用户名: 密码: 验证码:
经皮肾镜取石的低剂量CT定位研究暨围术期患者血肾功能变化的观察
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[研究背景]
     伴随着螺旋CT性能改进和技术提高,螺旋CT扫描在临床工作中得到越来越广泛的应用。近年来,由于微创经皮肾镜技术的推广应用,螺旋CT又被广泛用于PCNL治疗前的定位扫描和术后随访,并被认为是经皮肾镜取石的标准影像工具。螺旋CT的广泛应用,带来放射辐射增加的伦理学考虑,因而,低剂量螺旋CT扫描在许多领域被广泛研究,泌尿外科则主要集中在肾绞痛的CT诊断方面。在经皮肾镜取石治疗过程中,泌尿外科医师关心的重点大多集中在术中x线的防护,以减少或避免手术组人员的辐射,而较少关注围手术期患者的X线辐射问题。本研究的目的就是为低剂量非增强螺旋CT在上尿路结石诊断、MPCNL手术前的定位以及减少和降低患者及手术人员围手术期的辐射提供理论支持。
     第一节低剂量非增强螺旋CT行MPCNL定位的可行性研究
     [目的]
     探讨非增强低剂量螺旋CT定位在MPCNL中的可行性,以期降低(M)PCNL患者进行螺旋CT检查和定位时的辐射量。
     [方法]
     对28例诊断上尿路结石拟行MPCNL治疗的患者于术前常规行标准剂量螺旋CT定位扫描后,再行低剂量螺旋CT扫描,分别对两组扫描图像的结石特征(位胃、大小、分布)、肾窦内血管征象、邻近器官情况、是否存在继发梗阻改变以及拟定穿刺点位置、穿刺深度和角度以及螺旋CT有效辐射量进行比较分析。
     [结果]
     以标准剂量螺旋CT作为参照,低剂量螺旋CT对结石肾内分布、肾周围毗邻脏器情况以及继发梗阻改变的显示符合率为100%,对肾窦内血管显示符合率为96%,结石轴面最大横径、穿刺深度、穿刺角度与标准剂量螺旋CT图像上测得值无统计学差异(P>0.05),结石显像层数差异显著(P=0.026)。低剂量组的螺旋CT有效辐射量明显低于标准剂量组(0.88±0.10vs3.58±0.38,p=0.000)
     [结论]
     对于上尿路结石拟行(M)PCNL治疗者,低剂量螺旋CT扫描与标准剂量螺旋CT扫描在结石分布、毗邻脏器位置关系以及结石轴面横径大小、穿刺深度和角度等的确定上具有相同的敏感性和准确度,而且能够明显降低患者的螺旋CT辐射量,可以作为常规首选的非增强定位方法。
     第二节低剂量非增强螺旋CT定位MPCNL治疗上尿路结石的临床应用研究
     [目的]
     探讨低剂量螺旋CT定位在上尿路结石微创经皮肾镜取石治疗中的临床应用价值,进一步验证低剂量螺旋CT定位临床应用的可行性。
     [方法]
     2010年10月至2011年9月我院收治的上尿路结石患者78例,按就诊先后分为低剂量螺旋CT扫描定位组(低剂量组)和标准剂量螺旋CT扫描定位组(标准剂量组),于MPCNL前常规进行俯卧位扫描定位,确定穿刺点、穿刺角度和深度。分别对两组患者螺旋CT有效辐射量、穿刺次数、经皮肾通道建立时间、术中C臂X线应用次数、失血量及残石率进行比较。
     [结果]
     两组在平均穿刺次数、穿刺角度和深度、通道建立时间、失血量、术中C臂应用次数、有无残石方面比较无统计学差异(p>0.05),低剂量组螺旋CT有效辐射量仅约为标准剂量组的1/4(24.79%),统计学差异明显(0.8882±0.0797vs3.5828±0.3086,p<0.001),两组均无毗邻脏器损伤。
     [结论]
     低剂量螺旋CT扫描定位行微创经皮肾镜取石可以替代标准剂量螺旋CT定位扫描,有利于降低患者围手术期X线的辐射剂量及术中C臂的应用,而不增加手术的风险和影响手术的治疗效果。
     第三节“靶域”低剂量非增强螺旋CT扫描定位联合术中超声引导穿刺行MPCNL的临床研究
     [目的]
     探讨“靶域”低剂量非增强螺旋CT定位联合超声引导穿刺行MPCNL治疗的可行性及其临床价值,以期进一步降低围手术期的放射辐射。
     [材料和方法]
     选择2011年11月到2012年3月间我院收治的需要进行PCNL手术治疗的上尿路结石患者共43例,采用”靶域”低剂量螺旋CT扫描定位并联合术中超声引导穿刺行MPCNL治疗,并与低剂量组的CT有效辐射量、穿刺次数、通道建立时间、失血量、术中C臂X线使用次数以及残石率等进行比较.
     [结果]
     “靶域”低剂量组和低剂量组在平均穿刺次数、穿刺角度、穿刺深度、通道建立时间、术中有无残石方面比较无统计学差异(p>0.05),“靶域”低剂量组平均失血量虽高于低剂量组,但无统计学差异(P=0.072),而“靶域”低剂量组螺旋CT有效辐射量则明显低于低剂量组(0.6988±0.0418vs0.8882±0.0797,p=0.001),约为低剂量组的80%,术中C臂应用次数亦明显低于低剂量组(0.65±1.59vs1.46±2.26,p=0.015),两组均无毗邻脏器损伤。
     [结论]
     “靶域”低剂量螺旋CT扫描定位联合超声引导穿刺行PCNL治疗上尿路结石有助于进一步降低患者的放射辐射,联合超声引导穿刺可简化超声定位的操作步骤并有效降低术中C臂x线的使用,有助于患者及手术组人员的放射防护。
     [研究背景]
     泌尿系结石是泌尿外科常见病和多发病,近年来结石病的发生率呈上升趋势。泌尿系结石的病因复杂、成分多样,发病率及复发率均较高,预防结石的治疗后的复发是临床结石治疗的重要组成部分,了解结石成分对于明确结石病因、指导治疗以及预防复发均具有重要的临床意义。结石成分分析目前临床常用的主要包括红外结石光谱分析法和化学定性分析,两种方法均需体外碎石或手术治疗获得标本后才能进行。如果能在结石治疗前明确其成分,无疑会对结石治疗方法的选择起到很好的指导作用。如何在治疗前即能获知体内结石的成分则一直为近年来泌尿外科同仁所关注。随着螺旋CT的广泛应用,人们发现不同成分的结石其CT值不同,于是开始了有关利用CT值确定结石成分的探讨和研究,但大多集中在标准剂量CT扫描的研究,有关低剂量CT扫描CT值测定与物理、化学分析法判断结石成分及其之间关系的研究则未见报道。
     第一节低剂量非增强螺旋CT行结石成分分析的体外实验研究
     [目的]
     探讨低剂量螺旋CT体外进行泌尿系结石成分分析的可行性。
     [资料和方法]
     对经手术取出的50颗上尿路结石,于体外分别进行标准剂量和低剂量螺旋CT扫描测定结石CT值,同时对50颗结石分别采用红外光谱分析法和化学分析法测定结石的化学成分和组成,其中符合者38颗,然后分别对这38颗结石的两种剂量扫描测得的CT值以及与不同成分之间关系进行比较分析。
     [结果]
     1.低剂量和标准剂量螺旋CT扫描结石CT值及噪声的比较
     低剂量组和标准剂量组比较,结石CT值(1258.44±454.24vs1293.57±454.24,n=38,p=0.218)和噪声(236.16±162.58vs266.42±183.21,p=0.284)无统计学差异(p>0.05)。
     2.红外光谱分析法和化学分析法结石成分的比较
     红外光谱法和化学定性法所分析结石的成分,总的符合率为86.4%(38/44),其中含钙结石符合率为77.3%(34/44),两种分析方法结石成分无统计学差异(P=0.398);在两种检测方法结石成分相符合的38例中,含钙结石符合率为89.5%(34/38)
     3.螺旋CT值与结石成分之间关系分析
     两种分析方法所得结石成分显示,所有成分中,以草酸钙结石最多。纯结石成分中草酸钙结石CT值最高,而尿酸结石CT值最低,通过CT值测定可以将二者区分。混合结石CT值变化大而不确定,介于草酸钙和尿酸结石之间。
     [结论]
     化学分析法和红外光谱分析法均能满足临床结石成分分析的需要,而低剂量螺旋CT扫描可以替代标准剂量螺旋CT进行体外结石密度的测定和结石成分的初步分析。
     第二节低剂量非增强螺旋CT扫描预测结石成分的临床研究
     [目的]
     探讨低剂量螺旋CT扫描预测体内结石成分的可行性。
     [资料和方法]
     对2010年4月到2011年4月间我院收治的52上尿路结石患者进行标准剂量和低剂量螺旋CT扫描测量结石CT值,对其中27例接受PCNL治疗并明确结石成分者进行CT值与结石成分之间关系的分析。
     [结果]
     1.低剂量和标准剂量螺旋CT所测得体内结石CT值和噪声的比较
     本组52例患者螺旋CT扫描显示,低剂量组和标准剂量组结石CT值无明显差异(986.80±302.31vs986.60±311.51,p<0.05),但CT值的标准差(噪声)统计学差异明显(145.40±98,77vs117.54±82.73,p<0.001)。
     2.27例体内结石CT值与结石成分之间的关系
     27例患者体内结石成分分析显示纯草酸钙结石最多,纯尿酸铵和无成分结石各1例,余者均为混合结石。CT值测定显示,草酸钙+磷酸钙、单纯草酸钙和尿酸铵结石在1000Hu以上,最低的为1例无成分结石为422.07,其余结石CT值在上述成分结石之间且相互间有交叉,同一成分结石低剂量和标准剂量CT值之间无差异(p>0.05)。
     3.同质结石(草酸钙)体内和体外CT值和噪声的比较
     经化学分析确定的体内16例和体外12例纯草酸钙结石的CT值和标准差分析,无论低剂量组还是标准剂量组,体内草酸钙结石CT值均低于体外组,但无统计学差异(P>0.05),而CT值标准差则差异明显(p<0.01)。
     [结论]
     低剂量螺旋CT扫描可以替代标准剂量螺旋CT进行体内结石密度的测定和结石成分的初步分析,以体外实验所测得的结石CT值判断体内结石成分时应慎重。
     [研究背景]
     泌尿系结石是全球性疾病,近年来随着生活条件的改善和饮食结构的变化,结石发病率更呈现上升趋势。目前,泌尿系结石的治疗主要以微创治疗为主,其中微创经皮肾镜碎石取石治疗上尿路结石,近年来在国内得到广泛开展和应用,已取代传统开放手术而成为首选治疗方法之一。微创经皮肾镜碎石术根据通道大小又分为微通道、标准通道和大通道,根据通道的个数又可分为单通道、双通道和多通道,无论何种方法其目的均是为取净结石、降低残石率,但无疑也会给患者带来不同程度的损伤。有关PCNL对肾功能以及机体状态影响的研究已有报道,但研究的观测指标仅限于血肌酐、尿素氮以及GFR等,而有关围手术期血肾功能敏感指标β2MG.CYS-C以及应急指标CRP动态变化及其相关因素的研究则未见报道。
     [目的]
     探讨MPCNL术后早期血肾功能指标β2MG.CYS-C及血急性相反应蛋白CRP的动态变化及其临床意义。
     [资料和方法]
     对我院2010年4月到2011年4月行MPCNL治疗的上尿路结石患者31例,监测其术前、术后1d和术后3d的血肌酐、尿素氮、尿酸、β2MG、CYS-C以及CRP变化,并与术前尿WBC水平、手术时间、失血量以及体温变化等进行相关分析。
     [结果]
