用户名: 密码: 验证码:
聚烯丙胺盐酸盐—葡聚糖微凝胶的制备、组装及复合
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Preparation, Assembly and Complexation of Poly(Allylamine Hydrochloride)-Dextran Microgel
  • 作者:王林
  • 论文级别:博士
  • 学科专业名称:高分子化学与物理
  • 学位年度:2008
  • 导师:孙俊奇
  • 学科代码:070305
  • 学位授予单位:吉林大学
  • 论文提交日期:2008-06-01
摘要
近年来,聚合物微凝胶在生物医学和药学特别是在药物传递控制释放领域有很高的潜在应用价值。因此聚合物微凝胶的制备、组装及复合受到了人们的普遍关注。
     本论文的工作主要包括四个方面:第一,聚烯丙胺盐酸盐-葡聚糖(PAH-D)微凝胶的制备与性质研究;第二,利用层状组装技术组装PAH-D微凝胶多层膜,并研究其装载和控制释放客体分子的能力;第三,研究PAH-D微凝胶在疏水材料表面的沉积能力,进而在0.3 mm的疏水的外科手术缝合线表面利用层状组装技术组装PAH-D微凝胶/透明质酸多层膜,并研究其装载和控制释放药物分子布洛芬的能力;第四,利用简单的方法先后将磁性Fe3O4和荧光量子点CdTe引入到PAH-D微凝胶中,制备磁光复合微凝胶,进而制备了拥有不同荧光颜色的磁光复合微凝胶和可多色荧光编码的磁光复合微凝胶,并研究了复合微凝胶在外加磁场控制下靶向释放客体分子的能力。这些工作都有望使PAH-D微凝胶在药物控制释放等方面有潜在的应用。
In the past decades, the synthesis, assembly and complexation of polymeric microgels have attracted much attention because of the potential applications of polymeric microgels in areas such as separation, biomimetics, coatings for controlled release, and so forth. In this dissertation, a novel PAH-D microgel was prepared by chemically cross-linking poly(allylamine hydrochloride) and dextran. The advantage of the present method to the synthesis of PAH-D microgels is :i) the synthesis was conducted in aqueous solution and no poison chemicals were used; ii) the synthesis was conducted at mild condition with a simple process for purification and a high yield of ~93.6%; iii) the PAH-D microgels contain abundance of amine groups for loading of functional materials. The as-prepared PAH-D microgels can undergo large swelling-deswelling transitions in response to changes in pH and ionic strength of the aqueous solution. The dry PAH-D microgels have an average size of ~258.6 nm, as revealed by scanning electron microscopy (SEM) measurement.
     In chapter 3, multilayer films containing PAH-D microgels were fabricated by layer-by-layer deposition of PAH-D and poly(styrene sulfonate) (PSS). The successful fabrication of PAH-D/PSS multilayer films was verified by quartz crystal microbalance measurements and cross-sectional scanning electron microscopy. The as-prepared PAH-D/PSS multilayer films can reversibly load and release negatively charged dyes such as methyl orange (MO) and fluorescein sodium and mercaptoacetic acid stabilized CdTe nanoparticles. The loading capacity of the film for MO can be as large as ~3.0μg/cm2 per bilayer, which corresponds to a MO density of 0.75 g/cm3 in the film. The high loading capacity of the PAH-D/PSS films originates from the cross-linked film structure with sufficient binding groups of protonated amine groups, as well as their high swelling capability by solvent. The loaded material can be released slowly when immersing the films in 0.9% normal saline. The microgel films of PAH-D/PSS are expected to be widely useful as matrixes for loading functional guest materials and even for controlled release.
     In chapter 4, multilayer films of PAH-D/Haluronic acid (HA) films were deposited on surgical sutures for sustainable release of ibuprofen. For layer-by-layer (LbL) assembled multilayer films, the modification of the substrate with charged groups is critically important but sometimes difficult, especially for hydrophobic and plastic substrates. We found that the PAH-D/PSS multilayer films could deposit directly on either hydrophilic or hydrophobic substrates such as quartz, polytetrafluoroethylene, polystyrene, poly(ethylene terephthalate), and polypropylene. By exploring the capability of PAH-D to deposit directly on hydrophilic and hydrophobic surfaces, we deposited PAH-D/HA multilayer films directly on the fibroin surgical sutures for loading and release of Ibuprofen. The fibroin surgical suture, with a diameter of ~0.3 mm, has a hydrophobic surface. SEM image and dye-adsorption experiments confirmed the successful deposition of PAH-D/HA multilayer films on the outer surface of fibroin surgical suture. The negatively charged Ibuprofen can be incorporated into the PAH-D/HA films based on electrostatic interaction as the driving force. Ibuprofen could be slowly released from the PAH-D/HA covered fibroin surgical sutures when the suture were immersed in 0.9% normal saline.
     In chapter 5, PAH-D microgels encapsulated with magnetic Fe3O4 and luminescent CdTe nanoparticles were successfully fabricated. The superparamagnetic Fe3O4 nanoparticles were firstly incorporated into PAH-D microgels by in situ synthesis of Fe3O4 nanoparticles in the presence of PAH-D microgels. CdTe nanocrystals with different emissions were then covalently attached to Fe3O4-funcionalized PAH-D microgels through the coupling reaction of amine groups of PAH-D and carboxyl groups of CdTe nanocrystals. The successful fabrication of PAH-D microgels functionalized with Fe3O4 and CdTe nanoparticles (Fe3O4&CdTe@PAH-D) was verified by the luminescence of the microgels and their simultaneous manipulation by an external magnetic field. Fe3O4&CdTe@ PAH-D microgels have the capability to load model drug of methyl orange and release it in a sustainable way because of free amine groups in the corresponding PAH-D microgels. The magnetic and luminescent PAH-D microgels with loading capacity are expected to be widely useful as carriers for magnetic separation and drug delivery followed by luminescent detection.
引文
[1] (a) Staudinger, H.; Huseman, E.; “The restrictedly swellable polystyrene”, Chem Ber, 1935, 68, 1618; (b) Schulze W A, Crouch W W. “Solution Viscosity of GR-S. Variation with conversion. Ind Eng Chem. 1948, 40, 151-154.
    [2] Baker W O. Microgel, a new macromolecule. Relation to sol and gel as structural elements of synthetic rubber, Ind Eng Chem, 1949, 41, 511-520
    [3] Zhang G Q, Zha L S, Zhou M H, “Rapid deswelling of sodium alginate/poly(N-isopropylacrylamide) semi-interpenetrating polymer network hydrogels in response to temperature and pH changes”, J Colloid Polym Sci,2005,28 (3) :431-438.
    [4] Agbugba, C. B.; Hcndriksen, B. A.; Chowdhry, B. Z.; Snowden, M. J., “The redispersibility and physico-chemical properties of freeze-dried colloidal microgels ”, Colloids and Surfaces A-Physicochemical and Engineering Aspects, 1998,137:155-164
    [5] Dong L C. Hofman A S , “Intelligent hydrogels for controlled release and immobili-zation of biomolecules” J Controlled Release,1990, 3 21-26
    [6] Park T G. Hofman A S.“Immobilization and Caracterization of β-Galactosidase in thermally reversible hydrogel beads” J Biotech Sioeng, 1990, 24, 21-27
    [7] Freitas R F S ,Cussler E L ,J Separation Sci Technol,1987,22:911-917
    [8] Kishi R ,Ichuo H ,Hirasa O ,J Intelligent Material Systems and Structure,1993,4, 533-539
    [9] J. Miller, K. Sch?etzel, B. Vincent, “The determination of very small electrophoretic mobilities in polar and nonpolar colloidal dispersions using phase analysis light scattering”, J. Colloid Interf. Sci. 1991 143 532-554;
    [10] D. M. Oele Kiminta, P. F. Luckham, S. lenon, “The Rheology of Deformable and Thermoresponsive Microgel Particles” Polymer 1995 36 (25) 4827-4831
    [11] J. Zhang, R. Pelton,“Poly(N-isopropylacrylamide) at the Air/Water Interface”, Langmuir 1996, 12, 2611-2612
    [12] 徐国财,张立德,《纳米复合材料》,北京:化学工业出版社,2003, 158-163
    [13] Liu, Y. Y.; Fan, X. D.; Kang, T.; Sun, L., “A Cyclodextrin Microgel for Controlled Release Driven by Inclusion Effects” Macromol. Rapid Commun. 2004, 25, 1912–1916
    [14] Zhang, H.; Mardyani, S.; Chan, W. C. W.; Kumacheva, E., “Design of Biocompatible Chitosan Microgels for Targeted pH-Mediated Intracellular Release of Cancer Therapeutics” Biomacromolecules 2006, 7, 1568-1572
    [15] Dupin, D.; Fujii, S.; Armes, S., “Efficient Synthesis of Sterically Stabilized pH-Responsive Microgels of Controllable Particle Diameter by Emulsion Polymerization” Langmuir 2006, 22, 3381-3387
    [16] Suzuki, D.; Kawaguchi, H., “Hybrid Microgels with Reversibly Changeable Multiple Brilliant Color” Langmuir 2006, 22, 3818-3822
    [17] Kratz, K. Hellweg, T. Eimer, W., “Structrural changes in PNIPAM microgels as seen by SANS, DLS, and EM techniques” Polymer, 2001, 42: 6631-6639.
