用户名: 密码: 验证码:
量子阱半导体光放大器非线性效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光网络中光信号的传输速率以及处理速率越来越高,对光电子器件提出了更高的要求。光电子器件朝着多功能、低功耗和集成化的方向发展。半导体光放大器(SOA)由于其功耗低、非线性效应丰富以及易于集成等优点,在全光信号处理中有着广泛的用途。但是在不同的应用场合,需要SOA具备不同的性能,这就需要通过优化SOA的材料和结构来适应于各种不同的应用场合。本论文针对SOA在不同功能中的应用需求,基于能带工程对量子阱(QW)SOA有源区中的阱材料、阱宽、量子阱数目等参数进行系统地优化,并结合具体的应用进行了理论和实验研究。本论文取得的研究成果主要有:
     (1)建立了一套完善的理论分析模型体系,从能带理论出发计算出能带结构(波函数以及对应的能量特征值),为分析光与物质的相互作用提供了理论基础。在数值模型中,我们将材料稳态模型和动态速率模型结合起来,能更加精确的求解QW-SOA的各种非线性效应。
     (2)通过数值分析,我们提出了一种优化的QW-SOA结构,可以提高带内载流子弛豫速率。这种量子阱结构的主要特征是在导带中的第1子带和第2子带的带隙差为一个纵向光学声子的能量(36meV)。电子与声子的能量交换速率大大增强,从而使得电子在导带中的能量弛豫速率显著增强。
     (3)基于数值分析,我们提出了一种非对称QW-SOA结构,可以显著地提高增益恢复速率。在有源区中由一个深阱和一个浅阱构成一个小单元,并且两个阱之间的势垒比较薄,两阱之间具有比较高的电子隧穿效率。通过结构的优化设计,小单元中的深阱是‘有源区’,而浅阱是一个比较完美的‘载流子库’,能够对深阱中的载流子进行快速补充,这样可以加速载流子的恢复。
     (4)我们基于能带理论分析了QW-SOA中的交叉相位调制效应(XPM),交叉增益调制效应(XGM)以及三阶非线性极化率。首先分析了载流子温度和载流子浓度对有源区折射率的影响进而对光信号相位的影响。分析了不同的工作条件下,相位和幅度的变化关系。我们还理论分析了QW-SOA中的两种α因子(αN和αT)。探讨了材料结构,有源区设计以及操作条件对这两种α的影响。同时,还分析了QW-SOA中的三阶非线性极化率。提出一种非对称QW-SOA结构能够显著增强材料三阶非线性极化率。
     (5)尽管QW-SOA的增益和相位都有比较强的波长相关性,但是我们理论证明了QW-SOA级联光学滤波器的方案可以用于较大波长范围内的同相和反相波长转换。在模拟实验方案中,波长转换器主要是由一个普通的QW-SOA级联一个高斯型光学滤波器(BPF)构成的。我们发现在比较大的波长调节范围内均能得到较好质量的同相和反相波长转换结果。尽管普通的QW-SOA具有比较强的波长相关性,但是BPF可以减轻甚至擦除这种波长相关性。
     (6)基于理论模型,我们提出一种新型的QW-SOA,由于这种新型的QW-SOA有比较小的线宽增强因子,可以进行归零-差分相移键控(RZ-DPSK)信号的幅度再生。这种QW-SOA最大的特点就是微分增益较大且线宽增强因子比较小。利用这种类型的QW-SOA, RZ-DPSK信号的功率抖动得到了均衡而由QW-SOA有源区所引起的相位抖动比较小。另外一方面,这种QW-SOA还可以通过时隙间插的方法用于双通道和四通道的RZ-DPSK信号的再生。因此可以实现多路信号同时处理。
     (7)进行了高速波长转换和信号再生的实验研究。通过优化工作条件,我们基于单个普通QW-SOA实现了RZ-DPSK信号的再生。同时我们还进行了双通道RZ-DPSK信号的再生方案实验验证。通过时隙间插的方法对两路有功率抖动的信号同时进行再生。另外,我们也实验验证了基于单个QW-SOA级联光学滤波器实现全光波长转换和多通道广播式波长转换的方案。在这些实验方案中,输出结果均具有比较大的消光比和眼睛张开度。
As the increasing of telecommunication networks due to the advancement of opticaltransmission technologies, optoelectronic devices play more and more important role inthe nodes of the optical networks. Semiconductor optical amplifiers (SOAs) have beenwidely used in the optical networks thanks to the high nonlinearities, the low-powerconsumption and the potential for integration. However, Different applications needdifferent types of SOAs. On the other hand, the material, the width and the number ofQWs in the active region of QW-SOA can be adjusted based on the energy bandengineering to obtain the optimum QW-SOA. In this dissertation, we focus on thestructural optimization of QW-SOA to meet the demands of different applications. Theresearch achievements and contributions are summarized as follows:
     (1) We have built a comprehensive numerical model based on the band theory insemiconductors. The Schr dinger equations in the conduction band and valence band arenumerically solved. On the other hand, we have also built the dynamic model of QW-SOAand the interactions between photon and electron are considered in the simulated model.Therefore, the nonlinearities of QW-SOA such as cross phase modulation (XPM), crossgain modulation (XGM) can be analyzed in detail.