     1. MPCNL患者血WBC、中性粒细胞比率及Bun、Cr、UA、β2MG、CYS-C和CRP的变化分析
     血生化检查显示,术后血WBC、血中性粒细胞比率、血Cr均于术后第1d升高(p<0.01),然后回落,但血UA、血B2MG术后则呈较明显下降(p<0.05和0.01),而血CRP则术后呈明显上升改变(p<0.01),血BUN和CYS-C术前术后则无明显变化(p>0.05)。
     2. MPCNL患者CRP与各指标间相关关系分析
     相关分析显示,术前血CRP变化与尿中白细胞水平呈显著正相关(r=0.703,p=0.000),术后第1d血CRP与术前尿WBC(r=0.447,p=0.012)、血WBC(r=0.540,p=0.002)、血β2MG(r=0.376,p=0.042)和体温变化(r=0.496,p=0.005)呈显著正相关,而术后第3d血CRP变化则仅与手术时间呈显著正相关(r=0.325,p=0.001),与各指标相关性不明显。。
     [结论]
     MPCNL手术对肾功能的潜在危害和影响较小,就肾功能而言是一种安全的手术方式。CRP是一个综合性应激反应指标,术后CRP监测可以用来了解患者的机体状态,优于对血WBC和中性粒细胞水平监测。
[Background]
     Along with the improvements of helical CT performance and technology elevation, helical CT scan has been more widely used in clinical procedure. In recent years, due to the minimally invasive percutaneous nephrolithotomy technology promotion and application, hel ical CT has been widely used in PCN'L treatment in localizing scan pre-operation and postoperative follow-up, and being believed to be the standard imaging tool for percutaneous nephrolithotomy. With the wide application of helical CT, the ethical consideration about radiation increasing is raised. Thus, low-dose spiral CT scan is studied extensively in many areas, but mainly in diagnosis of renal colic in urology. During percutaneous nephrolithotomy treatment process, the focus of interest of urologists are mostly concentrated on the technique of X-ray protection, in order to reduce or avoid the radiation of the surgical staff, and little concern about the X-ray radiation for patients during perioperative period. The purpose of this study is to provide theoretical support for the low-dose unenhanced helical CT scan in diagnosis of upper urinary tract calculus, localization before MPCNL surgery as well as to reduce the peri operative radiation for patients and surgery staff.
     Section I Feasibility study of low-dose unenhanced helicalCT localization in minimally invasive percutaneous nephrolithiathis(MPCNL)
     [Objective]
     To probe the feasibility of unenhanced low-dose helicalCT localization for minimally invasive percutaneous nephrolithotomy (MPCNL) with comparison to standard-dose helicalCT, our aim is to reduce the radiation of helicalCT scan being used for patients suffered from upper urinary stone during diagnose and MPCNL localization.
     [Materials and Methods]
     28cases of upper urinary tract calculus who were admitted for MPCNL treatment underwent both localization scan, Low-dose CT and standard-dose CT were independently reviewed by two radiologists for the characterization of renal and ureteral calculi (location, size, distribution), Diatrizoate Meglumine(DTZ) coated fabric particle, perirenal adjacent organs (liver, splen, colon, lung or pleural membrane), blood vessels within renal sinus (anterior or posterior branch of renal blood vessels) and for indirect signs of renal or ureteral calculus (renal enlargement, pyeloureteral dilatation), simultaneously with the indexes of localization(percutaneous puncture angulation and depth) which would be used in MPCNL procedure and effective radiation of helical CT.
     [Results]
     In all the patients with a BMI<30or BMI≥30, in accordance with standard-dose CT, low-dose CT was100%coincident for depicting location of the renal and ureteral calculus, DTZ coated fabric particle, renal enlargement, pyeloureteral dilatation, adjacent organs and the presumptive puncture point with a96%coincident for blood vessels signs within renal sinus. The indexes of puncture depth, puncture angulation and maximum calculus ransverse diameter on axial surface showed no statistical variation between the two dose CT scan (P>0.05), and with a significant variation for calculus visualization slice number(P=0.026). The effective radiation of low-dose helical CT scan is significantly lower than that of standard-dose (0.88±0.10vs3.58±0.38, p=0.000)
     [Conclusion]
     Unenhanced low-dose CT achieves sensitivities and accuratissime same to those of standard-dose CT in assessing the localization of renal ureteral calculus, adjacent organs conditions, identifying the maximum calculus ransverse diameter on axial surface, percutaneous puncture depth and angulation in patients that would be treated by MPCNL, and can be used as first alternative localization method routinely with a significantly lower radiation of helical CT for patients.
     Section Ⅱ Investigation of clinical application of low-dose unenhanced helicalCT localization in MPCNL treatment for upper urinary calculi
     [Objective]
     To probe the clinical value of low-dose unenhanced helicalCT localization in MPCNL for upper urinary tract caculi treatment, and authenticate the feasibility of low-dose unenhanced helicalCT localization in advanced clinical application.
