用户名: 密码: 验证码:
基于RBF网络逼近的机器人自适应动态面控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机器人通常由驱动关节(由伺服电机和传动减速器组成)、机体、传感器和控制器等部件组成,是一个高度复杂的非线性系统,而RBF网络是解决具有高度非线性和不确定性的复杂系统控制问题的一种行之有效的方法。本文中的机器人特别是其子系统柔性滤波驱动机构(由伺服电机与柔性滤波传动机构组成)具有高阶、多变量、强耦合、参数时变、部分状态变量不易或者无法检测等特点,而这些特点会使得控制器的设计非常复杂。另外,随着机器人在特殊环境下的应用,传统的控制方法显然不能满足高精度控制要求,因此研究先进的控制方法,提高机器人的动静态性能,是一个富有理论意义和工程应用价值的研究课题。基于RBF网络逼近的机器人自适应动态面技术能够很好的克服摩擦、混沌运动、外界干扰和参数不确定等因素的影响,从而实现系统的高品质控制。
     论文主要研究成果如下:
     首先,提出了一类具有输出约束的N阶系统的RBF动态面控制方法,并以此为理论基础,研究了无刷直流电机系统的混沌控制问题。针对具有不确定时滞的无刷直流电机的控制问题,考虑存在输出约束的情况,利用RBF网络的万能逼近特性,从而提出了无刷直流电机混沌系统的自适应RBF网络动态面控制方法。所提控制方法保证了系统的稳定性及系统中所有信号的最终一致有界性,同时系统输出满足一定的约束条件。实验验证了所提控制器的收敛性和混沌抑制能力,同时对参数扰动表现出一定的鲁棒性。
     其次,研究了基于RBF网络动态面的永磁同步电机混沌系统的速度与位置跟踪控制问题。考虑未知有界外界扰动、控制方向未定、系统参数不确定等因素的影响,应用快速终端滑模和动态面方法,结合自适应技术与Nussbaum增益对系统中的未知函数进行估计,从而提出了基于单参数权值RBF网络快速终端滑模的永磁同步电机混沌系统的速度控制与基于Nussbaum增益的RBF网络动态面永磁同步电机混沌系统的位置控制。实验结果表明所提方案都具有一定的鲁棒性。与指数滑模控制相比,所提方法优势明显。
     再次,研究了柔性滤波驱动机构的RBF网络动态面控制。以机器人驱动关节—柔性滤波驱动机构为研究对象,对柔性滤波传动机构进行了机械设计,同时考虑柔性变形、摩擦、传动误差和系统效率等非线性因素的影响,建立了柔性滤波驱动机构的数学模型,进而提出了考虑LuGre摩擦模型的柔性滤波驱动机构的RBF网络动态面控制。另外,利用Lyapunov理论证明了所提控制方法的稳定性。实验分析表明所提方法具有较强的鲁棒性与稳定性。与PID相比,所提控制方法具有明显的优越性。
     最后,研究了基于柔性滤波驱动机构的机器人RBF网络的控制问题。以具有摩擦、扰动和参数不确定等因素影响的机器人为研究对象,设计了基于柔性滤波驱动机构的工业机器人的自适应单参数权值RBF网络反演法控制器与基于柔性滤波驱动机构的移动机器人的干扰观测器RBF网络动态面控制器。同时,利用Lyapunov理论论证了所提控制方法的稳定性。仿真实验分析结果(包括与传统DSC比较)表明所提控制器具有很强的跟踪精度、鲁棒性和干扰补偿能力。
The robot which usually consists of the driving joint composed of servo motor anddrive reducer, body, sensors and controller, etc is a highly complex nonlinear system,while RBF network is an effective way to solve the controlling problem of complexsystems with highly nonlinear and uncertain characters. The robot in this paper has thecharacteristics of high-order, multi-variable, strong coupling, parameter variation,partial state variables be difficultly or hardly detected, etc as well as its subsystems suchas the flexible filtering drive mechanism composed of the servo motor and the flexiblefilter transmission mechanism, and the existence of these characteristics will make thenonlinear system controller design become complex. In addition, traditional controlmethods obviously don’t satisfy the requirements of high-precision control as theapplication in the special and extreme environment. Therefore, the study of advancedcontrol method is a challenging research subject full of the theoretical significance andthe project application value to improve dynamic and static performance of the robotbased on the flexible filter transmission mechanism. The adaptive dynamic surfacecontrol based on RBF network of the robot can overcome friction, chaotic motion,outside interference, parameter uncertain, etc to achieve the high control performance ofthe system.