    [18] Gao, J.; Hu, Z. B., “Optical Properties of N-Isopropylacrylamide Microgel Spheres in Water” Langmuir 2002, 18, 1360-1367
    [19] Holtz, J. H. Asher, S, A., “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials” Nature, 1997, 389: 829-832.
    [20] Beebe, D. J. Moore, J. S. Bauer, J. M., “Functional hydrogel structures for autonomous flow control inside microfluidic channels” Nature, 2000, 404: 588-590.
    [21] Bergbreiter, D. E. Case, B. L. Liu, Y. S., “Poly(N-isopropylacrylamide) Soluble Polymer Supports in Catalysis and Synthesis”, Macromolecules, 1998, 31: 6053-6062.
    [22] Makino, K. Hiyoshi, J. Ohshima, H., “Effects of thermosensitivity of poly (N-isopropylacrylamide) hydrogel upon the duration of a lag phase at the beginning of drug release from the hydrogel”, Colloids Surf, B: 2001, 20:341-346.
    [23] (a) Uhrich, K. E.; Cannizzaro, S. M.; Langer, R. S.; Shakesheff, K. M. “Polymeric systems for controlled release”, Chem. Rev. 1999, 99, 3181-3198. (b) Kost, J.; Langer, R. “Responsive polymeric delivery systems” [J] Adv. Drug DeliVery ReV. 2001, 46, 125-148.
    [24] Hobbs, S. K.; Monsky, W. L.; Yuan, F.; Roberts, W. G.; Griffith, L.; Torchilin, V. P.; Jain, R. K. “Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment” Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 4607-4612.
    [25] (a) Houshmand, P.; Zlotnik, A. “Targeting tumor cells”, Curr. Opin. Cell Biol. 2003, 15, 640-644. (b) Oishi, M.; Nagatsugi, F.; Sasaki, S.; Nagasaki, Y.;Kataoka, K. “Smart Polyion Complex Micelles for Targeted Intracellular Delivery of PEGylated Antisense Oligonucleotides Containing Acid-Labile Linkages”, ChemBioChem 2005, 6, 718-725.
    [26] (a) Murthy, N.; Xu, M.; Schuck, S.; Kunisawa, J.; Shastri, N.; Frechet, J. M. “A new macromolecular delivery vehicle for protein-based vaccines: acid degradable protein loaded microgels”, J. Proc. Natnl. Acad. Sci. 2003, 100, 4995-5000. (b) Kohane, D. S.; Anderson, D. G.; Yu, C.; Langer, R. “pH-triggered release of macromolecules from spray-dried polymethacrylate microparticles”, Pharm. Res. 2003, 20, 1533-1538. (c) Cai, T.; Hu, Z. B.; Ponder, B.; St. John, J.; Moro, D. “Synthesis and study of and controlled release from nanoparticles and their networks based on functionalized hydroxypropylcellulose”, Macromolecules 2003, 36, 6559-6564. (d) Soppimath, K. S.; Tan, D. C. W.; Yang, Y. Y. “pH-Triggered Thermally Responsive Polymer Core-Shell Nanoparticles for Drug Delivery”, Adv. Mater. 2005, 17, 318-323. (e) Nayak, S.; Lee, H.; Chmielewski, J.; Lyon, L. A. “Folate-Mediated Cell Targeting and Cytotoxicity Using Thermoresponsive Microgels”, J. Am. Chem. Soc. 2004, 126, 10258-10259.
    [27] Pillai, O.; Panchagnula, R. “Polymers in drug delivery [J]”, Curr. Opin. Chem. Biol. 2001, 5(4), 447- 451.
    [28] Na, K.; Lee, K. H.; Bae, Y. H., “pH-sensitivity and pH-dependent interior structural change of self-assembled hydrogel nanoparticles of pullulan acetate/oligo-sulfonamide conjugate”, Journal of Controlled Release 2004, 97, 513-525.
    [29] K. B. Blodgett, I. Langmuir, “Built-Up Films of Barium Stearate and Their Optical Properties”, Phys. Rev., 1937, 51, 964.
    [30] L. Netzer, J. Sagiv, “A New Approach to Construction of Artificial Monolayer Assemblies [J]”, J Am Chem Soc., 1983, 105, 674.
    [31] G. Decher, J. D. Hong, “Buildup of ultrathin multilayer films by a self-assembly process. I.Consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces”, Makromol Chem, Macromol Symp., 1991, 46, 321.
    [32] Iler R , “Multilayers of colloidal particles[J]”, J. Colloid Interface Sci., 1966, 21, 569.
    [33] G. Decher, “Fuzzy nanoassemblies:toward layer-ed polymeric multicomposites”, Science 1997, 277, 1232.
    [34] (a) I. Ichinose, H. Senzu, T. Kunitake, “Stepwise adsorption of metal alkoxides on hydrolyzed surfaces: A surface sol-gel process”, Chem. Lett. 1996, 10, 831. (b) I. Ichinose, J. He, S. Fujikawa, M. Hashizume, J. Huang, T. Kunitake, “Ultrathin composite films: An indispensable resource for nanotechnology”, RIKEN Review 2001, 37, 34-37
    [35] (a)S. S. Lee, J. D. Hong, C. H. Kim, K. Kim, J. P. Koo, K.-B. Lee, “Layer-by-layer deposited multilayer assemblies of ionene-type polyelectrolytes based on the spin-coating method”, Macromolecules 2001, 34, 5358-5360. (b) Jinhan Cho, Kookheon Char, Jong-Dal Hong, Ki-Bong Lee, “Fabrication of Highly Ordered Multilayer Films Using a Spin Self-Assembly Method”, Adv. Mater. 2001, 13, 1076-1078.
    [36] Shoko Sugiyama Ono, G. Decher, “Preparation of Ultrathin Self-Standing Polyelectrolyte Multilayer Membranes at Physiological Conditions Using pH-Responsive Film Segments as Sacrificial Layers”, Nano Lett. 2006, 6, 592-598.
    [37] Qifeng Wang, Ling Zhong, Junqi Sun, Jiacong Shen, “A Facile Layer-by-Layer Adsorption and Reaction Method to the Preparation of Titanium Phosphate Ultrathin Films”, Chem. Mater. 2005, 17, 3563-3569.
    [38] (a) X. Arys, A. M. Jonas, A. Laschewsky, R. Legras, “Supramolecular Polyelectrolyte Assemblies”, Supramolecular Polymers, A. Ciferri, Ed., Marcel Dekker, New York 2000, p. 505-564. (b) J. F. Joanny, “Polyelectrolyte adsorption and charge inversion”, Eur. Phys. J. B., 1999, 9, 117-122.
    [39] (a) X. Zhang, Y. P. Sun, M. L. Gao, X. X. Kong, J. C. Shen, “Effects of pH on the supramolecular structure of polymeric molecular deposition films”, Macromol. Chem. Phys., 1996, 197, 509-515. (b) G. S. Ferguson, E. R. Kleinfeld, “ Mosaic tiling in molecular dimensions”, Adv. Mater., 1995, 7, 414-416. (c) J. Schmitt, G. Decher, W. J. Dressick, S. L. Brandow, R. E. Geer, R. Shashidhar, J. M. Calvert, “Metal nanoparticle/polymer superlattice films: Fabrication and control of layer structure”, Adv. Mater., 1997, 9, 61-65.
    [40] D. Laurent, J. B. Schlenoff, “Multilayer Assemblies of Redox Polyelectrolytes”, Langmuir, 1997, 13, 1552-1557.
    [41] J. Sagiv, “Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces”, J. Am. Chem. Soc., 1980, 102, 92-98.
    [42] (a) J. B. Schlenoff, M. Li, “Kinetics and multilayering in the adsorption of polyelectrolytes to a changed surface”, Ber. Bunsenges. Phys. Chem., 1996, 100, 943-947. (b) G. B. Sukhorukov, J. Schmitt, G. Decher, Ber. Bunsenges. “Reversible swelling of polyanion/polycation multilayer films in solutions of different ionic strength”, Phys. Chem., 1996, 100, 948-953.
    [43] J. Q. Sun, Z. Q. Wang, Y. P. Sun, X. Zhang, J. C. Shen, “Covalently attached multilayer assemblies of diazo-resins and porphyrins”, Chem. Commun., 1999, 693-694.
    [44] N. G. Hoogeveen, M. A. C. Stuart, G. J. Fleer, M. R. Boehmer,“Formation and Stability of Multilayers of Polyelectrolytes”, Langmuir, 1996, 12, 3675-3681.
    [45] M. Loesche, J. Schmitt, G. Decher, W. G. Bouwman, K. Kjaer,“ Detailed Structure of Molecularly Thin Polyelectrolyte Multilayer Films on Solid Substrates as Revealed by Neutron Reflectometry”, Macromolecules, 1998, 31, 8893-8906.