     [Material and methods]
     From October2010to September2011,78cases of patients suffered from upper urinary tract stones recruited to the study, all the patients were divided into two groups, low-dose helicalCT localizing group (low-dose group) and standard-dose helicalCT localizing group (standard-dose group), and undertook a conventional helical CT localization before MPCNL in a prone position to determine the puncture point, puncture angle and puncture depth. The effective radiation of CT scan in patients, number of puncture times, buildup time of percutaneous nephrolithotomy channel, intraoperative number of times of C-arm X-ray use, blood loss and residual stone rate were compared between the two group.
     [Results]
     No statistically significant difference (p>0.05) was found in the average number of puncture times, puncture angle and depth, channel buildup time, the number of times of C-arm use, blood loss and residual stone between the two groups. A statistically significant difference of effective radiation of helicalCT was found between the two groups (0.8882+0.0797vs3.5828±0.3086, p<0.001), with a ratio of1/4(24.79%) in low-dose group to standard-dose group. No adjacent organ injury occurred in two groups.
     [Conclusion]
     Low-dose helical CT localizing scan for minimally invasive percutaneous nephrolithotomy could be an alternative to the standard-dose helical CT localizing scan, be profit to helping reduce the perioperative radiation dose of X-ray for the patient and intraoperative C-arm applications, without increasing the risk of surgery and influence on the effect of surgical treatment.
     Section Ⅲ "target-domain" low-dose non-enhanced spiral CT scan positioning combined with intraoperative ultrasound-guided puncture the PCNL clinical research
     [Objective]
     To investigate the feasibility and clinical value of "target-domain" low-dose non-enhanced spiral CT localization joint ultrasound-guided puncture in MPCNL treatment, for further reduction the perioperative radiation.
     [Materials and Methods]
     Since November2011to March2012,43cases of upper urinary tract calculi patients undertook MPCNL treatment by a preoperational "target-domain" low-dose helical CT localization combined with intraoperative ultrasound-guided puncture, the low-dose helical CT group of section Ⅱ was contributed to the control group. The effective radiation of helical CT, number of puncture times, time of percutaneous nephrolithotomy channel establishment, blood loss, intraoperative C-arm X-ray application as well as residual stone rate were compared between the two groups.
     [Results]
     No statistically significant difference was found between "target-domain" low-dose group and low dose group in the average number of puncture times, puncture angle, puncture depth, channel buildup time, residual stone (p>0.05), the average blood loss in "target-domain" low-dose group was higher than that of in low-dose group with no significant difference (P=0.072), and the effective radiation in "target domain" low-dose spiral CT group is significantly lower than that of the low-dose group (0.6988±0.0418vs0.8882±0.0797, p0.001), with a ratio of80%in "target-domain" low-dose group to low-dose group, same with the intro-operative C-arm use (0.65±1.59vs1.46±2.26, p=0.015). No adjacent organ injury occurred in both groups.
     [Conclusion]
     "Target-domain" low-dose spiral CT localization combined with ultrasound-guided puncture, in MPCNL treatment for upper urinary tract stones, can help to further reduction of the patient's radiation exposure, and simplify ultrasound-guided steps with reduction of intraoperative C-arm X-ray palliation and contribute to the radiological protection for the surgical staff.
     [Background]
     Urinary stone is common and frequently-occurring disease in urinary system, the incidence of urinary calculi rises in recent years. The etiology of urinary stones is complex and ingredients is diverse, with high morbidity and recurrence rate, to prevent the recurrence after treatment of stones is an important part of the treatment for urinary calculi. And it is of considerable significance to identify etiological factor, direct stone treatment and prevent stone recurrence. The calculus component analysis includs infrared stones spectroscopy and chemical qualitative analysis commonly used in clinic, for the two methods, obtained specimens of stone removed through extracorporeal lithotripsy or surgical treatment are required. If the stone composition can be identified before treatment, it will no doubt play a guided role in good choice of stone treatment. And how to learn the stone composition before treatment has been constantly concerned for urology colleagues in recent years. With the extensive application of spiral CT, the CT values of different stone ingredients has been found, and the investigations about the use of CT value to determine stone composition proceeded, with an concentration on only standard-dose helical CT scan for composition analysis. The application of low-dose CT scan in stone CT value determination, simultaneously both with physical and chemical analysis methods to determine the stone composition and the relationship between the composition and CT value have not been reported.
     Section I The in vitro empirical study of probability for un-enhanced low-dose CT scan in composition analysis of urinary calculus
     [Objective]
     To investigate the feasibility of low-dose helical CT scan in composition analysis of urinary calculi in vitro.
     [Materials and Methods]
     50stones removed from upper urinary tract by operation were studied in vitro with standard-dose(120Kv/100mAs) and low-dose(120Kv/25mAs) spiral CT scan for determination of CT value (Hu), and infrared spectroscopy and chemical analysis methods were undertaken simultaneously for determination of chemical composition of the stones for comparison.38stones in conincident ingredient was studied.
     [Results]
     1. Comparison of low-dose and standard-dose spiral CT scan in CT values and noise of the stones
     No statistically significant difference was found in CT value(1258.44±454.24vs1293.57±454.24, n=38,p=0.218) and noise (236.16±162.58vs266.42±183.21,p=0.284) of stones between low-dose group and standard-dose group.
     2. Comparison of stone compositions by infrared spectroscopy and chemical analysis
     The total coincidence rate of all the stones was86.36%(38/44), with a coincidence rate of77.27%(34/44) for calcium stones measured by infrared spectroscopy and chemical characterization method, no statistically significant difference was found(P=0.398); and for all the38stones with coincident compositions, the coincidence rate of calcium stones89.5%(34/38).
     3. Analysis of relationship between the spiral CT value and composition of the stones.
     With the two analysis methods, stone composition obtained show that calcium oxalate stones was the main stone ingredient. For the pure ingredients stones, the pure calcium oxalate stones had the highest CT density, while the lowest CT values is of uric acid stones and could be distinguished by CT value between the two ingredients stones, CT values of other mixed stones ranged between calcium oxalate and uric acid stones.
     [Conclusion]
     Chemical analysis and infrared spectroscopy can meet the need for clinical stones component analysis, and low-dose spiral CT scanning can replace the standard dose helical CT for the preliminary composition analysis and determination of density in vitro.
     Section Ⅱ The clinical investigation of probability for un-enhanced low-dose CT scan in predicting composition of ur inary calculus
     [Objective]
     Investigate the feasibility of low-dose spiral CT scan predicting stone composition in vivo
     [Materials and Methods]
     52cases of upper urinary stone patients underwent a standard-dose helical CT scan and a low-dose helical CT scan for CT value measurements since April2010to April2011, of which,27cases underwent MPCNL treatment and stone composition analysis, the relationship between stone composition and CT value was analyzed.
     [Results]
     1. Comparison of stones CT value and noise measured by low-dose and standard-dose helical CT in vivo.
     By the52patients with hel ical CT scan, no statistically significant difference was found in the stone CT value between low-dose and standard-dose helical CT scan group (986.80+302.31vs986.60±311.51, p<0.05), but the standard devi at ion (noise) of the CT values showed statistically significant difference between the two groups.(145.40±98,77vs117.54±82.73, p<0.001).
     2. The relationship between stone CT value and stone composition of the27cases in vivo
     27patients body stone composition analysis showed that pure calcium oxalate stones, pure urine ammonium ingredients stones in1patient each, while the remainder were of mixed stone composition. By determination, the CT value of calcium oxalate stones+calcium phosphate, pure calcium oxalate and urinary ammonium stone were more than1000Hu, the lowest CT value of1case of no ingredients stones is422.07Hu, and the rests of the stones in the CT values were between the stones of the above ingredients and mutual cross, no statistically significant difference of the same ingredients stone was found between low-dose and standard^dose CT value (p>0.05)
     3. Comparison of homogeneous stones (calcium oxalate) in vivo and in vitro CT values and noise
     The CT value of16calcium oxalate stones in vivo was lower than that of12calcium oxalate stones in vitro in both dose of CT scan without statistically significant difference(p>0.05), but significantly different for standard deviation of CT value (149.98+76.94vs268.62±149.98in low-dose group, and114.72±69.25vs288.33±197.95in stansard-dose group, p<0.05)
     [Conclusion]
     Low-dose helical CT scan can replace standard-dose helical CT scan in CT value determination of stone and preliminary analysis for stone composition in vivo, it should be careful to determine stone composition in vivo by CT value of stone measured in vitro.