     (2) Based on the simulated model, we proposed a novel QW-SOA, the intra-carrierrecovery time of which can be shortened significantly. In the active region of the novelQW-SOA, the bandgap of the first subband and the second subband in the conductionband are nearly36meV, which is the energy of a longitudinal optical (LO) phonon. Theinteraction between electron and phonon are enhanced in the active region. The intrabandcarrier recovery speed is accelerated significantly.
     (3) Based on the simulated model, we proposed a novel asymmetric QW (AQW)SOA to enhance the gain recovery. In the active region, a shallow QW and a deep QW areact as a continuum and the quantum barrier between the deep QW and the shallow QW areas thin as3nm. Thus the tunneling effect will be very strong. On the other hand, theelectrons with high energy mainly locate in the shallow QW while both the electrons with low energy in the conduction band and the holes with low energy in the valence bandmainly locate in the deep QW. Therefore, the deep QW is the ‘real’ active region. Therecombination between the electron and hole is almost in the deep QW. The shallow QWis a perfect carrier reservoir. Gain recovery time (from10%to90%) can be as short as15ps.
     (4) Based on the simulated model, we have analyzed the phase modulation, gainmodulation as well as the third susceptibility in the active region of the QW-SOAs. Wediscussed the phase dynamics as well as gain dynamics with different operatingconditions such as different optical power, injected current and operational wavelength.Secondly, we have theoretically analyzed the linewith enhancement factors (αNand αT) inthe active region of QW-SOA. The dependence of the material system, the design of theactive region and the operating conditions on the linewith enhancement factors arediscussed in detail. Lastly, the third susceptibility (χ(3)) in the active region is analyzed.We found that the χ(3)in asymmetric QW-SOA can be enhanced due to the interactionbetween the shallow QW and the adjacent deep QW.
     (5) Based on the simulated model, we have theoretically demonstrated the SOA withstrong wavelength dependence of gain and phase could be used for all-optical inverted andnon-inverted wavelength conversion over a wide range with the assistance of opticalfiltering. Through simulation, it is found that the quality of converted signal had littledependence on the operational wavelength. Both the inverted and the non-inverted WC areachieved in a large wavelength range.
     (6) Based on the simulated model, we have presented an optimized QW-SOA whichis capable of regenerating phase-modulated signals, such as return-to-zerodifferential-phase-shift keying (RZ-DPSK) signal. Based on the optimized QW-SOA, theamplitude fluctuations are suppressed while the phase information is preserved. Theessential mechanism of the optimized QW-SOA is the low linewidth enhancement factor(α-factor). Furthermore, the optimized QW-SOA can be used for dual-and four-channelRZ-DPSK signal regeneration.
     (7) We have experimentally demonstrated that, based on the operational conditionoptimization, a common QW-SOA has the ability of regeneration for single-and dual- RZ-DPSK signal. On the other hand, we also experimentally demonstrate single andmulticasting inverted wavelength conversion at80Gb/s by using the XGM and XPM in asingle SOA. In all cases, the converted signals with high extinction ratio (ER) and largeeye opening are obtained.
引文
[1]黄德修,刘雪峰.半导体激光器及其应用.北京:国防工业出版社,2001.
    [2] Zeidler, G., Schicetanz, D. Use of laser amplifiers in glass fibre communicationsystems. Siemens Forch. u. Entwickl. Ber.1973,2:227-234.
    [3] Personick, S. D. Applications for quantum amplifiers in simple digital opticalcommunication systems. Bell Syst. Tech. J.1973,52(117-133).
    [4] Yamamoto, Y. Characteristics of AlGaAs Fabry-Perot cavity type laser amplifiers.IEEE Journal of Quantum Electronics.1980,16(10):1047-1052.
    [5] Mukai, T., Yamamoto, Y., Kimura, T. S/N and Error Rate Performance in AlGaAsSemiconductor Laser Preamplifier and Linear Repeater Systems. IEEETransactions on Microwave Theory and Techniques.1982,30(10):1548-1556.
    [6] Simon, J. GaInAsP semiconductor laser amplifiers for single-mode fibrecommunications. IEEE Journal of Lightwave Technology.1987,5(9):1286-1295.
    [7] Reekie, L., Jauncey, I. M., Payne, D. N. Low-noise erbium-doped fibre amplifieroperating at1.54μm. Electronics Letters.1987,23(19):1026-1028.
    [8] Occhi, L. Semiconductor Optical Amplifiers made of Ridge Waveguide BulkInGaAsP/InP: Experimental Characterisation and Numerical Modelling of Gain,Phase, and Noise:[Doctor of Technical Sciences thesis]. Eidgen ssischeTechnische Hochschule Zürich,2002.
    [9] Xia, F., Wei, J., Menon, V., et al. Monolithic integration of a semiconductor opticalamplifier and a high bandwidth p-i-n photodiode using asymmetrictwin-waveguide technology. IEEE Photonics Technology Letters.2003,15(3):452-454.
    [10] Caillaud, C., Glastre, G., Lelarge, F., et al. Monolithic Integration of aSemiconductor Optical Amplifier and a High-Speed Photodiode With LowPolarization Dependence Loss. IEEE Photonics Technology Letters.2012,24(11):897-899.