    [46] 吴涛,张希. 《自组装超薄膜:从纳米层状构筑到功能组装》, 高等学校化学学报,2001, 22, 1057-1065.
    [47] (a) Hiller, J.; Mendelsohn, J. D.; Rubner, M. F. “Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers”, Nat. Mater. 2002, 1, 59-63. (b) Wang, T. C.; Cohen, R. E.; Rubner, M. F.“Metallodielectric Photonic Structures Based on Polyelectrolyte Multilayers”, Adv. Mater. 2002, 14, 1534-1537. (c) Rouse, J. H.; Ferguson, G. S. “Preparation of Thin Silica Films with Controlled Thickness and Tunable Refractive Index”, J. Am. Chem. Soc. 2003, 125, 15529-15536. (d) Cho, J.; Hong, J.; Char, K.; Caruso, F. “Nanoporous Block Copolymer Micelle/Micelle Multilayer Films with Dual Optical Properties”, J. Am. Chem. Soc. 2006, 128, 9935-9942.
    [48] Sun, Y. P.; Zhang, X.; Sun, C. Q.; Wang, B.; Shen, J. C. “Fabrication of ultrathin film containing bi-enzyme of glucose oxidase and gluoamylase based on electrostatric interaction and its potential application as a maltose sensor” Macromol. Chem. Phys. 1996, 197, 147-153. (b) Lvov, Y.; Caruso, F. “Biocolloids with Ordered Urease Multilayer Shells as Enzymatic Reactors”, Anal. Chem. 2001, 73, 4212-4217.(c) Wang, Y.; Joshi, P. P.; Hobbs, K. L.;Johnson, M. B.; Schmidtke, D. W. “Nanostructured Biosensors Built by Layer-by-Layer Electrostatic Assembly of Enzyme-Coated Single-Walled Carbon Nanotubes and Redox Polymers”, Langmuir 2006, 22, 9776-9783. (d) Calvo, E. J.; Danilowicz, C.; Wolosiuk, A. “Molecular "Wiring" Enzymes in Organized Nanostructures”, J. Am. Chem. Soc. 2002, 124, 2452.
    [49] (a) Lvov, Y.; Yamada, S.; Kunitake, T. “Non-linear optical effects in layer-by-layer alternate films of polycations and an azobenzene-containing polyanion”, Thin Solid Films 1997, 300, 107-112. (b) Kang, E. H.; Jin, P. C.; Yang, Y. Q.; Sun, J. Q.; Shen, J. C.“A facile room temperature layer-by-layer deposition process for the fabrication of ultrathin films with noncentrosymmetrically oriented azobenzene chromophoresElectronic supplementary information (ESI) available: Fabrication of (PAC-azoBNS/PDDA)*n films, characterization of the films, cross-sectional SEM image of ZrO2/PAC-azoBNS/PDDA film, UV-vis absorption spectra of PAC-azoBNS/PDDA films, and SHG measurements” Chem. Commun. 2006, 4332-4334. (c) Jiang, L.; Lu, F.; Chang, Q.; Liu, Y.; Liu, H.; Li, Y.; Xu, W.; Cui, G.; Zhuang, J.; Li, X.; Wang, S.; Song, Y.; Zhu, D.“Fabrication of Ultrathin Films with Large Third-Order Nonlinear Optical Properties”, Chem. Phys. Chem. 2005, 6, 481-486. (d) Van Cott, K. E.; Guzy, M.; Neyman, P.; Brands, C.; Heflin, J. R.; Gibson, H. W.; Davis, R. M.“Layer-by-Layer Deposition and Ordering of Low Molecular Weight Dye Molecules for Second Order Nonlinear Optics” Angew. Chem., Int. Ed. 2002, 41, 3236-3238. (e) Balasubramanian, S.; Wang, X. G.; Wang, H. C.; Yang, K.; Kumar, J.; Tripathy, S. K.; Li, L. “Azo Chromophore-Functionalized Polyelectrolytes. 2. Acentric Self-Assembly through a Layer-by-Layer Deposition Process” Chem. Mater. 1998, 10, 1554-1560. (f) Fischer, P.; Koetse, M.; Laschewsky, A.; Wischerhoff, E.; Jullien, L.; Persoons, A.; Verbiest, T. “Orientation of Nonlinear Optical Active Dyes in Electrostatically Self-Assembled Polymer Films Containing Cyclodextrins” Macromolecules 2000, 33, 9471-9473.
    [50] Lowman, G. M.; Tokuhisa, H.; Lutkenhaus, J. L.; Hammond, P. T. “Novel Solid-State Polymer Electrolyte Consisting of a Porous Layer-by-Layer Polyelectrolyte Thin Film and Oligoethylene Glycol” Langmuir 2004, 20, 9791-9795.
    [51] (a) Guldi, D. M.; Zilbermann, I.; Anderson, G.; Kotov, N. A.; Tagmatarchise, N.; Prato, M. “Nanosized inorganic/organic composites for solar energy conversion” J. Mater. Chem. 2005, 15, 114. (b) Guldi, D. M.; Rahman, G. M. A.; Prato, M.; Jux, N.; Qin, S.; Ford, W. “Single-Wall Carbon Nanotubes as Integrative Building Blocks for Solar-Energy Conversion” Angew. Chem., Int. Ed. 2005, 44, 2015-2018.
    [52] (a) Levasalmi, J.-M.; McCarthy, T. J. “Poly(4-methyl-1-pentene)-Supported Polyelectrolyte Multilayer Films: Preparation and Gas Permeability1” Macromolecules 1997, 30, 1752-1757. (b) Krasemann, L.; Tieke, B. “Ultrathin self-assembled polyelectrolyte. membranes for pervaporation” J. Membr. Sci. 1998, 150, 23-30. (c) Bruening, M. L.; Sullivan, D. M. “Enhancing the ion-transport selectivity of multilayer polyelectro- lyte membranes” Chem. Eur. J. 2002, 8, 3833-3837. (d) Park, M.-K.; Deng, S.; Advincula, R. C. “pH-Sensitive Bipolar Ion-Permselective Ultrathin Films” J. Am. Chem. Soc. 2004, 126, 13723-13731. (e) Ball, V.; Voegel, J.-C.; Schaaf, P. “Effect of Thiocyanate Counterion Condensation on Poly(allylamine hydrochloride) Chains on the Buildup and Permeability of Polystyrenesulfonate/Polyallylamine Polyelectrolyte Multilayers” ?Langmuir 2005, 21, 4129-4137. (f) Kang, E. H.; Liu, X. K.; Sun, J. Q.; Shen, J. C. “Robust Ion-Permselective Multilayer Films Prepared by Photolysis of Polyelectrolyte Multilayers Containing Photo-Cross-Linkable and Photolabile Groups” Langmuir 2006, 22, 7894-7901.
    [53] Lynn, D. M. “Layers of opportunity: nanostructured polymer assemblies for the delivery of macromolecular therapeutics” Soft Matter 2006, 2, 269.,
    [54] Jewell, C. M.; Zhang, J.; Fredin, N. J.; Wolff, M. R.; Hacker, T. A.; Lynn , D. M. “Release of Plasmid DNA from Intravascular Stents Coated with Ultrathin Multilayered Polyelectrolyte Films” Biomacromolecules 2006, 7, 2483-2491.
    [55] (a) Wood, K. C.; Boedicker, J. Q.; Lynn, D. M.; Hammond, P. T. “Tunable Drug Release from Hydrolytically Degradable Layer-by-Layer Thin Films” Langmuir 2005, 21, 1603-1609. (b) Zelikin, A. N.; Li, Q.; Caruso, F. “Degradable Polyelectrolyte Capsules Filled with Oligonucleotide Sequences” Angew. Chem., Int. Ed. 2006, 45, 7743-7745. (c) Ren, K. F.; Ji, J.; Shen, J. C. “Tunable DNA Release from Cross-Linked Ultrathin DNA/PLL Multilayered Films” Bioconjugate Chem. 2006, 17, 77-83. (d) Recksiedler, C. L.; Deore, B. A.; Freund, M. S.“A Novel Layer-by-Layer Approach for the Fabrication of Conducting Polymer/RNA Multilayer Films for Controlled Release” Langmuir 2006, 22, 2811-2815. (e) Thierry, B.; Kujawa, P.; Tkaczyk, C.; Winnik, F. M.; Bilodeau, L.; Tabrizian, M. “Delivery Platform for Hydrophobic Drugs: Prodrug Approach Combined with Self-Assembled Multilayers” J. Am. Chem. Soc. 2005, 127, 1626-1627. (f) Niu, J.; Shi, F.; Liu, Z.; Wang, Z. Q.; Zhang, X. “Reversible Disulfide Cross-Linking in Layer-by-Layer Films: Preassembly Enhanced Loading and pH/Reductant Dually Controllable Release” Langmuir 2007, 23, 6377-6384.