     [Background]
     Urinary calculi is a global disease, the stones incidence present an upward trend in recent years with the improvement of living conditions and diet changes. Currently, minimally invasive treatment is the main choice for urinary stone treatments, the minimally invasive percutaneous nephrolithotomy lithotripsy treatment of urinary stones in our country has been widely carried out and applied recent years, and has become one of the preferred treatment method to replace the traditional open surgery. Minimally invasive percutaneous nephrolithotomy lithotripsy is divided into micro-channel, standard channel and big channel according to the channel size, and single channel, dual and multi-channel according to the number of channels, of which will no doubt bring varying degrees of damage to the patient, whatever its purpose is to remove stones cleanly, reduce the rate of residual stone. The influence of PCNL on renal function as well as patient body status has been reported, but the parameters in observations are limited to serum creat inine, blood urea ni trogen and GFR. The dynamic changes of the peri operative blood sensitive indicators for renal function, such as β2MG, CYS-C, as well as emergency indicator related factors of CRP have not been reported.
     [Objective]
     To investigate the dynamic changes and clinical significance of β2MG, CYS-C being as renal function blood indicators, and blood acute phase response protein CRP early after MPCNL treatment.
     [Materials and Methods]
     From April2010to April2011,31patients with upper urinary tract stones in our hospital were studied by monitoring the dynamic changes of serum creatinine, blood urea nitrogen, UA,β2MG, CYS-C and CRP, pre-operation, Id and3d post-operation of MPCNL, and the preoperative urine WBC level, operative time, blood loss and body temperature changes were analyzed in relationship simultaneously.
     [Results]
     1. The blood WBC, neutrophil ratio and Bun, Cr, UA,β2MG CYS-C and CRP changes of patients for MPCNL treatment.
     With blood biochemistry check, postoperative blood WBC, blood neutral granulocyte ratio, serum Cr rose Id after surgery (p<0.01), and then dropped back, but blood UA, serum β2MG decreased after surgery (p<0.05and0.01), and blood CRP after surgery increased significantly (p<0.01), and no significant changes for serum BUN and cystatin-C pre-and post-operation (p>0.05).
     2. Correlation analysis between CRP and each indicator in patients with MPCNL
     By correlation analysis, the preoperative blood CRP changes with urine leukocyte levels were significantly positively correlated (r0.703, p=0.000), blood CRP of Id post-operation were significantly positively correlated with preoperative urine WBC (r=0.447, p=0.012), blood WBC (r=0.540, p=0.002), blood β2MG (r=0.376, p=0.042) and body temperature changes (r=0.496, p=0.005) was significant with a positive correlation, while the postoperative blood CRP level3d post-operation is only significantly positive correlated to the operative time (r=0.325, p=0.001), no obvious correlation with other indicators.
     [Conclusion]
     As far as renal renal function be concerned, MPNCL is a safe surgical modality with smaller potential hazards and impacts on renal function. CRP is a comprehensive indicator of stress response, the CRP monitoring after MPCNL can be used to understand the state of the patient's body, being superior to the monitoring of blood WBC and neutrophil levels.
引文
[1]Dhar M, Denstedt JD. Imaging in diagnosis, treatment, and follow-up of stone patients[J]. Adv Chronic Kidney Dis.2009 Jan;16(1):39-47
    [2]Kalogeropoulou C, Kallidonis P, Liatsikos EN. Imaging in percutaneous nephrolithotomy[J]. J Endourol.2009 Oct;23(10):1571-7
    [3]Brink JA. Technical aspects of helical (spiral) CT[J]. Radiol Clin North Am,1995; 33(5):825-841
    [4]Kalender WA, Seissler W, Klotz E, at al. Spiral volumetric CT with single-breath-hold technique, continuous transort, and continuos scanner rotation[J]. Radiology,1990;176(1):181-183
    [5]Brink JA, Heiken JP, Balfe DW, et al. Spiral CT:decreased spatial resolution in vivo due to braodening of section-sensitivity profile[J]. Radiology,1992,185(2):469-474
    [6]Heiken JP, Brink JA, Vannier MW. Spiral (helical) CT[J]. Radiology, 1993:189(3):647-656
    [7]Liberman SN, Halpern EJ, Sullivan K, et al. Spiral computed tomography for staghorn calculi[J]. Urology,1997; 50(4):519-524
    [8]Sengupta S, Donnellan S, Vincent JM, et al. CT analysis of caliceal anatomy in the supine and prone positions[J]. J Endourol,2000;14(7): 555-557
    [9]Al-Qahtani FN, Ali GA, Kamal BA, et al. Study of pelvicaliceal anatomy by helical computerized tomography. Is it feasible[J]? Saudi Med J, 2003:24(12):1337-1340
    [10]Lin WC, Wang JH, Wei CJ, et al. Assessment of CT urography in the diagnosis of urinary tract abnormalities[J]. J Chin Med Assoc,2004; 67(2):73-78
    [11]叶章群,邓耀良,董诚主编。泌尿系结石[M]。北京:人民卫生出版社,2003.31
    [12]Deveci S, Coskun M, Tekin MI, et al. Spiral computed tomography:role in determination of chemical compositions of pure and mixed urinary stones--an in vitro study[J]. Urology.2004;64(2):237-40
    [13]Sheir KZ, Mansour 0, Madbouly K, et al. Determination of the chemical composition of urinary calculi by noncontrast spiral computerized tomography [J]. Urol Res.2005;33 (2):99-104
    [14]Kambadakone AR, Eisner BH, Catalano OA, et al. New and evolving concepts in the imaging and management of urolithiasis:urologists' perspective[J]. Radiographics.2010;30(3):603-23
    [15]Diel J, Perlmutter S, Venkataramanan N, et al. Unenhanced helical CT using increased pitch for suspected renal colic:an effective technique for radiation dose reduction? J Comput Assist Tomogr[J].2000;24(5): 795-801
    [16]Poletti PA, Platon A, Rutschmann OT, et al. low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic[J]. AJR Am J Roentgenol.2007; 188 (4):927-933
    [17]Hamm M, Knopfle E, Wartenberg S, et al. Low dose unenhanced helical computerized tomography for the evaluation of acute flank pain[J]. J Urol. 2002:167(4):1687-1691
    [18]Tiselius HG, Ackermann D, Alken P, et al. Working Party on Lithiasis, European Association of Urology[J]. Eur Urol,2001;40(4):362-371
    [19]Preminger GM, Assimos DG, Lingeman JE, et al. Chapterl:AUA guidence on management of staghorn calculi:diagnosis and treatment recommendations[J]. J Urol,2005;173(6):1991-2000
    [20]Meretyk S, Gofrit on, Gafni O, et al. Complete staghorn calculi: random prospective comparison between extracorporeal shockwave lithotripsy monotherapy and combined with percutaneous nephrolithotomy[J].J Urol,1997;157 (3):780-786
    [21]李逊,曾国华,吴开俊,等。微创经皮肾穿刺造瘘术治疗上尿路疾病[J]。中华泌尿外科杂志,2004,25(3):169—171
    [22]Garcia Marchinena P, Billordo Peres N, Liyo J, et al. CT SCAN as a predictor of composition and fragility of urinary lithiasis treated with extracorporeal shock wave lithotripsy in vitro[J]. Arch Esp Urol.2009 Apr;62(3):215-22; discussion 222
    [23]Miller NL, Matlaga BR,Lingeman JE. Techniques for fluoroscopic percutaneous renal access[J]. J Urol,2007;178(1):15-23