    [11] Raring, J. W., Johansson, L. A., Skogen, E. J., et al.40Gbit/s photonic receiversintegrating UTC photodiodes with high-and low-confinement SOAs usingquantum well intermixing and MOCVD regrowth. Electronics Letters.2006,42(16):942-943.
    [12] Achouche, M., Caillaud, C., Glastre, G., et al., A monolithically integrated structurecomprising a buried heterostructure semiconductor optical amplifier and aphotodetector, in103060646, Patent, E. U., Editor^Editors.2010. p.
    [13] Huang, X., Qin, C., Huang, D., et al. Local carrier recovery acceleration inquantum well semiconductor optical amplifiers. IEEE Journal of QuantumElectronics.2010,46(10):1047-1013.
    [14] Huang, X., Zhang, Z., Yu, Y., et al. Optimized Quantum–Well SemiconductorOptical Amplifier for RZ-DPSK signal Regeneration. IEEE Journal of QuantumElectronics.2011,47(6):819-826.
    [15] Agrawal, G. P., Olsson, N. A. Self-Phase Modulation and Spectral Broadening ofOptical Pulses in Semiconductor Laser Amplifiers. IEEE Journal of QuantumElectronics.1989,25(11):2297-2306.
    [16] Willatzen, M., Uskov, A., Mork, J., et al. Nonlinear Gain Suppression insemiconductor Lasers Due to Carrier Heating. IEEE Photonics Technology Letters.1991,3(7):606-609.
    [17] Wang, J., Schweizer, H. Nonlinear gain suppression in quantum-well lasers due tocarrier heating: the roles of carrier energy relaxation, electron-hole interaction, andAuger effect. IEEE Photonics Technology Letters.1996,8(11):1441-1443.
    [18] Chin-Yi, T., Chin-Yao, T., Spencer, R. M., et al. Nonlinear gain coefficients insemiconductor lasers: effects of carrier heating. IEEE Journal of QuantumElectronics.1996,32(2):201-212.
    [19] A.Uskov, J.Mork. Theory of Short-Pulse Gain saturation in semiconductor LaserAmplifiers. IEEE Photonics Technology Letters.1992,4(5):443-446.
    [20] Mecozzi, A., M rk, J. Saturation induced by picosecond pulses in semiconductoroptical amplifiers. J. Opt. Soc. Am. B.1997,14(4):761-770.
    [21] M rk, J., Mecozzi, A. Theory of the ultrafast optical response of activesemiconductor waveguides. Journal of optical society of American B.1996.
    [22] M rk, J., J.Mark. Time-resolved spectroscopy of semiconductor laser devices:experiments and modeling. IEEE Photonics Technology Letters.1995,2399:146-159.
    [23] M rk, J., Willatzen, M., Mark, J., et al. Characterization and modelling of ultrafastcarrier dynamics in quantum well optical amplifiers. proceedings of SPIE.1994,2146:52-67.
    [24] Hsieh, J.-T., Gong, P.-M., Lee, S.-L., et al. Improved Dynamic Characteristics onFour-Wave Mixing Wavelength Conversion in Light-Holding SOAs. IEEE Journalof Selected Topics In Quantum Electronics.2004,10(5):1187-1196.
    [25] Yang, X., Lenstra, D., Khoe, G. D., et al. Nonlinear polarization rotation inducedby ultrashort optical pulses in a semiconductor optical amplifier. OpticsCommunications.2003,223(1–3):169-179.
    [26] Connelly, M. J. Wideband Semiconductor Optical Amplifier Steady-StateNumerical Model. IEEE Journal of Quantum Electronics.2001,37(3):439-447.
    [27] Connelly, M. J. Wide-Band Steady-State Numerical Model and ParameterExtraction of a Tensile-Strained Bulk Semiconductor Optical Amplifier. IEEEJournal of Quantum Electronics.2007,43(1):47-56.
    [28] Yariv, A. Quantum Electronics. John Wiley&Sons,1988.
    [29] Chuang, S. L. Physics of Optoelectronic Devices. NewYork: Wiley,1995.
    [30] Chang, W. S. C. Principles of Lasers and Optics. Cambridge University Press,2005.
    [31] Ridley, B. K. Quantum Processes in Semiconductors. Oxford Science publications,1999.
    [32] Suhara, T. Semiconductor Laser Fundamentals. Marcel Dekker,2004.
    [33] Ishikawa, H. Ultrafast All-Optical Signal Processing Devices. A John Wiley andSons, Ltd, Publication,2008.
    [34] Qin, C., Huang, X., Zhang, X. Theoretical investigation on gain recovery dynamicsin step quantum well semiconductor optical amplifiers. Journal of the OpticalSociety of America B.2012,29(4):607-613.
    [35] Huang, X., Qin, C., Zhang, X. High accuracy numerical solutions for bandstructures in strained quantum-well semiconductor optical amplifiers. Front.Optoelectron. China.2011,4(Special issue)(3):330-337.
    [36] Qin, C., Huang, X., Zhang, X. Gain Recovery Acceleration by EnhancingDifferential Gain in Quantum Well Semiconductor Optical Amplifiers. IEEEJournal of Quantum Electronics.2011,47(11):1443-1450.