    [56] (a) Chung, A. J.; Rubner, M. F. “Methods of Loading and Releasing Low Molecular Weight Cationic Molecules in Weak Polyelectrolyte Multilayer Films” Langmuir 2002, 18, 1176-1183. (b) Sato, K.; Suzuki, I.; Anzai, J. “Preparation of Polyelectrolyte-Layered Assemblies Containing Cyclodextrin and Their Binding Properties” Langmuir 2003, 19, 7406-7412. (c) Quinn, J. F.; Caruso, F. “Facile Tailoring of Film Morphology and Release Properties Using Layer-by-Layer Assembly of Thermoresponsive Materials” Langmuir 2004, 20, 20-22. (d) Burke, S. E.; Barrett, C. J. “pH-Dependent Loading and Release Behavior of Small Hydrophilic Molecules in Weak Polyelectrolyte Multilayer Films” Macromolecules 2004, 37, 5375-5384. (e) Berg, M. C.; Zhai, L.; Cohen, R. E.; Rubner, M. F. “Controlled Drug Release from Porous Polyelectrolyte Multilayers” Biomacromolecules 2006, 7, 357-364. (f) Guyomard, A.; Nysten, B.; Muller, G.; Glinel, K. “Loading and Release of Small Hydrophobic Molecules in Multilayer Films Based on Amphiphilic Polysaccharides” Langmuir 2006, 22, 2281-2287. (g) Jiang, S. G.; Chen, X. D.; Liu, M. H. “The pH stimulated reversible loading and release of a cationic dye in a layer-by-layer assembled DNA/PAH film” J. Colloid Interface Sci. 2004, 277, 396-403.
    [57] Srivastava, S.; Ball, V.; Podsiadlo, P.; Lee, J.; Ho, P.; Kotov, N. A., “Exponentially” Growing Polyelectrolyte LBL Films”, J. AM. CHEM. SOC. 2008, 130, 3748-3749
    [58] Nolan, C. M.; Serpe, M. J.; Lyon, L. A, “Thermally Modulated Insulin Release from Microgel Thin Films”, Biomacromolecules, 2004, 5, 1940-1946
    [59] Serpe, M. J.; Yarmey, K. A.; Nolan, C. M. Lyon, L. A, “Doxorubicin Uptake and Release from Microgel Thin Films”, Biomacromolecules 2005, 6, 408-413
    [60] Kirschvink J L, Gould J L: “Biogenic magnetite as a basis for. magnetic field sensitivity in animals”. Biosystems 1981, 13, 181-201
    [61] Bean C. P., J. Appl. Phys. 1959, 30, 120
    [62] Jun, Y. W.; Seo, J. W.; Cheon, J., “Nanoscaling Laws of Magnetic Nanoparticles and Their Applicabilities in Biomedical Sciences” Accounts of Chemical Research, 2008, 41. 179-189
    [63] Suginmoto T., Matijevic E., “Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels” J. Colloid Interface Sci. 1980, 74, 227-243.
    [64] Shengchun Qu, Haibin Yang, Dawei Ren, Shihai Kan, Guangtian Zou, Dongmei Li, Minghui Li “Magnetite Nanoparticles Prepared by Precipitation from Partially Reduced Ferric Chloride Aqueous Solutions” J. Colloid Interface Sci. 1999, 215, 190-192.
    [65] (a) Kang, Y. S.; Risbud, S.; Rabolt, J. F.; Stroeve, P., “Synthesis and Characterization of Nanometer-Size Fe3O4 and γ-Fe2O3 Particles” Chem. Mater. 1996, 8, 2209-2211.(b) Lionel Vayssières, Corinne Chanéac, Elisabeth Tronc, Jean Pierre Jolivet, “Size Tailoring of Magnetite Particles Formed by Aqueous Precipitation: An Example of Thermodynamic Stability of Nanometric Oxide Particles” J. Colloid Interface Sci. 1998, 205, 205-212.(c) Lucia Babes, Beno?t Denizot, Gisèle Tanguy, Jean Jacques Le Jeune, Pierre Jallet, “Synthesis of Iron Oxide Nanoparticles Used as MRI Contrast Agents: A Parametric Study” J. Colloid Interface Sci. 1999, 212, 474-482.(d) Sahoo, Y.; Pizem, H.; Fried, T.; Golodnitsky, D.; Burstein, L.; Sukenik, C. N.; Markovich, G., “Alkyl Phosphonate/Phosphate Coating on Magnetite Nanoparticles: A Comparison with Fatty Acids” Langmuir 2001, 17, 7907-7911.(e) Kim, D. K.; Mikhaylova, M.; Zhang, Y.; Muhammed, M., “Protective Coating of Superparamagnetic Iron Oxide Nanoparticles” Chem. Mater. 2003, 15(8), 1617.
    [66] (a) Weissleder, R.; Bogdanov, A.; Neuwelt, E. A.; Papisov, M. “Long-circulating iron oxides for MR imaging” Adv. Drug Delivery Rev. 1995, 16, 321-334. (b) Sukhorukv, G. B.; Rogach, A. L.; Garstka, M.; Springer, S.; Park, W. J.; Mu?oz-Javier, A.; Kreft, O.; Skirtach, A. G.; Susha, A. S.; Ramaye, Y.; Palankar, R.; Winterhalter, M. “Multifunctionalized Polymer Microcapsules: Novel Tools for Biological and Pharmacological Applications” Small 2007, 3, 944-955.
    [67] Widder, K. J.; Senyei, A. E.; Ranny, D. F. “In vitro release of biologically active adriamycin by magnetically responsive albumin microspheres” Cancer. Res. 1980, 40, 3512-3517.
    [68] Hu, F.; Wei, L.; Zhou, Z.; Ran, Y. L.; Li, Z.; Gao, M. Y. “Preparation of Biocompatible Magnetite Nanocrystals for In Vivo Magnetic Resonance Detection of Cancer” Adv. Mater. 2006, 18, 2553–2556.
    [69] (a) Molday, R.; Yen, S.; Rembaum, A. “Application of magnetic microspheres in labeling and separation of cells” Nature 1977, 268, 437; (b) Molday, R.; Molday, L. “Separation of cells labeled with immunospecific iron dextran mocrospheres using gradient magnetic chromatography” FEBS Lett. 1984, 170, 232-238; (e) Miltenyi, S.; Müller, W.; Weichel, W.; Radbruch, A. “High gradient magnetic cell separation with MACS” Cytometry 1990, 11, 231-238; (f) Lee, S. M.; Wroble, M. H.; Ross, J. T. Appl. Biochemand Biotech. 1989, 22, 1; (b) Xu, C.; Xu, K.; Gu, H.; Zheng, R.; Liu, H.; Zhang, X.; Guo, Z.; Xu, B.“Dopamine as A Robust Anchor to Immobilize Functional Molecules on the Iron Oxide Shell of Magnetic Nanoparticles” J. Am. Chem. Soc. 2004, 126, 9938-9939.
    [70] Sonvico, F.; Mornet, S.; Vasseur, S.; Dubernet, C.; Jaillard, D.; Degrouard, J.; Hoebeke, J.; Duguet, E.; Colombo, P.; Couvreur, P. “Folate-Conjugated Iron Oxide Nanoparticles for Solid Tumor Targeting as Potential Specific Magnetic Hyperthermia Mediators: Synthesis, Physicochemical Characterization, and in Vitro Experiments” Bioconjug. Chem. 2005, 16, 1181-1188
    [71] (a)Alivisatos, A. P. “Semiconductor clusters, nanocrystals, and quantum dots” Science 1996, 271, 933-937. (b)Klimov, V. L; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H. J.; Bawendi, M. G. “Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots” Science 2000, 290, 314-317.(c) Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. “Shape control of CdSe nanocrystals” Nature 2000, 404, 59.(d) Battaglia, D.; Peng, X. G. “Formation of High Quality InP and InAs Nanocrystals in a Noncoordinating Solvent” Nano. Lett. 2002, 2, 1027-1030.(e) Cao, Y. W.; Banin, U. “Growth and Properties of Semiconductor Core/Shell Nanocrystals with InAs Cores” J. Am. Chem. Soc. 2000, 122, 9692.
    [72] (a) Bruchez, M.; Moronne, M.; Gin, P.; Weiss, A.; Alivisatos, A. P. “Semiconductor nanocrystals as fluorescent biological labels” Science 1998, 281, 2013-2016. (b) Chan, W. C. W.; Nie, S. Science 1998, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection” 281, 2016-2018. (c) Parak, W. J.; Boudreau, R.; Le Gros, M.; Gerion, D.; Zanchet, D.; Micheel, C.M.; Williams, S.C.; Alivisatos, A.P.; Larabell, C. “Cell Motility and Metastatic Potential Studies Based on Quantum Dot Imaging of Phagokinetic Tracks” Adv. Mater. 2002, 14, 882-885. (d) Pellegrino, T.; Kudera, S.; Liedl, T.; Javier, A. M.; Manna, L.; Parak, W. J. “On the Development of Colloidal Nanoparticles towards Multifunctional Structures and their Possible Use for Biological Applications” Small 2005, 1, 48-63.
    [73] (a)Duan, X. F.; Niu, C. M.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Gpldman, J. L. “High -performance thin -film transistors using semiconductor nanowire and nanoribbons” Nature 2003, 425, 274-278.(b) Li, L. S.; Walda, J.; Manna, L.; Alivisatos, A. P. “Semiconductor Nanorod Liquid Crystals” Nano. Lett. 2002, 2, 557-560.