    [24]Osman M, Wendt-Nordahl G, Heger K, et al. Percutaneous nephrolithotomy with ultrasonography-guided renal access:experience from over 300 cases[J]. BJU Int.2005:96(6):875-878
    [25]Munver R, Delvechio F, Newman G, et al. Critical analyses of supracostal access for percutaneous renal surgery[J]. J Urol,2001; 166(4):1242-1246
    [26]Matlaga BR, Shah OD, Zgoria RJ, et al. Computerized tomography guided access for percutaneous nephrolithotomy[J]. J Uro],2003;170(1):45-47
    [27]Thiruchelvam N, Mostafid H, Ubhayakar G, et al. Planning percutaneous nephrolithotomy using multidetector computer tomography urography, muliplanar reconstruction and three-dimensional reforming[J]. BJU Int, 2005;95(9):1280-1284
    [28]Hubert J, Blum A, Cormier L, et al. Three-dimensional CT-scan reconstruction of renaal calculi:A new tool for mapping-out staghorn calculi and follow-up of radiolucent stones[J]. Eur Urol,1997;31 (3): 297-301
    [29]Thanos L, Mylona S, Stroumpouli E, et al. Percutaneous CT-guided nephrostomy:a safe and quick alternative method in management of obstructive and nonobstructive uropathy[J]. J Endourol,2006; 20(7):486-490
    [30]Eqilmez H, Oztoprak I, Atalar M, et al. The place of computed tomogrphy as a guidence modality in percutaneous nephrostomy:analysis of a 10-year single-center experience[J]. Acta Radiol,2007;48(7):806-813
    [31]Pearle MS, Watamull LM, Mullican MA. Sensitivity of noncontrast helical computerized tomography and plain film radiography compared to flexible nephroscopy for detecting residual fragments after percutaneous nephrostolithotomy[J]. J Urol.1999 Jul;162(1):23-6
    [32]陈剑珩,申吉泓,张建华。CT引导建立经皮肾通道行微创经皮肾镜取石术[J]。昆明医学院学报,2006;(6):52-54
    [33]夏术阶,刘建河,何之彦,等。十六层CT泌尿系成像在微创经皮肾镜碎石术穿刺定位中的应用[J]。中华泌尿外科杂志,2007;28(1):19-22
    [34]李逊,孟祥军,曾国华,等。CT三维重建在经皮肾镜取石术中的应用价值[J]。中华泌尿外科杂志,2007;28(6):379-381
    [35]张鸽,孙利国,张杰,等。尿路造影及三维重建在微创经皮肾镜取石中 的应用[J]。南通大学学报(医学版),2008,28(5):349—350
    [36]孟祥军,米其武,王华,等。CT三维重建在经皮肾穿刺取石术中预防大出血的应用价值[J]。临床泌尿外科杂志,2007;22(3):187—189
    [37]蒋立城,王学庭,程玉峰,等。螺旋CT扫描在复杂肾结石经皮肾镜碎石术中的应用[J]。实用医药杂志,2007,24(10):1169-1172
    [38]蒋立城,王学庭,程玉峰,等。非同步俯卧位螺旋CT辅助定位在微创经皮肾镜取石中的应用[J]。中华泌尿外科杂志,2008,29(11):751
    [39]蒋立城,王学庭,程玉峰,等。螺旋CT辅助定位联合C型臂行微创经皮肾镜取石术[J]。临床泌尿外科杂志,2009,24(3):176-178
    [40]朱建国,高新。螺旋CT中肾盂肾盏形态与微创经皮肾镜术[J]。中国内镜杂志,2008;14(7):695—701
    [1]Abramson S, Walders N, Applegate KE, et al. Impact in the emergency department of unenhanced CT on diagnostic confidence and therapeutic efficacy in patients with suspected renal colic:a prospective survey. AJR 2000; 175 (6):1689-1695
    [2]Sheth S, Fishman EK. Multi-detector row CT of the kidneys and urinary tract:techniques and applications in the diagnosis of benign diseases. Radiographics.2004;24(2):e20.
    [3]Turkbey B, Akpinar E, Ozer C, et al. Multidetector CT technique and imaging findings of urinary stone disease:an expanded review. Diagn Interv Radiol.2010;16(2):134-44.
    [4]Matlaga BR, Shah OD, Zagoria RJ, et al. Computerized tomography guided access for percutaneous nephrostolithotomy J Urol.2003;170(1):45-47
    [5]Thiruchelvam N, Mostafid H, Ubhayakar G. Planning percutaneous nephrolithotomy using multidetector computed tomography urography, multiplanar reconstruction and three-dimensional reformatting. BJU Int. 2005;95(9):1280-1284
    [6]李逊,孟祥军,曾国华,等。CT三维重建在经皮肾镜取石术中的应用价值[J]。中华泌尿外科杂志,2007;28(6):379—381
    [7]Ghani KR, Patel U, Anson K. Computed tomography for percutaneous renal access. J Endourol,2009;23(10):1633-1639
    [8]Katz SI, Saluja S, Brink JA,et al. Radiation dose associated with unenhanced CT for suspected renal colic:impact of repetitive studies. AJR,2006; 186 (4):1120-1124
    [9]Diederich S, Lenzen H. Radiation exposure associated with imaging of the chest comparison of different radiographic and computed tomography techniques. Cancer,2000;89(11s):2457-2460
    [10]Kim BS, Hwang IK, Choi YW, et al. Low-dose and standard-dose unenhanced helical computed tomography for the assessment of acute renal colic:prospective comparative study. Acta Radiol,2005; 46 (7):756-763
    [11】Tamm EP, Silverman PM, Shuman WP. Evaluation of the patient with flank pain and possible ureteral calculus. Radiology,2003;228 (2):319-329
    [12]Meagher T, Sukumar VP, Collingwood J, et al. Low dose computed tomography in suspected acute renal colic. ClinRadiol,2001; 56 (11):873-876
    [13]Hamm M, Knopfle E, Wartenberg S, et al. Low dose unenhanced helical computerized tomography for the evaluation of acute flank pain. J Urol, 2002; 167 (4):1687-1691
    [14]Diel J, Perlmutter S, Venkataramanan N, et al. Unenhanced helical CT using increased pitch for suspected renal colic:an effective technique for radiation dose reduction? J Comput Assist Tomogr; 2000; 24(5):795-801
    [15]Poletti PA, Platon A, Rutschmann OT, et al. low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic. Am J Roentgenol.2007; 188 (4):927-933
    [1]Abramson S, Walders N, Applegate KE, et al. Impact in the emergency department of unenhanced CT on diagnostic confidence and therapeutic efficacy in patients with suspected renal colic:a prospective survey [J]. AJR 2000:175 (6):1689-1695
    [2]Sheth S, Fishman EK. Multi-detector row CT of the kidneys and urinary tract:techniques and appl ications in the diagnosis of benign diseases [J]. Radiographics.2004;24(2):e20.
    [3]Tunaci A, Yekeler E. Multidetector row CT of the kidneys [J]. Eur J Radiol.2004:52(1):56-66.
    [4]Kagadis GC, Siablis D, Liatsikos EN,et al. Virtual endoscopy of the urinary tract[J]. Asian J Androl.2006;8(1):31-38.
    [5]Tlirkbey B, Akpinar E, Ozer C, et al. Multidetector CT technique and imaging findings of urinary stone disease:an expanded review[J]. Diagn Interv Radiol.2010;16(2):134-44.
    [6]Matlaga BR, Shah OD, Zagoria RJ, et al. Computerized tomography guided access for percutaneous nephrostolithotomy [J]. JUrol.2003; 170(1):45-47
    [7]Thiruchelvam N, Mostafid H, Ubhayakar G. Planning percutaneous nephrolithotomy using multidetector computed tomography urography, multiplanar reconstruction and three-dimensional reformatting[J]. BJU Int.2005:95(9):1280-1284
    [8]李逊,孟祥军,曾国华,等。CT三维重建在经皮肾镜取石术中的应用价值[J]。中华泌尿外科杂志,2007;28(6):379—381
    [9]Ghani KR, Patel U, Anson K. Computed tomography for percutaneous renal access[J]. J Endourol,2009;23(10):1633-1639
    [10]Tamm EP, Silverman PM, Shuman WP. Evaluation of the patient with flank pain and possible ureteral calculus[J]. Radiology,2003:228 (2):319-329
    [11]Katz SI, Saluja S, Brink JA,et al. Radiation dose associated with unenhanced CT for suspected renal colic:impact of repetitive studies[J]. AJR,2006; 186 (4):1120-1124
    [12]Diederich S, Lenzen H. Radiation exposure associated with imaging of the chest comparison of different radiographic and computed tomography techniques[J]. Cancer,2000;89(11s):2457-2460
    [13]Kim BS, Hwang IK, Choi YW, et al. Low-dose and standard-dose unenhanced helical computed tomography for the assessment of acute renal colic:prospective comparative study [J]. Acta Radiol,2005;46(7):756-763
    [14]O'Connor OJ, Vandeleur M, McGarrigle AM, et al. Development of low-dose protocols for thin-section CT assessment of cystic fibrosis in pediatric patients[J]. Radiology.2010;257(3):820-829.
