:353-366
    59 Tang W, Jayaraman S, Jaramillo TF, Stucky GD, McFarland EW (2009) Electrocatalytic Activity of Gold-Platinum Clusters for Low Temperature Fuel Cell Applications. J Phys Chem C 113:5014-5024
    60 Ren H, Humbert MP, Menning CA, Shu YY, Singh UG, Cheng WC, Chen JG (2010) Inhibition of coking and CO poisoning of Pt catalysts by the formation of Au/Pt bimetallic surfaces. Applied Catalysis A:General 375:303-309
    (1)Hogarth, M. P.; Hards, G. A. Platinum Met. Rev.1996,40,150.
    (2)Oetjen, H. F.; Schmidt, V. M.; Stimming, U.; Trila, F. J. Electrochem. Soc.1996, 143,3838.
    (3)Hamnett, A. Catal. Today 1997,38,445.
    (4)Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E. Science 1998,280,1735.
    (5)Ross, P. N., Jr. In Electrocatalysis, Chap.2; Lipkowski, J.; Ross, P. N., Jr. Ed, Wiley-VCH, New York 1998.
    (6)Parsons, R.; VanderNoot, T. J. Electroanal. Chem.1988,257,9.
    (7)Jarvi, T. D.; Stuve, E. M. In Electrocatalysis; Lipkowski, J.; Ross, P. N., Ed. Wiley-VCH:New York,1998,75.
    (8)Hamnett, A. In Interfacial Electrochemistry, Wieckowski, A., Ed.; Marcel Dekker, Inc.:New York,1999,843.
    (9)Markovic, N. M.; Ross, J. P. N. Surf. Sci. Rep.2002,45,117.
    (10)Iwasita, T. Electrochim. Acta 2002,47,3663.
    (11)Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Appl, Catal., B 2005, 56,9.
    (12)Paulus, U. A.; Endruschat, U.; Feldmeyer, G. J.; Schmidt, T. J.; Bonnemann, H.; Behm, R. J. J. Catal.2000,195,383.
    (13)Antolini, E. Mater. Chem. Phys.2003,78,563.
    (14)Lu, G. Q.; Wieckowski, A. Curr. Opin. Colloid Interface Sci.2000,5,95.
    (15)Xu, C. W.; Su, Y. Z.; Tan, L. L., Liu, Z. L.; Zhang, J. H.; Chen, S.; Jiang, S. P. Electrochim. Acta 2009,54,6322.
    (16)Xu, j. B.; Hua, K. F.; Sun, G. Z.; Wang, C.; Lv, X. Y.; Wang, Y. J. Electrochem. Commun. 2006,8,982.
    (17)Uchida, H.; Ozuka, H.; Watanabe, M. Electrochim. Acta 2002,47,3629.
    (18)Hernandez-Fernandez, P.; Montiel, M.; Ocon, P.; Fierro, J. L. G.; Wang, H.; Abruna, H. D.; Rojas, S. J Power Souces 2010,195,7959.
    (19)Guo, D. J.; Cui, S. K. J. Colloid Interface Sci.2009,340,53.
    (20)Zhou, X. W.; Zhang, R. H.; Zhou, Z. Y; Sun, S. G J. Power Sources 2011, 196, 5844.
    (21)Jiang, Q.; Jiang, L. H.; Hou, H. Y; Qi, J.; Wang, S. L.; Sun, G Q. J. Phys. Chem. C 2010, 114, 19714.
    (22)hang. Q.; Jiang, L. H.; Wang, S. L.; Qi, J.; Sun, J. Q. Catal. Commun. 2010, 12, 67.
    (23)Neto, A. O.; Dias, R. R.; Tusi, M.; Linardi, M.; Spinace, E. V J. Power Sources 2007, 166,87.
    (24)Yi, Q. F. Zhang, J. J.; Chen, A. C.; Liu, X.P.; Xu, G. R.; Zhou, Z. H. J. Appl. Electrochem 2008, 38,695.
    (25). Gasteiger, H. A.; Markovic, N.; Ross, P. N.; Cairns, E. J. J. Phys. Chem. 1994, 98,617.
    (26)Watanabe, M.; Motoo, S. J Electroanal. Chem. 1975, 60, 267.
    (27). Gasteiger, H. A.; Markovic, N. M.; Ross, P. N. J. Phys. Chem. 1995, 99, 8290.
    (28)Sun, Y. P.; Xing, L.; Scott, K. J Power Sources 2010, 195, 1.
    (29)Lu, Q. Y.; Yang, B.; Zhuang L.; Lu, J. T. J. Phys. Chem. B 2005, 109, 1715.
    (30)Kim, 1. T.; Lee, H. K. Shim, J. JNano Sci Nano Techno 2008, 8, 5302.
    (31)He, W. W.; Wu, X. C.; Liu, J. B.; Zhang, K.; Chu, W. G; Feng, L. L.; Hu, X. N. Zhou, W. Y.; Xie, X. X. J. Phys. Chem. C 2009, 113, 10505.
