用户名: 密码: 验证码:
基于车轮收放的高速水陆两栖车虚拟样机研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
快速性是水陆两栖车辆的重要战术性能指标,也是目前国内外两栖车辆研究的重要方向。为实现我国两栖车辆增速的目标,本文基于已有车型,完成推进器选型、布置及车体设计等工作,并利用虚拟样机技术对某改型后的水陆两栖车辆的水、陆双重性能开展相关研究。
     综合考虑推进器与发动机的匹配、尺寸等各方面因素,基于推力、阻力平衡原理,筛选出合理的喷水推进器,并确定航速,为接下来的流体动力学分析提供条件。同时,确定了两栖车辆水、陆双重驱动路线,并完成水上驱动装置的布置。
     参照高速两栖车辆车体特征,依据高速艇动力学相关理论,应用CATIA曲面造型模块对两栖车首、中、尾部分别进行设计,并构建整车模型;同时设计了一款新型防浪板。应用Gambit软件对加装和未加装防浪板的两模型及其流场区域,采用混合网格技术及尺寸函数控制法划分网格。在Fluent中应用VOF方法、标准k ?ε湍流模型、明渠流和几何重构技术,对比分析了两种模型水上各项性能。结果表明:加装防浪板的模型,水上性能更优。
     根据可收放悬架的特点和参数,在ADAMS /Car软件中构建车辆前后悬架、转向系、车身、轮胎的子系统模型及整车模型。根据国家车辆试验标准,对改型后的车辆完成转向盘转角阶跃仿真试验、稳态回转仿真试验、蛇行仿真试验、转向轻便性等操纵稳定性虚拟仿真试验。仿真结果说明该车具有较好的操稳稳定性能。
High-speed is an important tactical performance indicator for amphibious vehicles, and is also a significant research direction. To raise the speed of our amphibious vehicles, water-jet selection, arrangement and body design works are completed in this article, based on existing models; some related researches on waterborne and overland double performance are done for the re-constructing vehicle by using virtual prototyping technology.
     Comprehensively considered the match of the propeller and the engine power, size, etc.and based on the principle of the thrust and drag forces balance principle, a reasonable water jet propulsion is selected. Simultaneously, the sailing speed is determined, which provided a basis for the next fluid dynamics analysis. In addition, the amphibious car’s waterborne and overland double-driven lines are defined, and the waterborne driven line arrangement is completed.
     In body design process, the whole vehicle is divided into three parts-head, middle and rear. Reference on high speed amphibious vehicle body features and high speed craft dynamics theories, the three parts are designed, respectively, in CATIA shape-design module. Still a fresh style of wash plate is designed. In Gambit, hybrid grid technology and the dimensions control function are used, in order to gain reasonable grid for two amphibious vehicle analysis models: one with wash plate and the other without. In Fluent, VOF method, k ?εstandard turbulence model, open channel flow and geometric reconstruction are applied to get comparative analysis of the two models waterborne performance. The results show that the model with wash plate has the better waterborne performance.
     According to the characteristics of the wheels’retracting and parameters, the ADAMS/Car software is used to build the vehicle front and rear suspension subsystems, steering subsystem, body subsystem, the tires subsystem and the whole vehicle model. Based on national vehicle test standards, controllability and stability virtual simulation test-steering step, steady-state of rotary, snake and steering efforts, are done in ADAMS/Car.The analysis results illustrate that the vehicle’s controllability and stability is good.
引文
[1]宋桂霞.水陆两栖车辆减阻增速关键问题研究[D].南京:南京航空航天大学,2008.
    [2]贾小平,邢俊文,于魁龙.高速两栖车辆滑行车体阻力分析与可实现形式[J].车辆与动力技术,2001,(1):15~21.
    [3]吴磊.美国军用高速两栖车[J].国外坦克,2008,(9):40~41.
    [4]陈思忠,吴志成,杨林,张斌.轮式两栖军车高航速技术探讨[J].车辆与动力技术, 2009,(2):61~64.