     Main research results of the thesis are as follows:
     Firstly, the RBF network dynamic surface control method is proposed for a class ofN-order system with output constraint, as a theoretical basis, and then chaos controlproblem of the brushless DC motor drive system is researched. Aiming at the controlproblem of the brushless DC motor system with uncertain time-delay, considering theoutput constraints and using universal approximation properties of RBF network, thenan adaptive RBF network dynamic surface control method of the brushless DC motorchaotic system is proposed. Asymptotically tracking stable and uniformly ultimateboundedness of the tracking error are ensured without violation of the constraint.Experiment results show that the designed controller has convergence, chaotic behaviorsuppressession ability and high-robustness for system parameters perturbation.
     Secondly, the speed tracking and position tracking control problems of thepermanent magnet synchronous motor chaotic system are studied. Consideringunknown bounded external disturbances, controlling direction uncertainty and system parameter uncertainty, applying fast terminal sliding mode and dynamic surface methodand combining with adaptive technology and Nussbaum gain to estimate the unknownfunction in the system, then a fast terminal sliding mode speed tracking control based onone-parameter weights RBF network and position tracking control based on Nussbaumgain RBF network dynamic surface of the PMSM chaotic system are proposedrespectively. The experiment results show that the proposed control schemes have agood convergence and robustness. Compared with the index sliding mode control, theproposed method has clear advantages.
     Thirdly, a RBF network dynamic surface control of flexible filtering drivemechanism is researched. Selecting the robot drive joints—flexible filtering drivemechanism as the research object, mechanical design of the transmission mechanism ofthe flexible filtering is conducted. Then taking into account the flexible deformation,friction and transmission errors, system efficiency and other nonlinear factors effect,mathematical models of flexible filter drive mechanism is established. Then, anadaptive dynamic surface of flexible filtering drive mechanism is proposed based onRBF network. Besides, using Lyapunov theory proves the stability of the proposedcontrol method. The results show that the proposed control method has a strongrobustness and stability. Compared with the PID control, the proposed control methodhas obvious advantages, which may extend to the electromechanical transmission.
     Finally, the RBF network control problem of the robot based on the flexible filterdrive mechanism is researched. Selecting the robot with friction, disturbance anduncertain parameters, etc as the research object, an adaptive RBF network backsteppingcontroller with one-parameter weights for the industry robot is designed based on theflexible filtering drive mechanism firstly. Secondly, a RBF network dynamic surfacecontroller with the disturbance observer of the mobile robot is designed based on theflexible filtering drive mechanism. In the meantime, the Lyapunov theory is employedto ensure the stability of the proposed control method. Containing to compare with thetraditional dynamic surface control, the experiment results show that the proposedcontrollers have a higher tracking accuracy, stronger robustness and bettercompensation ability for disturbance.
引文
[1] Lefeber E, Nijmeijer H. Adaptive tracking control of nonholonomic systems: an example[C].The38th IEEE Conference on Decision and Control (CDC), Phoenix, AZ, USA,1999:2094–2099.
    [2] Colbaugh R. Adaptive stabilization of mobile manipulators[J]. Journal of Robotics,1998,15(9):511–523.
    [3] Tsai P S, Wang L S, Chang F R, et al. Point stabilization control of a car–like mobile robot inhierarchical skew symmetry chained form[C]. Proceedings of the2004IEEE InternationalConference on Networking, Sensing and control, Taipei, Taiwan,2004:1346–1351.
    [4] Fierro R, Lewis F L. Control of a nonholonomic mobile robot: backstepping kinematics intodynamics[C]. Proceeding of the34th IEEE Conference on Decision and Control, NewOrleans, Louisiana, USA,1995:3805–3810.
    [5] Dixon W E, Dawson D M, Zhang F, et al. Global exponential tracking control of a mobilerobot system via a PE condition[J]. IEEE Transaction on Systems, Man and Cybernetics, PartB,2000,3(1):129–142.
    [6] Hamel T, Meizel D. On Robustness and precision of mobile robots missions[J]. Automation,2001,37(3):437–444.
    [7] Hu Y M, Ge S S, Su C Y. Stabilization of uncertain nonholonomic systems via time–varyingsliding mode control[J]. IEEE Transactions on Automatic Control,2004,12(4):757–763.
    [8] Chwa D. Sliding–mode tracking control of nonholonomic wheeled mobile robots in polarcoordinates[J]. IEEE Transactions on Control System Technology,2004,12(4):637–644.