    [15]Meagher T, Sukumar VP, Collingwood J, et al. Low dose computed tomography in suspected acute renal colic[J]. Clin Radiol,2001; 56 (11):873-876
    [16]Hamm M, Knopfle E, Wartenberg S,et al. Low dose unenhanced helical computerized tomography for the evaluation of acute flank pain [J]. J Urol, 2002; 167 (4):1687-1691
    [17]Diel J, Perlmutter S, Venkataramanan N, et al. Unenhanced helical CT using increased pitch for suspected renal colic:an effective technique for radiation dose reduction[J]?J Comput Assist Tomogr;2000;24(5): 795-801
    [18]蒋立城,王学廷,程玉峰,等。非同步俯卧位螺旋CT辅助定位在微创经皮肾镜取石中的应用[J]。中华泌尿外科杂志,2008;29(11):751
    [19]International Electrotechnical Commission. Particular requirements for the safety of X-ray equipment for computed tomography:amendment f, 2002-09. Geneva, Switzerland:International Electrotechnical Commision, 2002. IEC 60601-2-44
    [20]Huda W, Bissessur K. Effective dose equivalents, HE, in diagnostic radiology[J]. Med Phys 1990;17:998-1003
    [21]Mettler FA, Wiest PW, Locken JA, et al. CT scanning patterns of use and dose[J]. J Radiol Prot,2000;20(4):353-359
    [22]Zhu X, Yu J, Huang Z. Low-dose chest CT:optimizing radiation protection for patients[J]. Am J Roentgenol,2004; 183 (3):809-816
    [23]Poletti PA, Platon A, Rutschmann OT, et al. low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic[J]. Am J Roentgenol.2007; 188 (4):927-933
    [24]Tack D, Sourtzis S, Delpierre I, et al. Low-dose unenhanced multidetector CT of patients with suspected renal colic[J]. AJR 2003; 180(2):305-311
    [25]Kluner C, Hein PA, Gralla 0, et al. Does ultra-low-dose CT with a radiation dose equivalent to that of KUB suffice to detect renal and ureteral calculi[J]? J Comput Assist Tomogr 2006;30(1):44-50
    [26]Poletti PA, Platon A, Rutschmann OT, et al. Abdominal plain film in patients admitted with clinical suspicion of renal colic:should it be replaced by low-dose computed tomography [J]? Urology,2006; 67(1):64-68
    [27]Teichman JM. Clinical practice:acute renal colic from ureteral calculus[J]. N Eng1 J 2004; 350 (7):684-693
    [28]Li X, He Z, Wu K, et al. Chinese Minimally Invasive Percutaneous Nephrolithotomy:The Guangzhou Experience[J]. J Endourol,2009;23(10): 1693-1697
    [29]Marguet CG, Springhart WP, Tan YH, et al. Simultaneous combined use of flexible ureteroscopy and percutaneous nephrolithotomy to reducethe number of access tracts in the management of complex renal calculi[J]. BJU Int,2005; 96(7):1097-1100
    [30]Hubert J, Blum A, Cormier L, et al. Three-dimensional CT-scan reconstruction of renaal calculi:A new tool for mapping-out staghorn calculi and follow-up of radiolucent stones [J]. Eur Urol,1997; 31 (3): 297-301
    [31]Eqilmez H, Oztoprak I, Atalar M, et al. The place of computed tomogrphy as a guidence modality in percutaneous nephrostomy:analysis of a 10-year single-center experience[J]. Acta Radiol,2007;48 (7):806-813
    [1]Smith RC, Rosenfield AT, Choe KA, et al. Acute flank pain:comparison of non-contrast-enhanced CT and intravenous urography[J]. Radiology. 1995; 194(3):789-794.
    [2]Thiruchelvam N, Mostafid H, Ubhayakar G. Planning percutaneous nephrolithotomy using multidetector computed tomography urography, multiplanar reconstruction and three-dimensional reformatting[J]. BJU Int.2005;95(9):1280-1284
    [3]李逊,孟祥军,曾国华,等。CT三维重建在经皮肾镜取石术中的应用价值[J]。中华泌尿外科杂志,2007;28(6):379~381
    [4]Patel U, Walkden RM, Ghani KR, et al. Three-dimensional CT pyelography for planning of percutaneous nephrostolithotomy:accuracy of stone measurement, stone depiction and pelvicalyceal reconstruction[J]. Eur Radiol.2009;19(5):1280-1288
    [5]Tamm EP, Silverman PM, Shuman WP. Evaluation of the patient with flank pain and possible ureteral calculus[J]. Radiology,2003;228 (2):319-329
    [6]Katz SI, Saluja S, Brink JA, et al. Radiation dose associated with unenhanced CT for suspected renal colic:impact of repetitive studies[J]. AJR,2006; 186 (4):1120-1124
    [7]Kim BS, Hwang IK, Choi YW, et al. Low-dose and standard-dose unenhanced helical computed tomography for the assessment of acute renal colic: prospective comparative study[J]. Acta Radiol,2005; 46 (7):756-763
    [8]Meagher T, Sukumar VP, Collingwood J, et al. Low dose computed tomography in suspected acute renal colic[J]. Clin Radiol,2001; 56 (11):873-876
    [9]Hamm M, Knopfle E, Wartenberg S, et al. Low dose unenhanced helical computerized tomography for the evaluation of acute flank pain [J]. J Urol, 2002;167(4):1687-1691
    [10]Diel J, Perlmutter S, Venkataramanan N, et al. Unenhanced helical CT using increased pitch for suspected renal colic:an effective technique for radiation dose reduction[J]? J Comput Assist Tomogr.2000;24 (5):795-801
    [11]蒋立城,王学廷,程玉峰,等。非同步俯卧位螺旋CT辅助定位在微创经皮肾镜取石中的应用[J]。中华泌尿外科杂志,2008;29(11):751
    [12]International Electrotechnical Commission. Particular requirements for the safety of X-ray equipment for computed tomography:amendment I, 2002-09. Geneva, Switzerland:International Electrotechnical Commision, 2002. IEC 60601-2-44
    [13]Huda W, Bissessur K. Effective dose equivalents, HE, in diagnostic radiology[J]. Med Phys 1990;17:998-1003
    [14]Osman M, Wendt-Nordahl G, Heger K, et al. Percutaneous nephrolithotomy with ultrasonography-guided renal access:experience from over 300 cases [J]. BJU Int.2005; 96 (6):875-878.
    [15]Miller NL, Matlaga BR, Lingeman JE. Techniques for fluoroscopic percutaneous renal access[J]. J Urol.2007;178(1):15-23.
    [16]Matlaga BR, Shah OD, Zagoria RJ, et al. Computerized tomography guided access for percutaneous nephrostolithotomy[J]. J Urol.2003 Jul;170(1):45-47
    [17]Kalogeropoulou C, Kallidonis P, Liatsikos EN. Imaging in percutaneous nephrolithotomy[J]. J Endourol.2009 Oct;23(10):1571-7. Review.
    [18]Ghani KR, Patel U, Anson K. Computed tomography for percutaneous renal access[J].J Endourol.2009;23(10):1633-1639
    [19]Mettler FA Jr, Wiest PW, Locken JA, et al. CT scanning:patterns of use and dose[J].J Radiol Prot.2000;20(4):353-359
    [20]Yoshinaga S, Mabuchi K, Sigurdson AJ,et al. Cancer risks among radiologists and radiologic technologists:review of epidemiologic studies[J]. Radiology.2004 233(2):313-321
    [21]Berrington de Gonzalez A, Darby S. Risk of cancer from diagnostic X-rays:estimates for the UK and 14 other countries[J]. Lancet. 2004:363(9406):345-451.
    [22]Poletti PA, Platon A, Rutschmann OT, et al. low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic[J]. Am J Roentgenol.2007; 188 (4):927-933
    [1]Li X, He Z, Wu K, et al. Chinese minimally invasive percutaneous nephrolithotomy:the Guangzhou experience[J]. J Endourol. 2009;23(10):1693-1697.
    [2]杨增悦,付强,保庭毅。多通道微创经皮肾镜结合钬激光治疗复杂性肾结石的临床研究[J]。中华腔镜泌尿外科杂志(电子版)[J],2010;4(1):36—39
    [3]李炯明,刘建和,陈戬,等。微通道经皮肾镜取石术治疗上尿路结石的疗效及安全性评价(附4533例报告)[J]。临床泌尿外科杂志,2011;26(3):174-176
    [4]Osman M, Wendt-Nordahl G, Heger K, et al. Percutaneous nephrolithotomy with ultrasonography-guided renal access:experience from over 300 cases[J]. BJU Int.2005:96(6):875-8.