    [37] Huang, X., Qin, C., Zhang, X., A comparison between two numerical methodsused to solve band structures, in iNow (Beijing and Changchun), Editor^Editors.2010: China. p.
    [38] Connelly, M. J. Semiconductor Optical Amplifiers. NewYork: Kluwer AcademicPublishers,2004.
    [39] CIP,1.55μm Non-linear Semiconductor Optical Amplifier (SOA-NL-C-14-FCA),in, Editor^Editors.2011. p.
    [40] Khurgin, J. B., Vurgraftman, I., Meyer, J. R., et al. Reduced CrosstalkSemiconductor Optical Amplifiers Based on Type-II Quantum Wells. IEEEPhotonics Technology Letters.2002,14(3):278-280.
    [41] Cotter, D., Manning, R. J., Blow, K. J., et al. Nonlinear Optics for High-SpeedDigital Information Processing. Science.1999,286(19):1523-1528.
    [42] Zhang, X., Huang, X., Dong, J., et al. All-Optical Signal Processing withSemiconductor Optical Amplifiers and Tunable Filters. in: Costa, N. and Cartaxo,A., editors. Advances in Lasers and Electro Optics (book section);2010.
    [43] Nielsen, D., Chuang, S. L., Kim, N. J., et al. High-speed wavelength conversion inquantum dot and quantum well semiconductor optical amplifiers. Applied PhysisLetters.2008,92(21):211101-211101~211103.
    [44] Nielsen, M. L., Lavigne, B., Dagens, B. Polarity-preserving SOA-basedwavelength conversion at40Gbit/s using bandpass filtering. Electronics Letters.2003,39(18):1334-1335.
    [45] Asghari, M., White, I. H., Penty, R. V. Wavelength Conversion UsingSemiconductor Optical Amplifiers. IEEE Journal of Quantum Electronics.1997,15(7):1181-1190.
    [46] Jang, H., Hur, S., Kim, Y., et al. Theoretical Investigation of Optical WavelengthConversion Techniques for DPSK Modulation Formats Using FWM in SOAs andFrequency Comb in10Gb/s Transmission Systems. IEEE Journal of LightwaveTechnology.2005,23(9):2638-2646.
    [47] Liu, Y., Tangdiongga, E., Li, Z., et al. Error-Free All-Optical WavelengthConversion at160Gb/s Using a Semiconductor Optical Amplifier and an OpticalBandpass Filter. IEEE Journal of Lightwave Technology.2006,24(1):230-236.
    [48] Hong, W., Li, M., Zhang, X., et al. Dynamic Analysis of All-Optical WavelengthConversion of Differential Phase-Shift Keyed Signals Based on SemiconductorOptical Amplifier Mach–Zehnder Interferometer. IEEE Journal of LightwaveTechnology.2009,27(24):5580-5589.
    [49] Fu, S., Dong, J., Shum, P., et al. Experimental demonstration of both invertedandnon-inverted wavelength conversion basedon transient cross phase modulation ofSOA. Optics Express.2006,14(17):7587-7593.
    [50] Contestabile, G., Calabretta, N., Presi, M., et al. Single and Multicast WavelengthConversion at40Gb/s by Means of Fast Nonlinear Polarization Switching in anSOA. IEEE Photonics Technology Letters.2005,17(12):2652-2654.
    [51] Wang, J., Marculescu, A., Li, J., et al. Pattern Effect Removal Technique forSemiconductor-Optical-Amplifier-Based Wavelength Conversion. IEEE PhotonicsTechnology Letters.2007,19(24):1955-1957.
    [52] Liu, Y., Tangdiongga, E., Li, Z., et al. Error-Free320-Gb/s All-Optical WavelengthConversion Using a Single Semiconductor Optical Amplifier. IEEE Journal ofLightwave Technology.2007,25(1):103-108.
    [53] Ma, J., Yu, J., Yu, C., et al. Wavelength conversion based on four-wave mixing inhigh-nonlinear dispersion shifted fiber using a dual-pump configuration. IEEEJournal of Lightwave Technology.2006,24(7):2851-2858.
    [54] Nowak, G. A., Kao, Y. H., Xia, T. J., et al. Low-power high-efficiency wavelengthconversion based on modulational instability in high-nonlinearity fiber. OpticsLetters.1998,23(12):936-938.
    [55] Devgan, P., Tang, R., Grigoryan, V. S., et al. Highly Efficient MultichannelWavelength Conversion of DPSK Signals. IEEE Journal of Lightwave Technology.2006,24(10):3677-3682.
    [56] Wang, J., Sun, J., Lou, C., et al. Experimental demonstration of wavelengthconversion between ps-pulses based on cascaded sum-and difference frequencygeneration (SFG+DFG) in LiNbO3waveguides. Optics Express.2005,13(19):7405-7414.
    [57] Wang, J., Sun, J., Zhang, X., et al. All-Optical Tunable Wavelength ConversionWith Extinction Ratio Enhancement Using Periodically Poled Lithium NiobateWaveguides. IEEE Journal of Lightwave Technology.2008,26(17):3137-3148.
    [58] Astar, W., Driscoll, J. B., Liu, X., et al. Tunable Wavelength Conversion by XPMin a Silicon Nanowire, and the Potential for XPM-Multicasting. IEEE Journal ofLightwave Technology.2010,28(17):2499-2511.