    [9]晁红敏,胡跃明,吴忻生.高阶滑模控制在非完整移动机器人鲁棒输出跟踪中的应用[J].控制理论与应用,2002,18(2):253–257.
    [10] Dong W, Kuhnert K. Robust adaptive control of nonholonomic mobile robot with parameterand nonparameter uncertainties[J]. IEEE Transactions on Robotics,2005,12(2):261–266.
    [11] Kim M S, Shin J H, Hong S G, et al. Designing a robust adaptive dynamic controller fornonholonomic mobile robots under modeling uncertainty and disturbances[J]. Mechatronics,2003,13(5):507–519.
    [12] Kim S S, Kim T I, Jang K S, et al. Control experiment of a wheeled drive mobile pendulumusing neural network[C]. Proceedings of the30th Annual Conference of IEEE IndustrialElectronics Society (IECON2004), Busan, South Korea,2004:2234–2239.
    [13] Fierro R, Lewis F L. Robust practical point stabilization of a nonholonomic mobile robotusing neural networks[J]. Journal of Intelligent and Robotic Systems: Theory andApplications,1997,20(2–4):295–317.
    [14] Das T, Kar I N. Design and implementation of an adaptive fuzzy logic–based controller forwheeled mobile robots[J]. IEEE Transactions on Control Systems Technology,2006,14(3):501–510.
    [15] Kim S H, Park C, Harashima F. Adaptive fuzzy controller design for trajectory tracking of a2D.O.F wheeled mobile robot using genetic algorithm[C]. Proceedings of the1998IEEE/RSJInternational Conference on Intelligent Robot and Systems (IROS98), Victoria, Can,1998:1584–1589.
    [16] Kim S H, Park C, Harashima F. A self–organized fuzzy controller for wheeled mobile robotusing an evolutionary algorithm[J]. IEEE Transactions on Industrial Electronics,2001,48(2):467–474.
    [17]曹志彤,郑中胜.电机运动系统的混沌特性[J].中国电机工程学报,1998,18(5):319–322.
    [18]李华德.交流调速控制系统[M].北京:电子工业出版社,2002:92–150.
    [19]李永东,张猛.高性能交流永磁同步电机伺服系统现状[J].伺服控制,2008,1(1):34–37.
    [20] Depenbrock M. Direet self–controlled (DSC) of inverter–fed induction machine[J]. IEEETransactions on Power Electronics,1988,3(4):420–429.
    [21]刘军.永磁电动机控制系统若干问题的研究[D].上海:华中理工大学,2010.
    [22] Denai M A, Attia S A. Intelligent Control of an Induction Motor[J]. Electric PowerComponents and Systems,2002,30(4):409–427.
    [23]高为炳.变结构控制理论基础[M].北京:中国科学技术出版社,1990.
    [24]周晓敏,王长松,齐昕.卡尔曼滤波用于低速下PMSM检测转子位置[J].微特电,2007,35(12):12–15.
    [25]林海,严卫生,李宏涛.基于无迹卡尔曼滤波的永磁同步电机无传感器直接转矩控制[J].西北工业大学学报,2009,27(2):204–208.
    [26]孙增圻,张再兴.智能控制理论与技术[M].北京:清华大学出版社,1997.
    [27]李人厚.智能控制理论和方法[M].西安:西安电子科技大学出版社,1999.
    [28]张化光,孟祥萍.智能控制基础理论及应用[M].北京:机械上业出版社,2005.
    [29] Lee J H, Youn M J. A new improved continuous variable structure controller for accuratelyprescribed tracking control of bldd servo motors[J]. Automatica.2004,40(12):2069-2074.
    [30] Swaroop D, Hedrick J K, Yip P P, et al. Dynamic surface control for a class of nonlinearsystems[J]. IEEE Transactions on Automatic Control,2000,45(10):1893–1899.
    [31] Yip P P, Hedrick J K. Adaptive dynamic surface control: a simplified algorithm for adaptivebackstepping control of nonlinear systems[J]. International Journal of Control,1998,71(5):959–979.
    [32] Zhang T P, Ge S S. Adaptive dynamic surface control of nonlinear systems with unknowndead zone in pure feedback form[J]. Automatica,2008,44(7):1895–1903.
    [33]张天平,文慧.基于ISS的非线性纯反馈系统的自适应动态面控制[J].控制与决策,2009,24(11):1707–1712.