    (32)Zhao, D.; Wang, Y H.; Yan, B.; Xu, B. Q. J. Phys. Chem. C 2009, 113, 1242.
    (33)Morante-Catacora, T. Y. Ishikawa, Y; Cabrera, C. R. J Electroanal. Chem 2008, 621,103.
    (34)Luo, J.; Njoki, P. N.; Lin, Y.; Mott, D.; Wang, L. Y.; Zhong, C. J. Langnzuir 2006, 22, 2892.
    (35)Luo, J.; Maye, M. M.; Kariuki, N. N.; Wang, L. Y.; Njoki, P. N.; Lin, Y.; Schadt, M.; Naslund, H. R.; Zhong, C. J. Catal Today 2005, 99, 291.
    (36)Xu, C. X.; Wang, R. Y.; Chen, M. W.; Zhang, Y.; Ding, Y. Phys Chem (hem Phys 2010, 12, 239.
    (37). Choi, J. H.; Park, K. W.; Park, I. S.; Kim, K.; Lee, J. S.; Sung, Y. E. .. Electrochem. Soc. 2006, 153, 1812.
    (38)Ferrin, P.; Mavrikakis, M. J. Am. Chem. Soc. 2009, 131,14381.
    (39)Guo, X.; Guo, D. J.; Qiu, X. P.; Chen, L. Q.; Zhu, W. T. Electrochena. Comnzzln. 2008, 10, 1748.
    (40)Tang, W.; Jayaraman, S.; Jaramillo, T. F.; Stucky, G. D.; McFarland, E. W. J. Phys. Chem. C 2009, 113, 5014.
    (41)Yang, L. X.; Yang, W. Y.; Cai, Q.Y. J. Phys. Chem. C 2007,111,16613.
    (42)Mott, D.; Luo, J.; Njoki, P. N.; Lin, Y.; Wang, L. Y.; Zhong, C. J. Catal Today 2007, 122, 378.
    (43)Yin, M.; Huang, Y. J.; Liang, L.; Liao, J. H.; Liu, C. P.; Xing, W. Chem. Commun. 2011,47,8172.
    (44)Yuan, D. W.; Gong, X. G.; Wu, R. Q. J. Chem. Phys. 2008, 128, 064706.
    (45)Park, S.; Xie, Y.; Weaver, M. J. Langmuir 2002, 18, 5792.
    (46)Yajima, T.; Uchida, H.; Watanabe, M. J. Phys. Chem. B 2004, 108, 2654.
    (47)Chen, Y. X.; Miki, A.; Ye, S.; Sakai, H.; Osawa, M. J. Am. Chem. Soc. 2003, 125, 3680.
    (48)Spendelow, J. S.; Goodpaster, J. D.; Kenis, P. J. A.; Wieckowski, A. J. Phys. Chem. B 2006, 110, 9545.
    (49)Gong, X. Q.; Hu, P. J. Chem. PhyS. 2003, 119, 6324.
    (50)Batista, E. A.; lwasita, T.; Vielstich, W. J. Phys. Chem. B 2004, 108, 14216.
    (51)Fisher, G. B.; Sexton, B. A. Phys. Ren. Lett. 1980, 44, 683.
    (52)van der Niet, M. J. T. C.; den Dunnen, A.; Juurlink, L. B. F.; Koper, M. T. M. Angew. Chem. Int. Ed. 2010, 49, 6572.
    (53)Hu, P.; King, D. A.; Lee, M. H.; Payne, M. C. Chem. Phys. Lets. 1995, 246, 73.
    (54)Hu, P.; King, D. A.; Crampin, S.; Lee, M. H.; Payne, M. C. Chem. Phys. Lett. 1994, 230, 501.
    (55)Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. ReV. B 1992, 46, 6671.
    (56)Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. ReV. Lett. 1996, 77, 3865.
    (57)Payne, M. C.; Teter, M. P.; Allen, D. C.; Arias, T. A.; Joannopolous, J. D. ReV. Mod Phy.s. 1992, 6-1, 1045.
    (58)Vanderbilt, D. Phys. ReV. B 1990,41, 7892.
    (59)Govind, N.; Petersen, M.; Fitzgerald, G.; King, S. D.; Andzelm, J. Comlwrl. Mater. Sci. 2003, 28, 250.
    (60)Wanjala, B. N.; Luo, J.; Loukrakpam, R.; Fang, B.; Mott, D.; Njoki, P. N.; Engelhard, M.;. Naslund, H. R.; Wu, J. K.; Wang, L. C.; Malls, O.; Zhong, C. J. Chem. Mater. 2010, 22, 4282.
    (61)Irissou, E.; Laplante, F.; Garbarino,S.; Chaker, M.; Guay, D. J. Phys. Chena. C 2010, 114, 2192.
    (62)Du, B. C.; Tong, Y. Y. J. Phys. Chem. B 2005, 109, 17775.