    [74] Wu, X. Y.; Liu, H. J.; Liu, J. Q.; Haley, K. N.; Treadway, J. A.; Larson, J. P.; Fe, N. F.; Peale, F.; Bruchez, M. P. “Immunofluorescent Labeling of Cancer Marker Her2 and Other Cellular Targets with Semiconductor Quantum Dots” Nature Biotech. 2003, 21, 41-46.
    [75] Baullou, B.; Lagerholm, B. C.; Ernst, L. A.; Bruchez, M. P.; Waggoner, A. S. “Noninvasive Imaging of Quantum Dots in Mice” Bioconjugate Chem. 2004, 15, 79-86.
    [76] (a) Tsay, J. M.; Pflughoefft, M.; Bentolila, L. A.; Weiss, S. “Hybrid Approach to the Synthesis of Highly Luminescent CdTe/ZnS and CdHgTe/ZnS Nanocrystals” J. Am. Chem. Soc. 2004, 126, 1926-1927. (b) Rogach, A. L.; Harrison, M. T.; Kershaw, S. V.; Kornowski, A.; Burt, M. G.; Eychmüller, A.; Weller, H. “Colloidally Prepared CdHgTe and HgTe Quantum Dots with Strong Near-Infrared Luminescence” Phys. Status Solidi B 2001, 224, 153-158.
    [77] (a) hlamp, M. C.; Peng, X. G.; Alivisatos, A. P. “Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer” J. Appl. Phys. 1997, 82, 5837. (b) Mattoussi, H.; Radzilowski, L. H.; Dabbousi, B. O.; Thomas, E. L.; Bawendi, M. G.; Rubner, M. F. “Electroluminescence from heterostructures of poly(phenylene vinylene)and inorganic CdSe nanocrystals” J. Appl. Phys. 1998, 83, 7965.(c) Rodriguez-Viejo, J.; Mattoussi, H.; Heine, J. R.; Kuno, M. K.; Michel, J.; Bawendi, M. G.; Jensen, K. F. “Evidence of photo- and electrodarkening of (CdSe)ZnS quantum dot composites” J. Appl. Phys. 2000, 87, 8526. (d) Hines, M. A.; Guyot-Sionnest, P. “Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals” J. Phys. Chem. 1996, 100, 468-471. (e) Dabbousi, B. O.; Rodrigez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G.“ (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites” J. Phys. Chem. B 1997, 101, 9463-9475. (f) Spanhel, L.; Haase, M.; Weller, H.; Henglein, A. “Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles” J. Am. Chem. Soc. 1987, 109, 5649-5655. (g) Peng, X.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P.“Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility” J. Am. Chem. Soc. 1997, 119, 7019-7029.
    [78] (a) Han, M. Y.; Gao, X. H.; Su, J. Z.; Nie, S. M. “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules” Nature Biotech. 2001, 19, 631-635. (b) Y. A. Wang, J. Li , H. Y. Chen, X. G. Peng, “Stabilization of Inorganic Nanocrystals by Organic Dendrons” J. Am. Chem. Soc. 2002, 124, 2293-2298 (c) Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P. “Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots” J. Phys. Chem. B 2001, 105, 8861-8871. (d) Rogach, A. L.; Nagesha, D.; Ostrander, J. W. “"Raisin Bun"-Type Composite Spheres of Silica and Semiconductor Nanocrystals” Chem. Mater. 2000, 12, 2676-2685. (e) Yang, Y. H.; Gao, M. Y. “Preparation of Fluorescent SiO2 Particles with Single CdTe Nanocrystal Cores by the Reverse Microemulsion Method” Adv. Mater. 2005, 17, 2354-2357.
    [79] Peng X. G. “Green chemical approaches toward. high-quality semiconductor nanocrystals” Chem. Eur. J. 2002, 8, 335-339.
    [80] Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe K.; Shevchenko, E. V.; Kornowski, A.; Eychmüller, A.; Weller, H. “Thiol-Capping of CdTe Nanocrystals: An Alternative to Organometallic Synthetic Routes” J. Phys. Chem. B 2002, 106, 7177-7185.
    [81] Peng, Z. A.; Peng X. G. “Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor” J. Am. Chem. Soc. 2001, 123, 183-184.
    [82] (a) Qu, L.; Peng, Z. A.; Peng, X. “Alternative Routes toward High Quality CdSe Nanocrystals” Nano Lett. 2001, 1, 333-337.(b) Qu, L.; Peng, X. “Control of Photoluminescence Properties of CdSe Nanocrystals in Growth” J. Am. Chem. Soc. 2002, 124, 2049-2055.
    [83] Zhang, H.; Zhou, Z.; Yang, B.; Gao, M. Y.“The Influence of Carboxyl Groups on the Photoluminescence of Mercaptocarboxylic Acid-Stabilized CdTe Nanoparticles” J. Phys. Chem. B 2003, 107,8-13
    [84] (a) Murray, C. B.; Noms, D. J.; Bawendi, M. G. “Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites” J. Am. Chem. Soc. 1993, 115, 8706-8715.(b) Talapin, D. V.; Rogach A. L.; Kornowski A., Haase M.; Weller H. “Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture” Nano Lett. 2001, 1, 207-211.(c) Peng, Z. A.; Peng X. G. “Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor” J. Am. Chem. Soc. 2001, 123, 183-184.
    [85] Han M, Gao X, Su JZ,Nie S. “Quantumdot-tagged. microbeads for multiplexed optical coding of biomolecules” Nat Biotchnol, 2001, 19,631-635.
    [86] (a) Veiseh, O.; Sun, C.; Gunn, J.; Kohler, N.; Gabikian, P.; Lee, D.; Bhattarai, N.; Ellenbogen, R.; Sze, R.; Hallahan, A.; Olson, J.; Zhang, M. “Optical and MRI Multifunctional Nanoprobe for Targeting Gliomas” Nano Lett. 2005, 5, 1003-1008. (b) Bertorelle, F.; Wilhelm, C.; Roger, J.; Gazeau, F.; Ménager, C.; Cabuil, V. “Fluorescence-Modified Superparamagnetic Nanoparticles: Intracellular Uptake and Use in Cellular Imaging” Langmuir 2006, 22, 5385-5391
    [87] Kim, J.; Lee, J E.; Lee, J.; Yu, J. H.; Kim, B. C.; An, K.; Hwang, Y.; Shin, C-H.; Park, J-G.; Kim, J.; Hyeon, T. “Magnetic Fluorescent Delivery Vehicle Using Uniform Mesoporous Silica Spheres Embedded with Monodisperse Magnetic and Semiconductor Nanocrystals” J. Am. Chem. Soc. 2006, 128, 688-689.
    [88] Sathe, T. R.; Agrawal, A.; Nie, S. M. “Mesoporous Silica Beads Embedded with Semiconductor Quantum Dots and Iron Oxide Nanocrystals: Dual-Function Microcarriers for Optical Encoding and Magnetic Separation” Anal. Chem 2006, 78, 5627-5632.
    [89] (a) Yi, D. K.; Selvan, S. T.; Lee, S. S.; Papaefthymiou, G. C.; Kundaliya, D.; Ying, J. Y. “Silica-Coated Nanocomposites of Magnetic Nanoparticles and Quantum Dots” J. Am. Chem. Soc. 2005, 127, 4990-4991; (b) Salgueiri?o-Maceira, V.; Correa-Duarte, M. A.; Spasova M; Liz-Marzán, L. M; Farle M. “Composite Silica Spheres with Magnetic and Luminescent Functionalities” Adv. Funct. Mater. 2006, 16, 509–514.
    [90] Hong, X.; Li J.; Wang, M. J.; Xu, J. J.; Guo, W.; Li, J. H.; Bai, Y. B.; Li, T. J. “Fabrication of Magnetic Luminescent Nanocomposites by a Layer-by-Layer Self-assembly Approach” Chem. Mater. 2004, 16, 4022-4027.
    [91] Beaune, G.; Dubertret, B.; Clément, O.; Vayssettes, C.; Cabuil, V.; Ménager, C. “Giant Vesicles Containing Magnetic Nanoparticles and Quantum Dots: Feasibility and Tracking by Fiber Confocal Fluorescence Microscopy” Angew. Chem. Int. Ed. 2007, 46, 5421-5424.
    [92] (a) Kim, B. S.; Taton, T. A. “Multicomponent Nanoparticles via Self-Assembly with Cross-Linked Block Copolymer Surfactants” Langmuir 2007, 23, 2198-2202; (b) Xie, H. Y.; Zou, C.; Liu, Y.; Zhang, Z. L.; Pang, D. W.; Li, X. L.; Gong, J. P.; Dickinson, C.; Zhou, W. Z. “Cell-Targeting Multifunctional Nanospheres with both Fluorescence and Magnetism” Small. 2005, 1, 506-509.