    [34] Wang D, Huang J. Neural network–based adaptive dynamic surface control for a class ofuncertain nonlinear systems in strict feedback form[J]. IEEE Transactions on neural networks,2005,16(1):195–202.
    [35]王芹,张天平.基于动态面的自适应模糊输出反馈控制[J].系统工程与电子技术,2009,31(1):44–50.
    [36] Yoo S J, Park J B, Choi Y H. Adaptive neural dynamic surface control of nonlineartime–delay systems with model uncertainties[C]. In Proceedings of the2006AmericanControl Conference, Minneapolis, Minnesota, USA,2006:3140–3145.
    [37] Yoo S J, Park J B, Choi Y H. Adaptive dynamic surface control for stabilization of parametricstrict–feedback nonlinear systems with unknown time delays[J]. IEEE Transactions onAutomatic Control,2007,52(12):2360–2365.
    [38]郭涛,张军英.一种简化的自适应模糊动态面控制[J].控制理论与应用,2009,26(12):1387–1390.
    [39]周丽,姜长生,都延丽.简化的鲁棒自适应模糊动态面控制及其应用[J].航空学报,2008,29(5):1274–1280.
    [40] Song B. Decentralized dynamic surface control for a class of interconnected nonlinearsystems[C]. In Proceedings of the2006American Control Conference, Minneapolis,Minnesota, USA,2006:130–135.
    [41] Song B. Robust stabilization of decentralized dynamic surface control for a class ofinterconnected nonlinear systems[J]. International Journal of Control, Automation andSystems,2007,5(2):138–146.
    [42] Powell M J D. Radial basis funetions for multivariable interpolation: a Review[C].Conference on Algorithms for Approximation of Funetions and Data, Shrivenham, IMA UK,1985:143–167.
    [43] Broomhead D S, Lowe D. Multivariable functional interpolation and adaptive networks[J].Complex Systems,1988,2:321–355.
    [44] Ge S S, Hang C C, Lee T H, et al. Stable adaptive neural network control[M]. Boston, MA:Kluwer,2010.
    [45] Kosmatopoulos E B, Polycarpou M M, Christodoulou M A, et al. High–order neural networkstructures for identification of dynamical systems[J]. IEEE Transaction on Neural Networks,1995,6(2):422–431.
    [46] Krstic M, Modestino J W, Deng H. Stabilization of nonlinear uncertain systems[J]. Springer,New York, USA,1998.
    [47] Nurnberger G. Approximation by Spline Functions[M]. Springer–Verlag, New York,1989.
    [48] Sanner R M, Slotine J E. Gaussian networks for direct adaptive control[J]. IEEE Transactionon Neural Networks,1992,6(3):837–863.
    [49] Chen G, Dong X. From chaos to order: perspectives and methodologies in controlling chaoticnonlinear dynamical system[J]. International Journal of Bifurcation and Chaos,1993,3(6):1363–1409.
    [50]方锦清.非线性系统中混沌控制方法、同步原理及其应用前景[J].物理学进展,1996,16(2):137–159.
    [51] Grebogi C, Ott E, Yorke J A. Controlling chaos[J]. Physical Review Letters,1990,64(11):2837–2837.
    [52] Lima R, Pettini M. Parametric resonant control of chaos[J]. International Journal ofBifurcation and Chaos,1998,8(8):1675–1684.
    [53] Meucci R, Gadomski W, Ciofini M et al. Experimental control of chaos by means of weakparametric perturbations[J]. Physical Review E,1994,49(4):2528–2531.
    [54] Braiman Y, Goldhirsch I. Taming chaotic dynamics with weak periodic perturbations[J].Physical Review Letters,1991,66(20):2545–2548.
    [55] Pyragas K. Continuous control of chaos by self–controlling feedback[J]. Physical Letters A,1992,170(6):421–428.
    [56] Boccaletti S, Arecchi F T. Adaptive control of chaos[J]. Europhysics Letters,1995,31(3):127–132.
    [57] Basso M, Genesio R, Giovanardi, et al. On optimal stabilization of periodic orbits via timedelayed feedback control[J]. International Journal of Bifurcation and Chaos,1998,8(8):1699–1706.
    [58] Aston P J, Bird C M. Using control of chaos to refine approximations to periodic points[J].International Journal of Bifurcation and Chaos,2000,10(1):227–235.
    [59] Ritz T, Schweinsberg A S Z, Dressier U, et al. Chaos control with adjustable control times[J].Chaos, Solitons&Fractals,1997,8(9):1559–1576.