    (63)Neurock, M.; Janik, M.; Wieckowski, A. Faraday Discuss. 2009, 140, 363.
    (64)Bako, I.; Palinkas, G. Surf. Sci. 2006, 600, 3809.
    (65)Hartnig, C.; Grimminger, J.; Spohr, E. J. Electroanal. Chem. 2007, 607, 133.
    (66)Grabow, L. C.; Gokhale, A. A.; Evans, S. T.; Dumesic, J. A.; Mavrikakis, M. J. Phys. Chem. C 2008, 112, 4608.
    (67)Gao, W.; Keith, J. A.; Anton, J.; Jacob, T. Dalton Trans. 2010, 39, 8450.
    (68)Gao, W.; Zhao, M.; Jiang, Q. ChemPhysChem 2008,9, 2092.
    (69)Greeley, J.; Mavrikakis, M. J. Am. Chenz. Soc. 2002, 124, 7193.
    (70)Greeley, J.; Mavrikakis, M. J. Am. Chem. Soc. 2004, 126, 3910.
    (71)Cuesta, A. J. Am. Chem. Soc. 2006, 128, 13332.
    (72)Miller, D. J.; Oberg, H.; Naslund, L. A.; Anniyev, T.; Ogasawara, H.; Pettersson, L. G. M.; Nilsson, A. J. Chem. Phys. 2010, 133, 224701.
    (73)Gao, W.; Keith, J. A.; Anton, J.; Jacob, T. J. Am. Chem. Soc. 2010, 132, 18377.
    [I]B.D. McNicol, D.A.J. Rand and K.R. Williams,J. Power Sources 1999,83,15-31.
    [2]V.M. Barragan and A. Heinzel, J. Power Sources 2002,104,66-72.
    [3]A.S. Arico, S. Srinivasan and V. Antonucci, Fuel Cells 2001,1,133-161.
    [4]X.D. Xue, L. Gu, Y.Y. Song, L.W. Zhu, P. Chen and X.B. Cao, J Solid State Chem. 2009,182,2912-2917.
    [5]S. Strbac, V. Mitrovic and M. Avramov-Ivic, Electrochim. Acta 2001,46, 3175-3180.
    [6]P. Ferrin and M. Mavrikakis, J. Am. Chem. Soc.2009,131,14381-14389.
    [7]J.T. Zhang, P.P. Liu, H.Y. Ma and Y. Ding, J. Phys. Chem. C 2007,111, 10382-10388.
    [8]V. Jovanovic, G. Vlajnic, J. Popic and M. Avramov-Ivic, J. Electroanal. Chem. 1997,423,119-124.
    [9]A. Tymosiak-Zielinska, G. Shul and Z. Borkowska, Electrochim. Acta 2004,49, 1209-1220.
    [10]D. Cameron, D. Thompson and R. Holliday,J. Power Sources 2003,118, 298-303.
    [11]T. Minato, T. Susaki, S. Shiraki, H.S. Kato, K. Aika and M. Kawai,2004, 566-568,1012-1017.
    [12]M. Baron, O. Bondarchuk, D. Stacchiola, H.J. Freund and S. Shaikhutdinov, J. Phys. Chem. C 2009,113,6042-6049.
    [13]R. Rousseau, G. Dietrich, S. Kruckeberg c, K. Lutzenkirchen, D. Marx, L. Schweikhard and C. Walther, Chem. Phys. Lett.1998,295,41-46.
    [14]R. Rousseau and D. Marx, J. Chem. Phys.2000,112,761-769.
    [15]G. Dietrich, S. Krcukeberg, K. Ltzuenkirchen, L. Schweikhard and C. Walther, J.
    Chem. Phys.2000,112,752-760.
    [16]Y.C. Li, C.L. Yang, M.Y. Sun, X.X. Li, Y.P. An, M.S. Wang, X.G. Ma and D.H. Wang, J. Phys. Chem. A 2009,113,1353-1359.
    [17]E.F. Fialko, A.V. Kikhtenko, V.B. Goncharov and K.I. Zamaraev, J. Phys. Chem. B 1997,101,5772-5773.
    [18]W.T. Wallace and R.L. Whetten,J. Am. Chem. Soc.2002,124,7499-7505.
    [19]M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A.J. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A.A Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, (Gaussian03, Revision B.02. Gaussian Inc; Pittsburgh PA,2003).
    [20]A.D. Becke, J. Chem. Phys.1993,98,5648-5652.
    [21]A.D. Becke, Phys. ReV. A 1988,38,3098-3100.
    [22]C.T. Lee, W.T. Yang and R.G. Parr, Phys. ReV. B 1988,37,785-789.
    [23]P.J. Hay and W.R. Wadt, J. Chem. Phys.1985,82,270-283.
    [24]P.J. Hay and W.R. Wadt, J. Chem. Phys.1985,82,299-310.
    [25]K. Fukui,J. Phys. Chem.1970,74,4161-4163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700