    [5]Miller NL, Matlaga BR, Lingeman JE. Techniques for fluoroscopic percutaneous renal access[J]. J Urol.2007;178(1):15-23
    [6]李逊,孟祥军,曾国华,等。CT三维重建在经皮肾镜取石术中的应用价值[J]。中华泌尿外科杂志,2007;28(6):379—381
    [7]Basiri A, Ziaee AM, Kianian HR, et al. Ultrasonographic versus fluoroscopic access for percutaneous nephrolithotomy:a randomized clinical trial[J]. J Endourol.2008;22(2):281-284.
    [8]Agarwal M, Agrawal MS, Jaiswal A, et al. Safety and efficacy of ultrasonography as an adjunct to fluoroscopy for renal access in percutaneous nephrolithotomy (PC.NL) [J]. BJU Int.2011; 108(8):1346-1349
    [9]Kalogeropoulou C, Kallidonis P, Liatsikos EN. Imaging in percutaneous nephrolithotomy [J].J Endourol.2009 Oct; 23 (10):1571-1577
    [10]Kumar R, Anand A, Saxena V, et al. Safety and efficacy of PCNL for management of staghorn calculi in pediatric patients[J]. J Pediatr Urol. 2011;7(3):248-251
    [11]Xu Y, Wu Z, Yu J,et al. Doppler ultrasound-guided percutaneous nephrolithotomy with two-step tract dilation for management of complex renal stones[J]. Urology.2012 Jun;79(6):1247-1251
    [12]蒋立城,王学廷,程玉峰,等。非同步俯卧位螺旋CT辅助定位在微创经皮肾镜取石中的应用[J]。中华泌尿外科杂志,2008;29(11):751
    [13]International Electrotechnical Commission. Particular requirements for the safety of X-ray equipment for computed tomography:amendment I, 2002-09. Geneva, Switzerland:International Electrotechnical Commision, 2002. IEC 60601-2-44
    [14]Huda W, Bissessur K. Effective dose equivalents, HE, in diagnostic radiology. Med Phys 1990:17:998-1003
    [15]Ghani KR, Patel U, Anson K. Computed tomography for percutaneous renal access[J].J Endourol.2009;23(10):1633-1639
    [16]Gamal WM, Hussein M, Aldahshoury et al. Solo ultrasonography-guided percutanous nephrolithotomy for single stone pelvis[J]. J Endourol. 2011;25 (4):593-596
    [17]Thiruchelvam N, Mostaf id H, Ubhayakar G. Planning percutaneous nephro lithotomy using multidetector computed tomography urography, multiplanar reconstruction and three-dimensional reformatting[J]. BJU Int. 2005:95(9)-.1280-1284
    [18]Chalasani V, Bissoon D, Bhuvanagir et al. Should PCNL patients have a CT in the prone position preoperatively? [J]. Can J Urol. 2010;17(2):5082-5086
    [19]Goumas-Kartalas I, Montanari E. Percutaneous nephrolithotomy in patients with spinal deformities[J]. J Endourol.2010;24(7):1081-1089
    [1]叶章群,邓耀良,董诚主编。泌尿系结石[M]。北京:人民卫生出版社,2003.31
    [2]Kijvikai K, de la Rosette JJ. Assessment of stone composition in the management of urinary stones[J]. Nat Rev Urol.2011;8(2):81-85
    [3]Garcia Marchinena P, Billordo Peres N, Liyo J, et al. CT SCAN as a predictor of composition and fragility of urinary lithiasis treated with extracorporeal shock wave lithotripsy in vitro[J]. Arch Esp Urol. 2009;62(3):215-22
    [4]Kambadakone AR, Eisner BH, Catalano OA, et al. New and evolving concepts in the imaging and management of urolithiasis:urologists' perspective[J]. Radiographics.2010;30(3):603-23
    [5]Li Y, Chen Y, Zhang W. et al. Study of stone composition changes in melamine-related urinary calculi and its clinical significance[J]. Urology.2011;78 (2):417-420
    [6]马凤宁,何家扬。化学定性与红外光谱分析尿路结石成分[J]。现代泌尿外科杂志,2007;26(4):266
    [7]Manglaviti G, Tresoldi S, Guerrer CS, et al.In vivo evaluation of the chemical composition of urinary stones using dual-energy CT. AJR Am J Roentgenol[J].2011;197(1):W76-83
    [8]Ascenti G, Siragusa C, Racchiusa S, et al. Stone-targeted dual-energy CT:a new diagnostic approach to urinary calculosis[J], AJR Am J Roentgenol.2010;195(4):953-958.
    [9]Chevreau G, Troccaz J, Conort P, et al. Estimation of urinary stone composition by automated processing of CT images[J]. Urol Res. 2009:37(5):241-245.
    [10]Williams JC Jr, KimSC, Zarse CA, et al. Progress in the use of helical CT for imaging urinary calculi[J]. J Endourol.2004;18(10):937-41
    [11]Sheir KZ, Mansour O, Madbouly K, et al. Determination of the chemical composition of urinary calculi by noncontrast spiral computerized tomography[J]. Urol Res.2005:33(2):99-104
    [12]Tiscione D, Ruggera L, Beltrami P, et al. Using computed tomography to predict in vivo stone chemical composition [J]. Urologia.2009;76 (2): 107-111.
    [13]Deveci S, Coskun M, Tekin MI, et al. Spiral computed tomography:role in determination of chemical compositions of pure and mixed urinary stones--an in vitro study[J]. Urology.2004;64(2):237-40
    [14]Ferrandino MN, Pierre SA, Simmons WN, et al. Dual-energy computed tomography with advanced postimage acquisition data processing:improved determination of urinary stone composition[J]. J Endourol.2010;24(3): 347-54
    [15]Boll DT, Patil NA, Paulson EK, et al. Renal stone assessment with dual-energy multidetector CT and advanced postprocessing techniques: improved characterization of renal stone composition--pilot study [J]. Radiology.2009;250(3):813-20.
    [1]叶章群,邓耀良,董诚主编。泌尿系结石。北京:人民卫生出版社,2003.31
    [2]Kijvikai K, de la Rosette JJ. Assessment of stone composition in the management of urinary stones. Nat Rev Urol.2011;8(2):81-85
    [3]Li Y, Chen Y, Zhang W. et al. Study of stone composition changes in melamine-related urinary calculi and its clinical significance. Urology. 2011;78 (2):417-420
    [4]马凤宁,何家扬。化学定性与红外光谱分析尿路结石成分。现代泌尿外科杂志,2007;26(4):266
    [5]Manglaviti G, Tresoldi S, Guerrer CS,et al. In vivo evaluation of the chemical composition of urinary stones using dual-energy CT. AJR Am J Roentgenol.2011;197(1):W76-83
    [6]Ascenti G, Siragusa C, Racchiusa S, et al. Stone-targeted dual-energy CT:a new diagnostic approach to urinary calculosis. AJR Am J Roentgenol. 2010;195(4):953-958.
    [7]Chevreau G, Troccaz J, Conort P, et al. Estimation of urinary stone composition by automated processing of CT images. Urol Res. 2009:37(5):241-245.
    [8]叶章群,邓耀良,董诚主编。泌尿系结石。北京:人民卫生出版社,2003.207
    [9]Kuwahara M, Kageyama S, Kurosu S, et al. Computed tomography and composition of renal calculi. Urol Res.1984;12(2):111-113
    [10]Mostafavi MR, Ernst. RD, Saltzman B. Accurate determination of chemical composition of urinary calculi by spiral computerized tomography. J Urol.1998 Mar;159(3):673-675
    [11]Nakada SY, Hoff DG, Attai S, et al. Determination of stone composition by noncontrast spiral computed tomography in the clinical setting. Urology. 2000 Jun;55 (6):816-819
    [12]Tiscione D, Ruggera L, Beltrami P。et al. [Using computed tomography to predict in vivo stone chemical composition.] Urologia. 2009:76(2):107-111.
    [13]Sheir KZ, Mansour 0, Madbouly K, et al. Determination of the chemical composition of urinary calculi by noncontrast spiral computerized tomography. Urol Res.2005;33(2):99-104
    [14]Deveci S, Coskun M, Tekin MI, et al. Spiral computed tomography:role in determination of chemical compositions of pure and mixed urinary stones--an in vitro study. Urology.2004;64(2):237-40
    [15]Ascenti G, Siragusa C, Racchiusa S, et al. Stone-targeted dual-energy CT:a new diagnostic approach to urinary calculosis. AJR Am J Roentgenol. 2010;195(4):953-8
    [16]Boll DT, Patil NA, Paulson EK, et al. Renal stone assessment with dual-energy multidetector CT and advanced postprocessing techniques: improved characterization of renal stone composition--pilot study. Radiology.2009;250(3):813-20.