    [60] Yu X H, Chen G R, Xia Y, et al. An invariant manifold based method for chaos control[J].IEEE Transactions on Circuits and Systems,2001,48(8):930–937.
    [61]揭贵生,马伟明,耿建明,等.无刷直流电机的一种新型转矩与效率优化控制[J].中国电机工程学报,2006,26(24):131–136.
    [62]韦鲲,胡长生,张仲超.一种新的消除无刷直流电机非导通相续流的PWM调制方式[J].中国电机工程学报,2005,25(7):104–108.
    [63]安群涛,孙立志,刘超,等.无刷直流电机的磁链自控直接转矩控制[J].中国电机工程学报,2010,30(12):86–92.
    [64] Hernández G V M, Santibá ez V, ZavalaR A. A saturated PD controller for robots equippedwith brushless DC–motors[J]. Robotica,2010,28(3):405–411.
    [65] Ditto W L, Spano M L, Savage H T, et al. Experimental observation of a strange nonchaoticattractor[J]. Physical Review Letters.1990,65(5):533–536.
    [66] Wang Z, Chau K T. Anti–control of chaos of a permanent magnet DC motor system forvibratory compactors[J]. Chaos, Solitons&Fractals,2008,36(3):694–708.
    [67]李东,王时龙,张小洪,等.参数不确定永磁同步电机混沌的模糊脉冲控制[J].物理学报,2009,58(5):1432–1440.
    [68] Ubaid M, Al S. An approximation technique to tune PID controllers[J]. Computers&Electrical Engineering.1991,17(4):313–320.
    [69]王晓远,田亮,冯华.无刷直流电机直接转矩模糊控制研究[J].中国电机工程学报,2006,26(15):134–138.
    [70] Chen S T, Tzuu H S Li, Fan C K. An approach to systematic design of the fuzzy controlsystem[J]. Fuzzy Sets and Systems,1996,77(2):151–166.
    [71] Vilém N. Fuzzy control from the logical point of view[J]. Fuzzy Sets and Systems.1994,66(2):159–173.
    [72] Shih Y L. Chaos control of new mathieu–van der pol systems by fuzzy logic constantcontrollers[J]. Applied Soft Computing,2011,11(8):4474–4487.
    [73] Udawatta, L, Watanabe, K, Kiguchi, K, et al. Fuzzy-chaos hybrid controller for controlling ofnonlinear systems[J]. IEEE Transactions on Fuzzy Systems,2002,10(3):401–411.
    [74]金耀初,蒋静坪.最优模糊控制的两种设计方法[J].中国电机工程学报,1996,16(3):201–204.
    [75] Chun L. GA–based multi objective PID control for a linear brushless DC motor[J]. IEEETransactions on Mechatronics,2003,8(1):56–65.
    [76]文劲宇,程时杰.基于遗传算法的发电机模糊式综合励磁控制器的研究[J].中国电机工程学报,1998,18(2):91–95.
    [77]武晓晶.具有输入输出约束特性的非线性系统自适应控制研究[D].秦皇岛:燕山大学,2012.
    [78] Ngo K B, Mahony R, Jiang Z P. Integrator backstepping using barrier functions for systemswith multiple state constraints[C]. Proceedings of the44th IEEE Conference on Decision andControl, and the European Control Conference Seville, Spain,2005:8306–8312.
    [79] Ren B B, Ge S S, Tee K P, et al. Adaptive neural control for output feedback onlinear systemsusing a barrier Lyapunov function[J]. IEEE Trasactions on Neural Networks,2010,21(8):1339–1345.
    [80] Tee K P, Ge S S, Tay E H. Adaptive control of electrostatic microactuators with bidirectionaldrive[J]. IEEE Transactions on Control Systems Technology,2009,17(2):340–352.
    [81] Ho D W C, Li J M, Niu Y G. Adaptive neural control for a class of nonlinearly parametrictime–delay systems[J]. IEEE Transaction on Neural Network,2005,16(3):625–635.
    [82] Ge S S, Hong F, Lee T H. Adaptive neural network control of nonlinear systems withunknown time delays[J]. IEEE Transactions on Automatic Control,2003,48(11):2004–2010.
    [83] Ge S S, Hong F, Lee T H. Adaptive neural control of nonlinear time–delay systems withunknown virtual control coefficients[J].IEEE Transaction on Systems, Man, Cybernetics–PartB,2004,34(1):499–516.
    [84] Hong F, Ge S S, Lee T H. Practical adaptive neural control of nonlinear systems withunknown time delays[J]. IEEE Transaction on Systems, Man, and Cybernetics–Part B,2005,35(4):849–854.