    [59] Luan, F., Pelusi, M. D., Lamont, M. R. E., et al. Dispersion engineered As2S3planar waveguides for broadband four-wave mixing based wavelength conversionof40Gb/s signals. Optics Express.2009,17(5):3514-3520.
    [60] Taeed, V. G., Fu, L., Pelusi, M., et al. Error free all optical wavelength conversionin highly nonlinear As-Se chalcogenide glass fiber. Optics Express.2006,14(22):10371-10376.
    [61] Danielsen, S., Joergensen, C., Vaa, M. Bit error rate assessment of40Gbit/sall-optical polarisation independent wavelength converter. Electronics Letters.1996,32(18):1688~1689.
    [62] Joergensen, C., Danielsen, S. L., Vaa, M.40Gbit/s all-optical wavelengthconversion by semiconductor optical amplifiers. Electronics Letters.1996,32(4):367~368.
    [63] Stephens, M. F. C., Nesset, D., Williams, K. A. Wavelength conversion at40Gbit/svia cross-gain modulation in distributed feedback laser integrated withsemiconductor optical amplifier. Electronics Letters.1999,35(20):1762~1764.
    [64] Dong, J., Zhang, X., Huang, D. A proposal for two-input arbitrary Boolean logicgates using single semiconductor optical amplifier by picosecond pulse injection.Optics Express.2009,17(10):7725-7730.
    [65] Xu, J., Zhang, X., Dong, J., et al. All-optical differentiator based on cross-gainmodulation in semiconductor optical amplifier. Optics Letters.2007,32(20):3029-3031.
    [66] Contestabile, G., Calabretta, N., Proietti, R., et al. Double-stage cross-gainmodulation in SOAs: an effective technique for WDM multicasting. IEEEPhotonics Technology Letters.2006,18(1):181-183.
    [67] Huang, X., Yu, Y., Qin, C., et al. Single and multicasting inverted-wavelengthconversion at80Gb/s based on a single semiconductor optical amplifier. Chinesephysics letters.2011,28(11):114211(114211~114213).
    [68] Wang, Q., Zeng, F., Blais, S., et al. Optical ultrawideband monocycle pulsegeneration based on cross-gain modulation in a semiconductor optical amplifier.Optics Letters.2006,31(21):3083-3085.
    [69] Xu, E., Zhang, X., Zhou, L., et al. Ultrahigh-Q microwave photonic filter withVernier effect and wavelength conversion in a cascaded pair of active loops. OpticsLetters.2010,35(8):1242-1244.
    [70] Xu, E., Zhang, X., Zhou, L., et al. All-Optical Microwave Filter With HighFrequency Selectivity Based on Semiconductor Optical Amplifier and OpticalFilter. IEEE Journal of Lightwave Technology.2010,28(16):2358-2365.
    [71] Bimberg, D., Schmeckebier, H., Meuer, C., et al. Quantum-dot semiconductoroptical amplifier for filter-assisted80-Gb/s wavelength conversion. in: TransparentOptical Networks (ICTON),201113th International Conference on:2011.1-4.
    [72] Xu, J., Zhang, X., Dong, J., et al. Ultrafast all-optical AND gate based on cascadedSOAs with assistance of optical filters. Electronics Letters.2007,43(10):585-586.
    [73] Xu, J., Zhang, X., Liu, D., et al. Ultrafast all-optical NOR gate based onsemiconductor optical amplifier and fiber delay interferometer. Optics Express.2006,14(22):10708-10714.
    [74] Yang, X., Mishra, A. K., Manning, R. J., et al. All-optical42.6Gbit/s NRZ to RZformat conversion by cross-phase modulation in single SOA. Electronics Letters.2007,43(16):890-892.
    [75] Yu, Y., Zhang, X., Rosas-Fernández, J. B., et al. Single SOA based16DWDMchannels all-optical NRZ-to-RZ format conversions with different duty cycles.Optics Express.2008,16(20):16166-16171.
    [76] Dong, J., Zhang, X., Xu, J., et al. Ultrawideband monocycle generation usingcross-phase modulation in a semiconductor optical amplifier. Optics Letters.2007,32(10):1223-1225.
    [77] Vázquez, J. M., Li, Z., Liu, Y., et al. Optimization of Optical Band-Pass Filters forAll-Optical Wavelength Conversion Using Genetic Algorithms. IEEE Journal ofQuantum Electronics.2007,43(1):57-64.
    [78] Dong, J., Zhang, X., Xu, J., et al.40Gb/s all-optical logic NOR and OR gates usinga semiconductor optical amplifier: Experimental demonstration and theoreticalanalysis. Optics Communications.2008,281(6):1710-1715.
    [79] Dong, J., Zhang, X., Fu, S., et al.40Gb/s all-optical NRZ to RZ format conversionusing single SOA assisted by optical bandpass filter. Optics Express.2007,15(6):2907-2914.
    [80] Vallaitis, T., Bonk, R., Guetlein, J., et al. Quantum dot SOA input power dynamicrange improvement for differential-phase encoded signals. Optics Express.2010,18(6):6270-6276.