    [93] (a) Gaponik, N.; Radtchenko, I. L.; Sukhorukov, G. B.; Rogach, A. L. “Luminescent Polymer Microcapsules Addressable by a Magnetic Field” Langmuir. 2004, 20, 1449-1452. (b) Zebli, B.; Susha, A. S.; Sukhorukov, G. B.; Rogach, A. L.; Parak, W. J. “Magnetic Targeting and Cellular Uptake of Polymer Microcapsules Simultaneously Functionalized with Magnetic and Luminescent Nanocrystals” Langmuir. 2005, 21, 4262-4265.
    [94] (a) Li, L. L.; Chen. D.; Zhang, Y, Q.; Deng. Z. T.; Ren, X. L.; Meng, X. W.; Tang, F. Q.; Ren, J.; Zhang, L. “Magnetic and fluorescent multifunctional chitosan nanoparticles as a smart drug delivery system” Nanotechnology. 2007, 18, 405102(6pp). (b) Guo, J.; Yang, W. L.; Wang, C. C.; He, J.; Chen, J. Y. “Poly(N-isopropylacrylamide)-Coated Luminescent/Magnetic SilicaMicrospheres: Preparation, Characterization, and Biomedical Applications” Chem. Mater 2006, 18, 5554-5562
    
    [1] H. Kawaguchi, “Functional polymer microspheres” Prog. Polym. Sci. 2000, 25, 1171-1210.
    [2] L. C. Dong, A. S. Hoffman, “A novel approach for preparation of pH-sensitive hydrogels for Enteric drug delivery” J. Controlled Release 1991, 15, 141-152.
    [3] P. Gupta, K. Vermani, S. Garg, “Hydrogels: from controlled release to pH-responsive drug delivery” Drug Discovery Today 2002, 7, 569-579
    [4] A. Kikuchi, T. Okano, “Pulsatile drug release control using hydrogels” Adv. Drug Delivery Rev. 2002, 54, 53-77.
    [5] T. Okano, Y. H. Bae, H. Jacobs, S. W. Kim, “Thermally on-off switching polymers for drug permeation and release” J. Controlled Release 1990, 11, 255.
    [6] J. Zhang, N. A. Peppas, “Synthesis and Characterization of pH- and Temperature-Sensitive Poly(methacrylic acid)/Poly(N-isopropylacrylamide) Interpenetrating Polymeric Networks” Macromolecules 2000, 33, 102-107
    [7] H. Feil, Y. H. Bae, J. Feijen, S.W. Kim, “Molecular separation by thermosensitive hydrogel membranes” J. Membr. Sci. 1991, 64, 283-294
    [8] E. J. Kim, S. H. Cho, S. H. Yuk, “Polymeric microspheres composed of pH/temperature-sensitive polymer complex” Biomaterials 2001, 22, 2495-2499
    [9] Y. Y. Liu, X. D. Fan, H. Hu, Z. H. Tang, “Release of chlorambucil from poly(N-Isopropylacrylamide) hydrogels with β-cyclodextrin moieties, Macromol. Biosci.” Macromol. Biosci. 2004, 4, 729-736
    [10] Y. Y. Liu, X. D. Fan, Y. B. Zhao, J. Polym. Sci., Part A: Polym. Chem., submitted.
    [11] Y. Y. Liu, X. D. Fan, “Synthesis and characterization of pH-and temperature-sensitive hydrogel of iV-isopropylacrylamide/cyclodextrin based copolymers” Polymer 2002, 43, 4997-5003.
    [12] Y. Y. Liu, X. D. Fan, J. “Preparation and characterization of a novel responsive hydrogel with a β-cyclodextrin-based macromonomer” Appl. Polym. Sci. 2003, 89, 361-367.
    [13] Y. Y. Liu, X. D. Fan, Q. Zhao, “A novel IPN hydrogel based on poly(N-isopropylacrylamide) and β-cyclodextrin polymer” J. Macromol. Sci., Pure Appl. Chem. 2003, 40, 1095.
    [14] Liu, Y. Y.; Fan, X. D.; Kang, T.; Sun, L., “A cyclodextrin microgel for controlled release driven by inclusion effects” Macromol. Rapid Commun. 2004, 25, 1912–1916
    [15] Zhang, H.; Mardyani, S.; Chan, W. C. W.; Kumacheva, E., “Design of Biocompatible Chitosan Microgels for Targeted pH-Mediated Intracellular Release of Cancer Therapeutics” Biomacromolecules 2006, 7, 1568-1572
    [16] Li, L. L.; Chen. D.; Zhang, Y, Q.; Deng. Z. T.; Ren, X. L.; Meng, X. W.; Tang, F. Q.; Ren, J.; Zhang, L. “Magnetic and fluorescent multifunctional chitosan nanoparticles as a smart drug delivery system” Nanotechnology. 2007, 18, 405102(6pp).
    [17] Ma, S. D.; Chen, J. H. Chin. Phaem. J. 2006, 41, 1005.
    [1] Decher, G.; Schlenoff, J. B. “Multilayer Thin Films: Sequential Assembly of Nanocomposite. Materials” Wiely-VCH: Weinheim, Germany 2002
    [2] Decher, G. “Fuzzy nanoassemblies:toward layer-ed polymeric multicomposites”, Science 1997, 277, 1232.
    [3] Bertrand, P.; Jonas, A.; Laschewsky, A.; Legras, R. “Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: Suitable materials, structure and properties” Macromol. Rapid Commun. 2000, 21, 319-348.
    [4] Hammond, P. T. “Form and Function in Multilayer Assembly: New Applications at the Nanoscale” Adv. Mater. 2004, 16, 1271-1293.
    [5] Tang, Z. Y.; Wang, Y.; Podsiadlo, P.; Kotov, N. A. “Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering” Adv. Mater. 2006, 18, 3203-3224.
    [6] Zhang, X.; Chen, H.; Zhang, H. Y.“Layer-by-layer assembly: from conventional to unconventional methods” Chem. Commun. 2007, (14), 1395-1405.
    [7] (a) Hiller, J.; Mendelsohn, J. D.; Rubner, M. F. “Reversibly erasable nanoporous anti-. reflection coatings from polyelectrolyte multilayers” Nat. Mater. 2002, 1, 59-63. (b) Wang, T. C.; Cohen, R. E.; Rubner, M. F. “Metallodielectric photonic structures based on polyelectrolyte multilayers” Adv. Mater. 2002, 14, 1534-1537. (c) Rouse, J. H.; Ferguson, G. S. “Preparation of Thin Silica Films with Controlled Thickness and Tunable Refractive Index” J. Am. Chem. Soc. 2003, 125, 15529-15536. (d) Cho, J.; Hong, J.; Char, K.; Caruso, F. “Nanoporous Block Copolymer Micelle/Micelle Multilayer Films with Dual Optical Properties” J. Am. Chem. Soc. 2006, 128, 9935-9942.
    [8] (a) Sun, Y. P.; Zhang, X.; Sun, C. Q.; Wang, B.; Shen, J. C. “Fabrication of ultrathin film containing bi-enzyme of glucose oxidase and gluoamylase based on electrostatric interaction and its potential application as a maltose sensor” Macromol. Chem. Phys. 1996, 197, 147. (b) Lvov, Y.; Caruso, F. “Biocolloids with Ordered Urease Multilayer Shells as Enzymatic Reactors” Anal. Chem. 2001, 73, 4212-4217. Wang, Y.; Joshi, P. P.; Hobbs, K. L.; Johnson, M. B.; Schmidtke, D. W. “Nanostructured Biosensors Built by Layer-by-Layer Electrostatic Assembly of Enzyme-Coated Single-Walled Carbon Nanotubesand Redox Polymers”, Langmuir 2006, 22, 9776-9783. (d) Calvo, E. J.; Danilowicz, C.; Wolosiuk, A. “Molecular "Wiring" Enzymes in Organized Nanostructures”, J. Am. Chem. Soc. 2002, 124, 2452.
    [9] (a) Lvov, Y.; Yamada, S.; Kunitake, T. “Non-Linear Optical Effects in Layer-by-Layer Alternative Films of Polycations and an Azobenzene-Containing Polyanion” Thin Solid Films 1997, 300, 107-112. (b) Kang, E. H.; Jin, P. C.; Yang, Y. Q.; Sun, J. Q.; Shen, J. C. “A facile room temperature layer-by-layer deposition process for the fabrication of ultrathin films with noncentrosymmetrically oriented azobenzene chromophoresElectronic supplementary information (ESI) available: Fabrication of (PAC-azoBNS/PDDA)*n films, characterization of the films, cross-sectional SEM image of ZrO2/PAC-azoBNS/PDDA film, UV-vis absorption spectra of PAC-azoBNS/PDDA films, and SHG measurements” Chem. Commun. 2006, 4332. (c) Jiang, L.; Lu, F.; Chang, Q.; Liu, Y.; Liu, H.; Li, Y.; Xu, W.; Cui, G.; Zhuang, J.; Li, X.; Wang, S.; Song, Y.; Zhu, D. “Fabrication of Ultrathin Films with Large Third-Order Nonlinear Optical Properties” Chem. Phys. Chem. 2005, 6, 481-486. (d) Van Cott, K. E.; Guzy, M.; Neyman, P.; Brands, C.; Heflin, J. R.; Gibson, H. W.; Davis, R. M. “Layer-by-Layer Deposition and Ordering of Low Molecular Weight Dye Molecules for Second Order Nonlinear Optics” Angew. Chem., Int. Ed. 2002, 41, 3236-3238. (e) Balasubramanian, S.; Wang, X. G.; Wang, H. C.; Yang, K.; Kumar, J.; Tripathy, S. K.; Li, L. “Azo Chromophore-Functionalized Polyelectrolytes. 2. Acentric Self-Assembly through a Layer-by-Layer Deposition Process” Chem. Mater. 1998, 10, 1554-1560. (f) Fischer, P.; Koetse, M.; Laschewsky, A.; Wischerhoff, E.; Jullien, L.; Persoons, A.; Verbiest, T. “Orientation of Nonlinear Optical Active Dyes in Electrostatically Self-Assembled Polymer Films Containing Cyclodextrins” Macromolecules 2000, 33, 9471-9473.