    [85] Ge Z M, Cheng J W, Chen Y S. Chaos anticontrol and synchronization of three time scalesbrushless DC motor system[J]. Chaos, Solitons&Fractals,2004,22(5):1165–1182.
    [86] Ge Z M, Cheng J W. Chaos synchronization and parameter identification of three time scalesbrushless DC motor system[J]. Chaos, Solitons&Fractals.2005,24(2):597–616.
    [87] Michael S J. The Cauchy–Schwarz master class: an introduction to the art of mathematicalinequalities[M]. Cambridge: Cambridge University Press,2004.
    [88] Ataei M, Kiyoumarsi A, Ghorbani B. Control of chaos in permanent magnet synchronousmotor by using optimal Lyapunov exponents placement[J]. Physics Letters A,2010,374(41):4226–4230.
    [89] Harb A M. Nonlinear chaos control in a permanent magnet reluctance machine[J]. Chaos,Solitons&Fractals,2004,19(5):1217–1224.
    [90]张波,李忠,毛宗源.永磁同步电动机的混沌模型及其模糊建模[J].控制理论与应用2002,19(6):841–844.
    [91] Li Z, Jin B P, Young H J, et al. Bifurcations and chaos in a permanent magnet synchronousmotor[J]. IEEE Transactions on Circuits and systems,2002,49(3):383–387.
    [92] Fradkov A L, Evans R J. Control of chaos: methods and applications in engineering[J].Annual Reviews in Control,2005,29(1):33–56.
    [93] Zhang F, Shu Y, Yang H, et al. Estimating the ultimate bound and positively invariant set for asynchronous motor and its application in chaos synchronization[J]. Chaos, Solitons&Fractals,2011,44(1–3):137–144.
    [94] Yang L, Liu Z. An improvement and proof of OGY method[J]. Applied Mathematics andMechanics,1998,19(1):1–8.
    [95] Alasty A, Salarieh H. Controlling the chaos using fuzzy estimation of OGY and Pyragascontrollers[J]. Chaos, Solitons&Fractals,2005,26(2):379–392.
    [96] Paula A S D, Savi M A. A multiparameter chaos control method based on OGY approach[J].Chaos, Solitons&Fractals,2009,40(3):1376–1390.
    [97] Ma H, Deshmukh V, Butcher E, et al. Delayed state feedback and chaos control fortime–periodic systems via a symbolic approach[J]. Communications in Nonlinear Science andNumerical Simulation,2005,10(5):479–497.
    [98] Zhou Y, Dexter A. Off–line identification of nonlinear dynamic systems using a neuro–fuzzymodelling technique[J].Fuzzy Sets and Systems,2013,225(16):74–92.
    [99] Mitrakis N E, Theocharis J B, Petridis V. A multilayered neuro–fuzzy classifier withself–organizing properties[J]. Fuzzy Sets and Systems,2008,159(23):3132–3159.
    [100] Zhang C, Liu H, Chen S, et al. Application of neural network for permanent magnetsynchronous motor direct torque control[J]. Journal of Systems Engineering andElectronics,2008,19(3):555–561.
    [101] Elmas C, Ustun O, Sayan H. A neuro–fuzzy controller for speed control of a permanentmagnet synchronous motor drive[J]. Expert Systems with Applications,2008,34(1):657–664,.
    [102]李忠,张波,毛宗源.永磁同步电动机系统的纳入轨道和强迫迁徙控制[J].控制理论与应用,2002,19(1):53–56.
    [103]任海鹏,刘丁,李洁.永磁同步电动机中混沌运动的延迟反馈控制[J].中国电机工程学报,2003,23(6):175–178.
    [104]郭涛.严格反馈不确定非线性时滞系统的自适应模糊控制[D].西安:西安电子科技大学,2009.
    [105] Fu T, Xie W. A novel sliding–mode control of induction motor using space vector modulationtechnique[J]. ISA Transactions,2005,44(4):481–490.
    [106] Feng Y, Yub X, Man Z. Non–singular terminal sliding mode control of rigid manipulators[J].Automatica,2002,38(12):2159–2167.
    [107] Estrada A, Fridman L. Quasi–continuous HOSM control for systems with unmatchedperturbations[J]. Automatica,2010,46(11):1916–1919.
    [108] Zheng J, Feng Y, Zheng X, et al. Adaptive backstepping–based terminal–sliding mode controlfor uncertain nonlinear systems[J].Control Theory&Applications,2009,26(4):410–414.