    [81] Pei-Miin, G., Jyh-Tsung, H., San-Liang, L., et al. Theoretical analysis ofwavelength conversion based on four-wave mixing in light-holding SOAs. IEEEJournal of Quantum Electronics.2004,40(1):31-40.
    [82] Nielsen, D., Shun-Lien, C., Kim, N. J., et al.160GHz wavelength conversionusing four-wave mixing in quantum dots. in: Lasers and Electro-Optics,2009and2009Conference on Quantum electronics and Laser Science Conference.CLEO/QELS2009. Conference on:2009.1-2.
    [83] Dong, J., Zhang, X., Yu, Y., et al. Single-to-dual channel NRZ-to-RZ formatconversion by four-wave mixing in single semiconductor optical amplifier.Electronics Letters.2008,44(12):763-764.
    [84] Wang, M., Wu, J., Li, J., et al. All-optical serial-to-parallel converter forsimultaneous multiple-channel OTDM demultiplexing. Electronics Letters.2009,45(9):474-475.
    [85] Contestabile, G., Maruta, A., Sekiguchi, S., et al. All-Optical WavelengthMulticasting in a QD-SOA. IEEE Journal of Quantum Electronics.2011,47(4):541-547.
    [86] Fu, S., Zhong, W.-D., Shum, P. P., et al. All-optical NRZ-OOK-to-RZ-OOK formatconversions with tunable duty cycles using nonlinear polarization rotation of asemiconductor optical amplifier. Optics Communications.2009,282(11):2143-2146.
    [87] Maywar, D. N., Kaplan, A. M., Agrawal, G. P. Self-Phase Modulation inSemiconductor Optical Amplifiers: Impact of Amplified Spontaneous Emission.IEEE Journal of Quantum Electronics.2010,46(9):1396-1403.
    [88] Huang, X., Qin, C., Yu, Y., et al. Acceleration of Carrier Recovery in AsymmetricQuantum-Well Semiconductor Optical Amplifiers due to Tunneling effect. IEEEJournal of Quantum Electronics (Submitted).2012.
    [89] Zhang, L., Kang, I., Bhardwaj, A., et al. Reduced Recovery Time SemiconductorOptical Amplifier Using p-Type-Doped Multiple Quantum Wells. IEEE PhotonicsTechnology Letters.2006,18(22):2323-2325.
    [90] Matsuura, M., Kishi, N. Enhancement of Input Power Dynamic Range forMultiwavelength Amplification and Optical Signal Processing in a SemiconductorOptical Amplifier Using Holding Beam Effect. IEEE Journal of QuantumElectronics.2010,28(17):2593-2602.
    [91] Frédéric, G., Mohammad, A., Ammar, S. Semiconductor Optical Amplifier StudiesUnder Optical Injection at the Transparency Wavelength in CopropagativeConfiguration. IEEE Journal of Lightwave Technology.2007,25(3):840-849.
    [92] Yin, L., Liu, G., Wu, J., et al. Reduction of pattern effect for clock recovery basedon semiconductor optical amplifier using cw assist light. Optical Engineering.2006,45(4):045001(045001~045008).
    [93] Zhou, E., Zhang, X., Huang, D. Analysis on dynamic characteristics ofsemiconductor optical amplifiers with certain facet reflection based on detailedwideband model. Optics Express.2007,15(14):9096-9106.
    [94] Wang, J., Maitra, A., Poulton, C. G., et al. Temporal Dynamics of the Alpha Factorin Semiconductor Optical Amplifiers. IEEE Journal of Quantum Electronics.2007,25(3):891-900.
    [95] Dailey, J. M., Koch, T. L. Impact of Carrier Heating on SOA TransmissionDynamics for Wavelength Conversion. IEEE Photonics Technology Letters.2007,19(14):1078-1080.
    [96] Carrère, H., Truong, V. G., Marie, X., et al. Large optical bandwidth andpolarization insensitive semiconductor optical amplifiers using strained InGaAsPquantum wells. Applied Physics Letters.2010,97(121101(1-3)).
    [97] Giller, R., Manning, R. J., Cotter, D. Gain and phase recovery of optically excitedsemiconductor optical amplifiers. IEEE Photonics Technology Letters.2006,18(9):1061-1603.
    [98] Cleary, C. S., Power, M. J., Schneider, S., et al. Fast gain recovery rates withstrong wavelength dependence in a non-linear SOA. Optics Express.2010,18(25):25726-25737.
    [99] Agrawal, G. P. Nolinear Fiber Optics.2010.
    [100] Chang, C. S., Chuang, S. L. Modeling of strained quantum-well lasers withspin-orbit coupling. IEEE Journal of Selected Quantum Electronics.1995,1(2):218-229.
    [101] Harrison, P. Quantum Wells,Wires and Dots: Theoretical and computationalphysics of semiconductor nanostructures. Chichester(England): Wiley,2005.
    [102] Faist, J., Capasso, F., Sirtori, C., et al. Controlling the sign of quantum interferenceby tunnelling from quantum wells. Nature.1997,390:589-591.
    [103] Kroner, M., Govorov, A. O., Remi, S., et al. The nonlinear Fano effect. Nature.2008,451:311-314.