    [10] Lowman, G. M.; Tokuhisa, H.; Lutkenhaus, J. L.; Hammond, P. T. “Novel Solid-State Polymer Electrolyte Consisting of a Porous Layer-by-Layer Polyelectrolyte Thin Film and Oligoethylene Glycol” Langmuir 2004, 20, 9791-9795.
    [11] (a) Guldi, D. M.; Zilbermann, I.; Anderson, G.; Kotov, N. A.; Tagmatarchise, N.; Prato, M. “Nanosized inorganic/organic composites for solar energy conversion” J. Mater. Chem. 2005, 15, 114. (b) Guldi, D. M.; Rahman, G. M. A.; Prato, M.; Jux, N.; Qin, S.; Ford, W. “Single-Wall Carbon Nanotubes as Integrative Building Blocks for Solar-Energy Conversion” Angew. Chem., Int. Ed. 2005, 44, 2015-2018.
    [12] (a) Levasalmi, J.-M.; McCarthy, T. J. “Poly(4-methyl-1-pentene)-Supported Polyelectrolyte Multilayer Films: Preparation and Gas Permeability1” Macromolecules 1997, 30, 1752-1757. (b) Krasemann, L.; Tieke, B. “Ultrathin self-assembled polyelectrolyte. membranes for pervaporation” J. Membr. Sci. 1998, 150, 23-30. (c) Bruening, M. L.; Sullivan, D. M. “Enhancing the ion-transport selectivity of multilayer polyelectro- lyte membranes” Chem. Eur. J. 2002, 8, 3833-3837. (d) Park, M.-K.; Deng, S.; Advincula, R. C. “pH-Sensitive Bipolar Ion-Permselective Ultrathin Films” J. Am. Chem. Soc. 2004, 126, 13723-13731. (e) Ball, V.; Voegel, J.-C.; Schaaf, P. “Effect of Thiocyanate Counterion Condensation on Poly(allylamine hydrochloride) Chains on the Buildup and Permeability of Polystyrenesulfonate/Polyallylamine Polyelectrolyte Multilayers” ?Langmuir 2005, 21, 4129-4137. (f) Kang, E. H.; Liu, X. K.; Sun, J. Q.; Shen, J. C. “Robust Ion-Permselective Multilayer Films Prepared by Photolysis of Polyelectrolyte Multilayers Containing Photo-Cross-Linkable and Photolabile Groups” Langmuir 2006, 22, 7894-7901.
    [13] Lynn, D. M. “Layers of opportunity: nanostructured polymer assemblies for the delivery of macromolecular therapeutics” Soft Matter 2006, 2, 269.
    [14] Jewell, C. M.; Zhang, J.; Fredin, N. J.; Wolff, M. R.; Hacker, T. A.; Lynn , D. M. “Release of Plasmid DNA from Intravascular Stents Coated with Ultrathin Multilayered Polyelectrolyte Films” Biomacromolecules 2006, 7, 2483-2491.
    [15] Wood, K. C.; Boedicker, J. Q.; Lynn, D. M.; Hammond, P. T. “Tunable Drug Release from Hydrolytically Degradable Layer-by-Layer Thin Films” Langmuir 2005, 21, 1603-1609. (b) Zelikin, A. N.; Li, Q.; Caruso, F. “Degradable Polyelectrolyte Capsules Filled with Oligonucleotide Sequences” Angew. Chem., Int. Ed. 2006, 45, 7743-7745. (c) Ren, K. F.; Ji, J.; Shen, J. C. “Tunable DNA Release from Cross-Linked Ultrathin DNA/PLL Multilayered Films” Bioconjugate Chem. 2006, 17, 77-83. (d) Recksiedler, C. L.; Deore, B. A.; Freund, M. S.“A Novel Layer-by-Layer Approach for the Fabrication of Conducting Polymer/RNA Multilayer Films for Controlled Release” Langmuir 2006, 22, 2811-2815. (e) Thierry, B.; Kujawa, P.; Tkaczyk, C.; Winnik, F. M.; Bilodeau, L.; Tabrizian, M. “Delivery Platform for Hydrophobic Drugs: Prodrug Approach Combined with Self-Assembled Multilayers” J. Am. Chem. Soc. 2005, 127, 1626-1627. (f) Niu, J.; Shi, F.; Liu, Z.; Wang, Z. Q.; Zhang, X. “Reversible Disulfide Cross-Linking in Layer-by-Layer Films: Preassembly Enhanced Loading and pH/Reductant Dually Controllable Release” Langmuir 2007, 23, 6377-6384.
    [16] Zhang, H.; Zhou, Z.; Yang, B.; Gao, M. Y.“The Influence of Carboxyl Groups on the Photoluminescence of Mercaptocarboxylic Acid-Stabilized CdTe Nanoparticles” J. Phys. Chem. B 2003, 107, 8-13
    [17] Ma, S. D.; Chen, J. H. Chin. Phaem. J. 2006, 41, 1005.
    [1] Wu, Z. Z.; Walish, J.; Nolte, A.; Zhai, L.; Cohen, R. E.; Rubner, M. F.,“Deformable Antireflection Coatings from Polymer and Nanoparticle Multilayers” Adv. Mater. 2006, 18, 2699-2702
    [2] Caruso, F.; Caruso, R. A.; M?hwald, H., “Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating” Science, 1998, 282 1111-1114
    [3] Lee, D.; Cohen, R. E.; Rubner, M. F.;“Heterostructured Magnetic Nanotubes” Langmuir 2007, 23, 123-129
    [4] Zurita, R.; Puiggalí, J.; Rodríguez-Galán, A.,“Triclosan Release from Coated Polyglycolide Threads” Macromol. Biosci. 2006, 6, 58–69
    [5] Zurita, R.; Puiggalí, J.; Rodríguez-Galán, A., “Loading and Release of Ibuprofen in Multiand Monofilament Surgical Sutures” Macromol. Biosci. 2006, 6, 767–775.
    [6] Picart, C.; Lavalle, P.; Hubert, P.; Cuisinier, F. J. G.; Decher, G.; Schaaf, P.; Voegel, J. C.“Buildup Mechanism for Poly(L-lysine)/Hyaluronic Acid Films onto a Solid Surface” Langmuir, 2001, 17, 7414-7424.
    [7] Regine, V. K. “Internal structure of polyelectrolyte multilayer assemblies” Phys. Chem. Chem. Phys., 2006, 8, 5012–5033
    [1] (a) Bruchez, M.; Moronne, M.; Gin, P.; Weiss, A.; Alivisatos, A. P. “Semiconductor nanocrystals as fluorescent biological labels” Science 1998, 281, 2013-2016. (b) Chan, W. C. W.; Nie, S. Science 1998, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection” 281, 2016-2018. (c) Parak, W. J.; Boudreau, R.; Le Gros, M.; Gerion, D.; Zanchet, D.; Micheel, C.M.; Williams, S.C.; Alivisatos, A.P.; Larabell, C. “Cell Motility and Metastatic Potential Studies Based on Quantum Dot Imaging of Phagokinetic Tracks” Adv. Mater. 2002, 14, 882-885. (d) Pellegrino, T.; Kudera, S.; Liedl, T.; Javier, A. M.; Manna, L.; Parak, W. J. “On the Development of Colloidal Nanoparticles towards Multifunctional Structures and their Possible Use for Biological Applications” Small 2005, 1, 48-63.
    [2] (a) Tsay, J. M.; Pflughoefft, M.; Bentolila, L. A.; Weiss, S. “Hybrid Approach to the Synthesis of Highly Luminescent CdTe/ZnS and CdHgTe/ZnS Nanocrystals” J. Am. Chem. Soc. 2004, 126, 1926-1927. (b) Rogach, A. L.; Harrison, M. T.; Kershaw, S. V.; Kornowski, A.; Burt, M. G.; Eychmüller, A.; Weller, H. “Colloidally Prepared CdHgTe and HgTe Quantum Dots with Strong Near-Infrared Luminescence” Phys. Status Solidi B 2001, 224, 153-158.