    [109] Swaroop D, Hedrick J K, Yip P P, et al. Dynamic surface control for a class of nonlinearsystems[J]. American Control Conference, NM, Jun.1997,3028–3034.
    [110] Yoo S J, Park J B, Choi Y H. Adaptive dynamic surface control for stabilization of parametricstrict feedback nonlinear systems with unknown time delays[J]. IEEE Transactions onAutomatic Control,2007,52(12):2360–2365.
    [111]贾涛,刘军,钱富才.一类非线性时滞系统的自适应模糊动态面控制[J].自动化学报,2011,37(1):83–91.
    [112]李静,胡云安,耿宝亮.控制方向未知的二阶时变非线性系统自适应迭代学习控制[J].控制理论与应用,2012,29(6):730–740.
    [113] Rasoolzadeh A, Tavazoei M S. Prediction of chaos in non–salient permanent–magnetsynchronous machines[J].Physics Letters A,2012,377(1–2):73–79.
    [114] Li Z, Park J B, Joo Y H, et al. Chen, Bifurcations and chaos in a permanent–magnetsynchronous motor[J]. IEEE Transactions on Circuits and Systems,2002,49(3):383–387.
    [115] Zribi M, Oteafy A, Smaoui N. Controlling chaos in the permanent magnet synchronousmotor[J].Chaos, Solitons&Fractals,2009,41(3):1266–1276.
    [116] Jing Z, Yu C, Chen G. Complex dynamics in a permanent magnet synchronous motormodel[J].Chaos, Solitons&Fractals,2004,22(4):831–848.
    [117]于金鹏.基于模糊逼近的交流电动机自适应控制[D].青岛:青岛大学,2011.
    [118] Ren H, Liu D. Nonlinear feedback control of chaos in permanent magnet synchronousmotor[J]. IEEE Transactions on Circuits and Systems I I,2006,53(1):45–50.
    [119] Lei J, Wang X, Lei Y. A Nussbaum gain adaptive synchronization of a new hyperchaoticsystem with input uncertainties and unknown parameters[J]. Commun Nonlinear Science andNumerical Simulation,2009,14(8):3439–3448.
    [120] Zhou A, Ren G, Shao C, et al. Synchronization of chaotic systems by using limited nussbaumgain method[J].Research Journal of Applied Sciences, Engineering and Technology,2012,4(10):4007–4011.
    [121]王家序,肖科,李俊阳,等.滤波减速器[P].中国:ZL201010104359.5,2011–12–7.
    [122]王家序,秦德成,张林川,等.滤波减速器轮齿表面瞬态微观弹流润滑模型[J].四川大学学报:工程科学版,2013,45(1):202–207.
    [123]王家序,李俊阳,周广武,等.智能滤波驱动装置[P].中国:ZL201110054607.4,2012–10–31.
    [124]王家序,李俊阳,肖科,等.滤波齿轮[P].中国:ZL201110054609.3,2011–7–27.
    [125] Kircanski N M, Goldenberg A A, Jia S. An experimental study of nonlinear stiffness,hysteresis, and friction effects in robot joints with harmonic drives and torque sensors[J]. TheInternational Journal of Robotics Research,1997,16(2):214–239.
    [126]王威,李瑰贤,宋玉玲.汽车转弯高维非线性动力学特性研究[J].哈尔滨工程大学学报,2009,30(6):676–685.
    [127] Duan H, Liu S, Wang D, et al. Design and Realization of hybrid ACO–based PID and LuGrefriction compensation controller for three degree–of–freedom high precision flightsimulator[J]. Simulation Modeling Practice and Theory,2009,17(6):1160–1169.
    [128] Han S, Lee K. Robust friction state observer and Recurrent fuzzy neural network design fordynamic friction compensation with backstepping control[J]. Mechatronics,2010,20(3):381–401.
    [129] Wang Y, Wang D,Chai T. Modeling and control compensation of nonlinear friction usingadaptive fuzzy systems[J]. Mechanical Systems and Signal Processing,2009,23(6):2445–2457.
    [130] Lin J, Chen C. Positioning and tracking of a linear motion stage with friction compensationby fuzzy logic approach[J]. ISA Transactions,2007,46(3):327–342.
    [131] Seyfferth W, Maghzal A, Angeles J. Nonlinear modeling and parameter identification ofharmonic drive robotic transmissions[C]. Proceedings: IEEE International Conference onRobotics and Automation, Nagoya, Japan,1995:3027–3032.