    [104] Elnour, A. A., Schuenemann, K. A comparison between different numericalmethods used to solve Poisson’s and Schroedinger’s equations in semiconductorheterostructures. Journal of Applied Physics.1993,74(5):3273-3276.
    [105] Ishikawa, T., Bowers, J. E. Band Lineup and In-Plane Effective Mass of InGaAsPor InGaAlAs on InP S trained-Layer Quantum Well. IEEE Journal of QuantumElectronics.1994,30(2):562-570.
    [106] Harrsion, W. A. Elementary theory of heterojunctions. Journal of Vacuum Scienceand Technology.1977,14(4):1016-1021.
    [107] Guo, W., Huang, Y. Calculation of Valence Subband Structures for StrainedQuantum-Wells by Plane Wave Expansion Method Within6×6Luttinger-KohnModel. Chinese Journal of semiconductors.2002,23(6):577-581.
    [108]彭霁宇.量子阱半导体光放大器的数值分析与动态特性研究:[硕士学位论文thesis].武汉光电国家实验室,华中科技大学,2008.
    [109] Eisberg, R. M. Fundamentals of Modern Physics. New York: Wiley,1961.
    [110] M rk, J., Mark, J. Carrier heating in InGaAsP laser amplifiers due to two-photonabsorption. Applied Physis Letters.1994,64(17):2206-2208.
    [111] Dailey, J. M., Koch, T. L. Simple Rules for Optimizing Asymmetries inSOA-Based Mach-Zehnder Wavelength Converters. IEEE Journal of LightwaveTechnology.2009,27(11):1480-1488.
    [112] Bennett, B. R., Soref, R. A., Del Alamo, J. A. Carrier-induced change in refractiveindex of InP, GaAs and InGaAsP. IEEE Journal of Quantum Electronics.1990,26(1):113-122.
    [113] Mullane, M., McInerney, J. G. Minimization of the Linewidth Enhancement Factorin Compressively Strained Semiconductor Lasers. IEEE Photonics TechnologyLetters.1999,11(7):776-778.
    [114] Mullane, M. P., McInerney, J. G. Minimization of the Linewidth EnhancementFactor in Tensile-Strained Quantum-Well Lasers. IEEE Photonics TechnologyLetters.2000,12(9):1147-1149.
    [115] Mark, J., M rk, J. Subpicosecond gain dynamics in InGaAsP optical amplifiers:Experiment and theory. Applied Physis Letters.1992,61(19):2281-2283.
    [116] Bimberg, D., Mycielski, J. Recombination-induced heating of free carriers in asemiconductor. Physical Review B.1985,31(8):5490-5493.
    [117] Matsumoto, A., Nishimura, K., Utaka, K., et al. Operational design on high-speedsemiconductor optical amplifier with assist light for application to wavelengthconverters using cross-phase modulation. IEEE Journal of Quantum Electronics.2006,42(3):313-323.
    [118] Piprek, J. Semiconductor Optoelectronic Devices:Introduction to Physics andSimulation. Elsevier,2003.
    [119] Dragoman, D. Tunneling time asymmetry in semiconductor heterostructures. IEEEJournal of Quantum Electronics.1999,35(12):1887-1893.
    [120] Lysak, V. V., Sukhoivanov, I. A., Shulika, O. V., et al. Carrier tunneling in complexasymmetrical multiple-quantum-well semiconductor optical amplifiers. IEEEPhotonics Technology Letters.2006,18(12):1362-1364.
    [121] Lysak, V. V., Kawaguchi, H., Sukhoivanov, I. A., et al. Ultrafast Gain Dynamics inAsymmetrical Multiple Quantum-Well Semiconductor Optical Amplifiers. IEEEJournal of Quantum Electronics.2005,41(6):797-807.
    [122] Reale, A., Di Carlo, A., Campi, D., et al. Study of gain compression mechanisms inmultiple-quantum-well In1-xGaxAs semiconductor optical amplifiers. IEEEJournal of Quantum Electronics.1999,35(11):1697-1703.
    [123] Yamanaka, T., Yoshikuni, Y., Yokoyama, K., et al. Theoretical Study on EnhancedDifferential Gain and Extremely Reduced Linewidth Enhancement Factor inQuantum-Well Lasers. IEEE Journal of Quantum Electronics.1993,29(6):1609-1616.
    [124] Kumar, S., Zhang, B., Willner, A. E. Impact of Operational Parameters onOptimum Performance of SOA-Based Differential-Mode Wavelength Converters.IEEE Photonics Technology Letters.2007,19(19):1538-1540.
    [125] Saurabh, K., Bo, Z., Ehsan, P., et al. Effect of Operational Parameters and TheirInterplay in Differential Cross-Phase-Modulation Wavelength Converters. in:Optical Society of America,2006. CMT5.
    [126] Sun, H., Niu, Y., Li, R., et al. Tunneling-induced large cross-phase modulation inan asymmetric quantum well. Optics Letters.2007,32(17):2475-2477.
    [127] Sun, H., Gong, S., Niu, Y., et al. Enhancing Kerr nonlinearity in an asymmetricdouble quantum well via Fano interference. Physical Review B.2006,74(155314):1-5.