    [5]辛志坡,王伟.高速水陆两栖车辆技术发展[J].专用汽车:2007,(6):18~21.
    [6] Frejek M, Nokleby S. Design of a small-scale autonomous amphibious vehicle[C].2008 Canadian Conference on Electrical and Computer Engineering– CCECE, Niagara Falls, Canada,2008:781~786.
    [7]新华网.三栖汽车水陆空都能跑[EB/OL].(2004-02-23)[2009-11-28]. http://news.xinhuanet. com/st/2004-02/20/content_1324322.htm.
    [8]水陆两用车设计工作室.成功案例[EB/OL]. (2009-2-18) [2009-11-28]. http://www.boatcar. net/zhongwenye/Chenggonganli.htm.
    [9]陈跟林.国产“西贝虎”两栖全地形车[J].兵器知识: 2007,(12):28~30.
    [10]义乌西贝虎特种车辆有限公司.车型介绍[EB/OL]. (2009-12-5) [2009-11-28]. http://www. chinaxbh.com/products-1.asp.
    [11]郑翔玉,贾小平,刘西侠.小型高速两栖车水上行驶阻力数值模拟[J].舰船科学技术,2008,(3):139~141.
    [12]孙伟,韩建礼,刘西侠.基于动网格模型的两栖车辆数值[J].模拟舰船科学技术,2009, (1):146~150.
    [13]李玉良,潘双夏.基于流体体积的两栖车辆阻力并行数值计算[J].浙江大学学报(工学版),2006,40(8):1333~1338.
    [14]高富东.两栖车辆绕流场数值模拟及外形优化分析[D].长沙:国防科技大学,2007.
    [15]宋桂霞,赵又群.减少两栖车辆兴波及阻力方法研究与仿真分析[J].系统仿真技术:2010,(2):110~115.
    [16]宋桂霞,赵又群,吴柯.两栖车辆阻力水气两相流三维数值模拟[J].哈尔滨工程大学学报:2008,(9):907~911,928.
    [17]宋桂霞,赵又群.两栖车抗倾能力下降原因分析与改善措施研究[J].中国机械工程:2008,(4):486~490.
    [18]宋桂霞,赵又群.两栖车辆车轮收放装置:中国,200810018848.1[P].2008-01-28.
    [19]吴珂,杨定富,赵又群.水陆两栖汽车出入水特性研究[J].农业装备与车辆工程, 2008,(12):20~22.
    [20]吴珂,宋桂霞,赵又群.基于流体仿真的两栖车车轮收起前后阻力对比分析[J].系统仿真技术, 2007,3 (4):187~190.
    [21]杨楚泉.水陆两栖车辆原理与设计[M].北京:国防工业出版社,2003:138~140.
    [22]雷建宇.两栖车辆水上推进装置的研究[J].机械管理开发,2005,(2):3~6.
    [23]田伟鹏,潘玉田,马新谋.喷水推进系统在两栖车辆上的研究与应用[J].机械管理与开发,2006,(5):21~24.
    [24]黄国成.关于排水型两栖车辆水上航速的研究[J].装甲兵工程学院学报,1995,(9):34~42.
    [25]钱建军.双水翼两栖车辆总体布局及水上性能分析[D].北京:北京理工大学,2006.
    [26]邵世明,王云才.高速艇动力学[M].上海:上海交通大学出版社,1990.8:9~11.
    [27] Longdrill S J,Weekers H,Briggs S J,et al. Amphibious Vehicle:US,0,199,449[P].2006-09-07.
    [28] Gibbs Alan Timothy. Amphibious Vehicle:US,0,014,371[P].2004-01-22.
    [29] Gibbs Alan Timothy. Amphibious Vehicle:US,7,214,112[P].2007-05-08.
    [30] Gibbs Alan Timothy.Amphibious Vehicle:US,0,277,342[P]. 2005-12-15.
    [31] Ultra Dynamic Ltd. UltraJET 251 Desinger’s Manual.Ultra Dynamic Ltd, 2005.