    [132]杜志江,肖永强,董为.含有摩擦间隙迟滞的机械臂关节建模方法[J].机器人,2011,33(5):539–545.
    [133] Chien M, Huang A. Adaptive control for flexible–joint electrically driven robot withtime–varying uncertainties[J]. IEEE Transactions on Industrial Electronics,2007,54(2):1032–1038.
    [134] Li Y, Tong S, Li T. Adaptive fuzzy output feedback control for a single–link flexible robotmanipulator driven DC motor via backstepping[J]. Nonlinear Analysis: Real WorldApplications,2013,14(1):483–494.
    [135]刘金琨.机器人控制系统的设计与Matlab仿真[M].北京:清华人学岀版社,2008.
    [136] Na J, Ren X, Herrmann G, et al. Adaptive neural dynamic surface control for servo systemswith unknown dead–zone[J]. Control Engineering Practice,2011,19(11):1328–1343.
    [137] Han S, Lee J. Adaptive dynamic surface control with sliding mode control and RWNN forRobust positioning of a linear motion stage[J]. Mechatronics,2012,22(2):222–238.
    [138] Wang D, Huang J. Neural network–based adaptive dynamic surface control for a class ofuncertain non linear systems in strict–feedback form[J]. IEEE Transactions on NeuralNetworks,2005,16(1):195–202.
    [139] Yoo S J, park J B, Choi Y H. Adaptive dynamic surface control of flexible joint Robots usingself–recurrent wavelet neural networks[J]. IEEE Transactions on Systems, Man andCybernetics,2006,36(6):1342–1355.
    [140] Yoo S J, Park J B, Choi Y H. Adaptive output feedback control of flexible–joint Robots usingneural networks: Dynamic surface design approach[J]. IEEE Transaction on Neural Networks,2008,19(10):1712–1726.
    [141]文慧.基于小增益定理的自适应模糊控制研究[D].扬州:扬州大学,2009.
    [142]郑耿峰.动态目标仿真转台控制及摩擦补偿研究[D].长春:中国科学院,2011.
    [143] Chen C, S Li T, Yeh Y, et al. Design and implementation of an adaptive sliding–modedynamic controller for wheeled mobile robots[J]. Mechatronics,2009,19(2):156–166.
    [144] Deng M, Inoue A, Sekiguchi K, et al. Two wheeled mobile robot motion control in dynamicenvironments[J].Robotics and Computer Integrated Manufacturing,2010,26(3):268–272.
    [145] Kim D H, Oh J H. Tracking control of a two–wheeled mobile robot using input–outputlinearization[J]. Control Engineering Practice,1999,7(3):369–373.
    [146] Normey R E, Gómez O J, Camacho E F. Smith–Predictor based generalised predictivecontroller for mobile robot path–tracking[J]. Control Engineering Practice,1999,7(6):729–740.
    [147] Hashemi E, Jadidi M, Jadidi N. Model based PI–fuzzy control of four wheeledomnidirectional mobile robots[J].Robotics and Autonomous Systems,2011,59(11):930–942.
    [148] Lin W, Yang P. Adaptive critic motion control design of autonomous wheeled mobile robot bydual heuristic programming[J]. Automatica,2008,44(11):2716–2723.
    [149] Corradini M, Orlando G. Control of mobile robots with uncertainties in the dynamical model:a discrete time sliding mode approach with experimental results[J]. Control EngineeringPractice,2002,10(1):23–24.
    [150] Zhou B, Han J, Dai X. Backstepping based global exponential stabilization of a trackedmobile robot with slipping perturbation[J]. Journal of Bionic Engineering,2011,8(1):69–76.
    [151] Ye J. Tracking control for nonholonomic mobile robots: Integrating the analog neural networkinto the backstepping technique[J]. Neurocomputing,2008,71(16–18):3373–3378.
    [152] Ye J. Adaptive control of nonlinear PID–based analog neural networks for a nonholonomicmobile robot[J]. Neurocomputing,2008,1(7–9):1561–1565.
    [153] Kwan C, Lewis F. Robust backsteppping control of nonlinear systems using neuralnetworks[J]. IEEE Transaction on systems, man, and cyberneties–part A: systems and humans,2000,30(6):753–766.
    [154] Mahmoodabadi M J, Taherkhorsandi M, Bagheri A.Optimal robust sliding mode trackingcontrol of a biped robot based on ingenious multi-objective PSO[J]. Neurocomputing,2014,124(26):194-209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700