    [3] (a) Han, M. Y.; Gao, X. H.; Su, J. Z.; Nie, S. M. “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules” Nature Biotech. 2001, 19, 631-635. (b) Y. A. Wang, J. Li , H. Y. Chen, X. G. Peng, “Stabilization of Inorganic Nanocrystals by Organic Dendrons” J. Am. Chem. Soc. 2002, 124, 2293-2298 (c) Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P. “Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots” J. Phys. Chem. B 2001, 105, 8861-8871. (d) Rogach, A. L.; Nagesha, D.; Ostrander, J. W. “"Raisin Bun"-Type Composite Spheres of Silica and Semiconductor Nanocrystals” Chem. Mater. 2000, 12, 2676-2685. (e) Yang, Y. H.; Gao, M. Y. “Preparation of Fluorescent SiO2 Particles with Single CdTe Nanocrystal Cores by the Reverse Microemulsion Method” Adv. Mater. 2005, 17, 2354-2357.
    [4] (a) Hu, F.; Wei, L.; Zhou, Z.; Ran, Y. L.; Li, Z.; Gao, M. Y. “Preparation of Biocompatible Magnetite Nanocrystals for In Vivo Magnetic Resonance Detection of Cancer” Adv. Mater. 2006, 18, 2553–2556. (b) Josephson L., Tung C. H., Moore A., “High-Efficiency Intracellular Magnetic Labeling with Novel Superparamagnetic-Tat Peptide Conjugates” Bioconjugate Chem. 1999, 10, 186.
    [5] (a) Weissleder, R.; Bogdanov, A.; Neuwelt, E. A.; Papisov, M. “Long-circulating iron oxides for MR imaging” Adv. Drug Delivery Rev. 1995, 16, 321-334. (b) Sukhorukv, G. B.; Rogach, A. L.; Garstka, M.; Springer, S.; Park, W. J.; Mu?oz-Javier, A.; Kreft, O.; Skirtach, A. G.; Susha, A. S.; Ramaye, Y.; Palankar, R.; Winterhalter, M. “Multifunctionalized Polymer Microcapsules: Novel Tools for Biological and Pharmacological Applications” Small 2007, 3, 944-955
    [6] (a) Molday, R.; Yen, S.; Rembaum, A. Nature 1977, 266, 437; (b) Molday, R.; Molday, L. “Separation of cells labeled with immunospecific iron dextran mocrospheres using gradient magnetic chromatography” FEBS Lett. 1984, 170, 232-238; (e) Miltenyi, S.; Müller, W.; Weichel, W.; Radbruch, A. “High gradient magnetic cell separation with MACS” Cytometry 1990, 11, 231-238; (f) Lee, S. M.; Wroble, M. H.; Ross, J. T. Appl. Biochemand Biotech. 1989, 22, 1; (b) Xu, C.; Xu, K.; Gu, H.; Zheng, R.; Liu, H.; Zhang, X.; Guo, Z.; Xu, B.“Dopamine as A Robust Anchor to Immobilize Functional Molecules on the Iron Oxide Shell of Magnetic Nanoparticles” J. Am. Chem. Soc. 2004, 126, 9938-9939.
    [7] Sonvico, F.; Mornet, S.; Vasseur, S.; Dubernet, C.; Jaillard, D.; Degrouard, J.; Hoebeke, J.; Duguet, E.; Colombo, P.; Couvreur, P. “Folate-Conjugated Iron Oxide Nanoparticles for Solid Tumor Targeting as Potential Specific Magnetic Hyperthermia Mediators: Synthesis, Physicochemical Characterization, and in Vitro Experiments” Bioconjug. Chem. 2005, 16, 1181-1188
    [8] (a) Veiseh, O.; Sun, C.; Gunn, J.; Kohler, N.; Gabikian, P.; Lee, D.; Bhattarai, N.; Ellenbogen, R.; Sze, R.; Hallahan, A.; Olson, J.; Zhang, M. “Optical and MRI Multifunctional Nanoprobe for Targeting Gliomas” Nano Lett. 2005, 5, 1003-1008. (b) Bertorelle, F.; Wilhelm, C.; Roger, J.; Gazeau, F.; Ménager, C.; Cabuil, V. “Fluorescence-Modified Superparamagnetic Nanoparticles: Intracellular Uptake and Use in Cellular Imaging” Langmuir 2006, 22, 5385-5391.
    [9] Kim, J.; Lee, J E.; Lee, J.; Yu, J. H.; Kim, B. C.; An, K.; Hwang, Y.; Shin, C-H.; Park, J-G.; Kim, J.; Hyeon, T. “Magnetic Fluorescent Delivery VehicleUsing Uniform Mesoporous Silica Spheres Embedded with Monodisperse Magnetic and Semiconductor Nanocrystals” J. Am. Chem. Soc. 2006, 128, 688-689.
    [10] Sathe, T. R.; Agrawal, A.; Nie, S. M. “Mesoporous Silica Beads Embedded with Semiconductor Quantum Dots and Iron Oxide Nanocrystals: Dual-Function Microcarriers for Optical Encoding and Magnetic Separation” Anal. Chem 2006, 78, 5627-5632.
    [11] (a) Yi, D. K.; Selvan, S. T.; Lee, S. S.; Papaefthymiou, G. C.; Kundaliya, D.; Ying, J. Y. “Silica-Coated Nanocomposites of Magnetic Nanoparticles and Quantum Dots” J. Am. Chem. Soc. 2005, 127, 4990-4991; (b) Salgueiri?o-Maceira, V.; Correa-Duarte, M. A.; Spasova M; Liz-Marzán, L. M; Farle M. “Composite Silica Spheres with Magnetic and Luminescent Functionalities” Adv. Funct. Mater. 2006, 16, 509–514.
    [12] Hong, X.; Li J.; Wang, M. J.; Xu, J. J.; Guo, W.; Li, J. H.; Bai, Y. B.; Li, T. J. “Fabrication of Magnetic Luminescent Nanocomposites by a Layer-by-Layer Self-assembly Approach” Chem. Mater. 2004, 16, 4022-4027.
    [13] Beaune, G.; Dubertret, B.; Clément, O.; Vayssettes, C.; Cabuil, V.; Ménager, C. “Giant Vesicles Containing Magnetic Nanoparticles and Quantum Dots: Feasibility and Tracking by Fiber Confocal Fluorescence Microscopy” Angew. Chem. Int. Ed. 2007, 46, 5421-5424.
    [14] (a) Kim, B. S.; Taton, T. A. “Multicomponent Nanoparticles via Self-Assembly with Cross-Linked Block Copolymer Surfactants” Langmuir 2007, 23, 2198-2202; (b) Xie, H. Y.; Zou, C.; Liu, Y.; Zhang, Z. L.; Pang, D. W.; Li, X. L.; Gong, J. P.; Dickinson, C.; Zhou, W. Z. “Cell-Targeting Multifunctional Nanospheres with both Fluorescence and Magnetism” Small. 2005, 1, 506-509.
    [15] (a) Gaponik, N.; Radtchenko, I. L.; Sukhorukov, G. B.; Rogach, A. L. “Luminescent Polymer Microcapsules Addressable by a Magnetic Field” Langmuir. 2004, 20, 1449-1452. (b) Zebli, B.; Susha, A. S.; Sukhorukov, G. B.; Rogach, A. L.; Parak, W. J. “Magnetic Targeting and Cellular Uptake of Polymer Microcapsules Simultaneously Functionalized with Magnetic and Luminescent Nanocrystals” Langmuir. 2005, 21, 4262-4265.
    [16] (a) Guo, J.; Yang, W. L.; Wang, C. C.; He, J.; Chen, J. Y. “Poly(N-isopropylacrylamide)-Coated Luminescent/Magnetic SilicaMicrospheres: Preparation, Characterization, and Biomedical Applications” Chem. Mater 2006, 18, 5554-5562 (b) Li, L. L.; Chen. D.; Zhang, Y, Q.; Deng. Z. T.; Ren, X. L.; Meng, X. W.; Tang, F. Q.; Ren, J.; Zhang, L. “Magnetic and fluorescent multifunctional chitosan nanoparticles as a smart drug delivery system” Nanotechnology. 2007, 18, 405102(6pp).
    [17] Zhang, H.; Zhou, Z.; Yang, B.; Gao, M. Y.“The Influence of Carboxyl Groups on the Photoluminescence of Mercaptocarboxylic Acid-Stabilized CdTe Nanoparticles” J. Phys. Chem. B 2003, 107, 8-13
    [18] Hong, X.; Guo, W.; Yuan, H.; Li., J.; Liu, Y. Ma, L.; Bai, Y.; Li, T.“Periodate oxidation of nanoscaled magnetic dextran composites” J. Magn. Magn. Mater. 2004, 269, 95-100
    [19] Carpenter, E. E., “Iron nanoparticles as potential magnetic carriers” J. Magn. Magn. Mater. 2001 225 17-20
    [20] Lee, J.; Isobe, T.; Senna, M. “Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH” J. Colloid Interface Sci. 1996, 177, 490-494.
    [21] Li, J.; Hong, X.; Liu, Y.; Li, D.; Wang, Y. W.; Li, J. H.; Bai, Y. B.; Li, T. J., “Highly Photoluminescent CdTe Poly(N-isopropylacrylamide) Temperature-Sensitive Gels” Adv. Mater. 2005, 17, 163-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700