    [32]艾伦·蒂莫西·吉布斯.两栖车辆:中国,01812932.3[P]. 2001-07-29.
    [33] J. F. Allan and W. P. Walker. Resistance of Bargesin Deep and Shallow Water [J].Institution of Naval Architect, 1948, (90):154.
    [34]王涛,徐国英,郭齐胜.两栖车辆水上动态性能数值模拟方法及其应用[M].北京:国防工业出版社,2009.9:180~186.
    [35]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社,2004:177~183.
    [36]于勇.Fluent入门与进阶教程.北京:北京理工大学出版社,2008.9:86~87,159~160.
    [37] Tomasz Tabaczek.Computation of flow around inland waterway vessel in shallow water[J].Arch ives of Civil and Mechanical Engineering, 2008, (1):97~105.
    [38] Y.Hakan ?zdemir, Seyfettin Bayraktar, Tamer Y?lmaz.Computational investigation of a hull[C]// the 2nd International Conference on Marine Research and Transportation. Italy: ICMRT, 2007:145~149.
    [39] Yusuke Tahara , Robert V. Wilson ,Pablo M. Carrica et al.RANS simulation of a container ship using a single-phase level-set method with overset grids and the prognosis for extension to a self-propulsion simulator[J]. J Mar Sci Technol ,2006,(11):209~228.
    [40] Fluent Inc. Fluent User’s Guide. Fluent Inc, 2006.8.
    [41] Raithby GD, Xu WX, Stubley GD.Prediction of incompressible free surface ?ows with an element-based finite volume method [J]. Computat Fluid Dyn J ,1995,(4):353~371.
    [42] Kothe DB ,Rider WJ , Mosso SJ et al.Volume tracking of interfaces having surface tension in two and three dimensions[J].AIAA paper 96–0859, 1996.
    [43] Hirt CW, Nichols BD.Volume of ?uid method for the dynamics of free boundaries [J]. J Comput Phys ,1981,(39):201~225.
    [44] Ubbink O, Issa RI. A method for capturing sharp ?uid interfaces on arbitrary meshes [J]. J Comput Phys ,1999,(153):26~50.
    [45]郑建荣.ADAMD—虚拟样机技术入门与提高[M].北京:机械工业出版社, 2001:11~12.
    [46] Hegazy S, Rahnejat H, Hussain K.Multi-body dynamics in full-vehicle handling analysis[J].Proceeding of Institution of Mechanical Engineers(Part K), 1999, (213):19~35.
    [47]冯樱,郭一鸣,郑冬黎等.基于ADAMS的整车建模和操纵稳定性仿真评价[J].湖北汽车工业学院学报, 2009,23(3):7~10,15.
    [48]黄松.中国首批第三代越野汽车东风“猛士”的开发[J] .汽车工程,2008,30(9):731~735.
    [49] Alan Timothy Gibbs. Amphibious vehicle: US 0148340[P].2006-07-06.
    [50]陈军.MSC.ADAMS技术与工程分析实力[M].北京:中国水利水电出版社,2008:157~166.
    [51]郭正康.汽车整车转动惯量的计算与选取[J].汽车研究与开发,1993,(6):42~44.
    [52]《汽车工程手册》编辑委员会.汽车工程手册试验篇[M].北京:人民交通出版社,2000.12:252~256,263.
    [53]中华人民共和国标准,GB/T 6323.4-94,转向盘瞬态响应试验[S].
    [54]余志生.汽车理论(第四版)[M].北京:机械工业出版社,2006.5:113~114.
    [55] Y. E. KO, C.K.SONG. Vehicle modeling with nonliner tires for vehicle stablity analysis[J],International Journal of Automotive Technology, 2010,11(3):339~344.
    [56]中华人民共和国标准,GB/T6323.6-1994,稳态回转试验[S].
    [57]中华人民共和国标准,GB/T6323.1-94,蛇形试验[S].
    [58]中华人民共和国标准,GB/T 6323.5-94,转向轻便性试验[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700