    [17]Grosjean R, Sauer B, Guerra RM, et al. Characterization of human renal stones with MDCT:advantage of dual energy and limitations due to respiratory motion. AJR Am J Roentgenol.2008;190(3):720-8.
    [18]Thomas C, Patschan 0, Ketelsen D, eta al. Dual-energy CT for the characterization of urinary calculi:In vitro and in vivo evaluation of a low-dose scanning protocol. Eur Radiol.2009;19 (6):1553-9
    [1]Mostafavi MR, Ernst RD, Saltzman B. Accurate determination of chemical composition of urinary calculi by spiral computerized tomography[J]. J Urol.1998;159(3):673-675
    [2]Nakada SY, Hoff DG, Attai S, et al. Determination of stone composition by noncontrast spiral computed tomography in the clinical setting[J]. Urology.2000;55(6):816-819
    [3]Williams JC Jr, Kim SC, Zarse CA, et al. Progress in the use of helical CT for imaging urinary calculi[J]. J Endourol.2004;18(10):937-941
    [4]Zarse CA, Hameed TA, Jackson ME, et al. CT visible internal stone structure, but not Hounsfield unit value, of calcium oxalate monohydrate (COM) calculi predicts lithotripsy fragility in vitro[J]. L'rol Res. 2007:35(4):201-206
    [5]Deveci S, Coskun M, Tekin MI, et al. Spiral computed tomography:role in determination of chemical composition of pure and mixed urinary stones-an in vitro study[J].J Urol,2004,64(2):237-340.
    [6]Saw K, Mcateer J, Fineberg N, et al. Calcium stone fragility is predicted by helical CT attenuation values[J].J Endourol,2000,14(6)471-474.
    [7]Pareek G, Armenakas NA,Fracchia JA. Hounsfield units on computerized tomography predict stone-free rates after extracorporeal shock wave lithotripsy[J]. J Urol.2003; 169 (5):1679-1681.
    [8]Joseph P, Mandal AK, Singh SK, et al. Computerized tomography attenuation value of renal calculus, can it predict successful fragmentation of the calculus by extracorporeal shock wave lithotripsy? A preliminary study[J]. J Urol.2002,167(5):1968-1971.
    [9]Tiscione D, Ruggera U, Beltrami P, et al. Using computed tomography to predict in vivo stone chemical composition[J]. Urologia. 2009:76(2):107-111.
    [10]el-Assmy A, Abou-el-Ghar ME, el-Nahas AR, et al. Multidetector computed tomography:role in determination of urinary stones composition and disintegration with extracorporeal shock wave.lithotripsy--an in vitro study[J]. Urology.2011;77(2):286-290
    [11]Garcia Marchinena P, Billordo Peres N, Liyo J, et al. CT SCAN as a predictor of composition and fragility of urinary lithiasis treated with extracorporeal shock wave.lithotripsy in vitro[J]. Arch Esp Urol. 2009:62(3):215-222
    [12]Thomas C, Heuschmid M, Schilling D, et al. Urinary calculi composed of uric acid, cystine, and mineral salts:differentiation with dual-energy CT at a radiation dose comparable to that of intravenous pyelography[J]. Radiology.2010;257(2):402-409
    [13]Ketelslegers E, Van Beers BE. Urinary calculi:improved detection and characterization with thin-slice multidetector CT[J]. Eur Radiol. 2006;16(1):161-165.
    [14]Stolzmann P, Scheffel H, Rentsch K, et al. Dual-energy computed tomography for the differentiation of uric acid stones:ex vivo performance evaluation[J]. Urol Res.2008:36(3-4):133-138
    [1]Tiselius HG, Ackermann D, Alken P, et al. Working Party on Lithiasis, European Association of Urology[J]. Eur Urol,2001;40(4):362-371
    [2]Preminger GM, Assimos DG, Lingeman JE,. et al. Chapterl:AUA guidence on management of staghorn calculi:diagnosis and treatment recommendations[J]. J Urol,2005; 173(6):1991-2000
    [3]Meretyk S, Gofrit on, Gafni 0, et al. Complete staghorn calculi:random prospective comparison between extracorporeal shockwave lithotripsy monotherapy and combined with percutaneous nephrolithotomy[J]. J Urol, 1997;157(3):780-786
    [4]李逊,曾国华,吴开俊,等。微创经皮肾穿刺造瘘术治疗上尿路疾病[J]。中华泌尿外科杂志,2004,25(3):169~171
    [5]Munver R, Delvechio F, Newman G, et al. Critical analyses of supracostal access for percutaneous renal surgery[J]. J Urol,2001; 166(4):1242-1246
    [6]Matlaga BR, Shah OD, Zgoria RJ, et al. Computerized tomography guided access for percutaneous nephrolithotomy[J]. J Urol,2003;170(1):45-47
    [7]Thiruchelvam N, MostafidH, Ubhayakar G, et al. Planning percutaneous nephrolithotomy using multidetector computer tomography urography, muliplanar reconstruction and three-dimensional reforming [J]. BJU Int, 2005:95(9):1280-1284
    [8]Miller NL, Matlaga BR, Lingeman JE. Techniques for fluoroscopic percutaneous renal access [J]. J Urol.2007; 178 (1):15-23.
    [9]Kukreja R, Desai M, Patel S, et al. Factors affecting blood loss during percutaneous nephrolithotomy:prospective study[J]. J Endourol. 2004;18(8):715-22.
    [10]Moskovitz B, Halachmi S, Sopov V, et al. Effect of percutaneous nephrol ithotripsy on renal function:assessment with quantitative SP ECT of (99m)Tc-DMSA renal scintigraphy[J]. J Endourol.2006;20(2):102-6.
    [11]Nouralizadeh A, Sichani MM, Kashi AH. Impacts of percutaneous nephrolithotomy on the estimated glomerular filtration rate during the first few days after surgery[J]. Urol Res.2011;39(2):129-33
    [12]Handa RK, Johnson CD, Connors BA, et al. Renal functional effects of simultaneous bilateral single-tract percutaneous access in pigs[J]. BJU Int.2010 Jan;105(1):125-8.
    [13]Handa RK, Evan AP, Willis LR,et al. Renal functional effects of multiple-tract percutaneous access[J]. J Endourol.2009;23(12):1951-6.
    [14]Daudon M, Traxer 0, Conort P, et al. Type 2 diabetes increases the risk for uric acid stones[J]. J Am Soc Nephrol.2006;17(7):2026-33.
    [15]Abate N, Chandalia M, Cabo-Chan AV Jr, et al. The metabolic syndrome and uric acid nephrollthiasis:novel features of renal manifestation of insulin resistance[J]. Kidney Int.2004;65(2):386-92.
    [16]Aghamir SM, Mojtahedzadeh M, Meysamie A, etal. Comparison of systemic stress responses between percutaneous nephrolithotomy (PCNL) and open nephrolithotomy[J]. J Endourol.2008;22(11):2495-500.
    [17]Shen P, Wei W, Yang X, et al. The influence of percutaneous nephrolithotomy on human response, SIRS and renal function [J]. Urol Res. 2010:38(5):403-8,
    [18]Shin TS, Cho HJ, Hong SH, et al.KComplications of Percutaneous Nephrolithotomy Classified by the Modified Clavien Grading System:A Single Center's Experience over 16 Years [J]. Korean J Urol.2011; 52 (11): 769-75
    [19]Berggard I, Beam AG. Isolation and properties of a low molecular wight P-globulin occurring in biological fluids[J]. J Biol Chem,1968;243:4095
    [20]Perlemoine C, Beauvieux MC, Rigalleau V, etal. Interest of cystatin C in screening diabetic patients for early impairment of renal function [J]. Metabolism.2003;52(10):1258-64
    [21]Xia LH, Bing XG, An XT. Serum cystatin C assay for the detection of early renal impairment in diabetic patients[J]. J Clin Lab Anal.2004; 18(1):31-5.
    [22]李玉艳,杨振坤。胱抑素C在临床中的应用进展[J]。国际检验医学杂志,2006;27(9):812-816
    [23]吕元,朱汉民,沈霞,等(译)。Thomas L. Clinical laboratory diagnostics use and assessment of clinical laboratory results[M].上海:上海科学技术出版社,2004.677-682
    [24]Li LY, Gao X, Yang M, et. al. Does a smaller tract in percutaneous nephrolithotomy contribute to less invasiveness? A prospective comparative study[J]. Urology.2010;75 (1):56-61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700