    [128] M rk, J., Mecozzi, A. Response function for gain and refractive index dynamics inactive semiconductor waveguides. Applied Physis Letters.1994,65(14):1736-1738.
    [129] Roskos, H. G., Nuss, M. C., Shah, J., et al. Coherent Submillimeter-Wave Emissionfrom Charge Oscillations in a Double-Well Potential. Physical Review Letters.1992,68(14):2216-2220.
    [130] Hu, Z. H., Huang, D. X. Enhancement of absorptive optical nonlinearity ofasymmetrically coupled quantum well structures. Chinese Physis B.2005,14(4):813-818.
    [131] Boyd, R. W. Nonlinear Optics. Elsevier,2008.
    [132]胡振华.非对称耦合量子阱结构光学性质及其应用的理论研究:[博士学位论文thesis].光电子科学与工程学院,华中科技大学,2006.
    [133] Henry, C. Theory of the linewidth of semiconductor lasers. IEEE Journal ofQuantum Electronics.1982,18(2):259-264.
    [134] Kondratko, P. K., Chuang, S., Walter, G., et al. Observations of near-zero linewidthenhancement factor in a quantum-well coupled quantum-dot laser. Applied PhysisLetters.2003,83(23):4818-4820.
    [135] Dong, J., Fu, S., Zhang, X., et al. Analytical Solution for SOA-Based All-OpticalWavelength Conversion Using Transient Cross-Phase Modulation. IEEE PhotonicsTechnology Letters.2006,18(25):2554-2556.
    [136] Mecozzi, A., M rk, J. Saturation effects in nondegenerate four-wave mixingbetween short optical pulses in semiconductor laser amplifiers. IEEE Journal ofSelected Topics in Quantum Electronics.1997,3(5):1190-1207.
    [137] Zilkie, A., Meier, J., Mojahedi, M., et al. Time-Resolved Linewidth EnhancementFactors in Quantum Dot and Higher-Dimensional Semiconductor AmplifiersOperating at1.55μm. IEEE Journal of Lightwave Technology.2008,26(11):1498-1509.
    [138] Runge, P., Elschner, R., Petermann, K. Time-Domain Modeling of UltralongSemiconductor Optical Amplifiers. IEEE Journal of Quantum Electronics.2010,46(4):484-491.
    [139] Occhi, L., Schares, L., Guekos, G. Phase Modeling Based on the α-Factor in BulkSemiconductor Optical Amplifiers. IEEE Journal of Selected Topics In QuantumElectronics.2003,9(3):788-797.
    [140] Schares, L., Schubert, C., Schmidt, C., et al. Phase Dynamics of SemiconductorOptical Amplifiers at10-40GHz. IEEE Journal of Quantum Electronics.2003,39(11):1394-1408.
    [141] Nielsen, M. L., M rk, J., Suzuki, R., et al. Experimental and theoreticalinvestigation of the impact of ultra-fast carrier dynamics on high-speed SOA-basedall-optical switches. Optics Express.2006,14(1):331-347.
    [142] Liu, X., Cappuzzo, M. A., Gomez, L., et al. Characterization of the DynamicalProcesses in All-Optical Signal Processing Using Semiconductor OpticalAmplifiers. IEEE Journal of Quantum Electronics.2008,14(3):758-769.
    [143] Dong, J., Fu, S., Zhang, X., et al. Single SOA based all-optical adder assisted byoptical bandpass filter: Theoretical analysis and performance optimization. OpticsCommunications.2007,270(2):238-246.
    [144] Dong, J., Zhang, X., Fu, S., et al. Ultrafast All-Optical Signal Processing Based onSingle Semiconductor Optical Amplifier and Optical Filtering. IEEE Journal ofSelected Topics in Quantum Electronics.2008,14(3):770-778.
    [145] Gnauck, A., Winzer, P. Optical Phase-Shift-Keyed Transmission. IEEE Journal ofLightwave Technology.2005,23(1):115-130.
    [146] Gordon, J. P., Mollenauer, L. F. Phase noise in photonic communications systemsusing linear amplifiers. Optics Letters1990,15(23):1351-1353.
    [147] Matsumoto, M., Sakaguchi, H. DPSK signal regeneration using a fiber-basedamplitude regenerator. Optics Express2008,16(15):11169-11175.
    [148] Cvecek, K., Sponsel, K., Onishchukov, G., et al.2R-regeneration of an RZ-DPSKsignal using a nonlinear amplifying loop mirror. IEEE Photonics TechnologyLetters2007,19(2-4):146-148.
    [149] Dong, J., Zhang, X., Xu, J., et al.40Gb/s all-optical logic NOR and OR gatesusing a semiconductor optical amplifier: Experimental demonstration andtheoretical analysis. Optics Communications.2008,281(6):1710-1715.
    [150] Runge, P., Bunge, C.-A., Petermann, K. All-Optical Wavelength Conversion WithExtinction Ratio Improvement of100Gb/s RZ-Signals in Ultralong BulkSemiconductor Optical Amplifiers. IEEE Journal of Quantum Electronics.2010,46(6):937-944.
    [151] Huang, X., Yu, Y., Qin, C., et al. Single and dual-channel DPSK signalregeneration based on a single semiconductor optical amplifier. Chinese physicsletters.2012,29(5):054202(054201~054205).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700