用户名: 密码: 验证码:
水陆两栖车辆减阻增速关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两栖车辆的高速性能是衡量其性能指标之一,为了提高我国两栖车辆在水中的航速,对两栖车辆进行相关分析后,提出了减小车辆两栖车辆车轮的阻力来提高速度的策略,并设计了车轮收起方案。
     车轮收放方案综合考虑了车辆的空间布置、收起状态、运动干涉以及陆上行驶的安全性,设计了合理的收起方式、定位方式,以及陆上行驶车辆车轮收放功能失效,使车轮在水中收起时能平稳快捷,车辆在陆上行驶时安全稳定。车轮收起的力由液压系统产生。设计了完整的液压系统回路,并通过对液压元件的参数设置和仿真,检验了液压系统的稳定性。由导轨约束减振器和螺旋弹簧的定位,确定了车辆陆上行驶的安全稳定性。通过优化悬架结构参数,使车轮收起后的状态能使附件阻力充分减小。驱动半轴以及横向稳定杆与下横臂之间采用合适的连接形式,避免收起车轮时的运动干涉,使车轮收放能顺利进行。由压力感测器感知车辆陆上和入水后压力的变化,来控制车轮收起功能是否工作,以保证车辆陆上行驶的安全。
     利用Fluent对车轮收起前后的车辆进行了流体仿真,对比分析了车轮收起前后阻力的变化。结合车辆实际运行环境,模型采用了水气两相流进行分析。根据车辆外型断面变化剧烈、扰流情况复杂的特点,在对计算区域划分网格时,采用了内部为非结构网格、外部为结构网格的混合网格划分方法,以充分捕捉流场。为了加快计算速度,采用了并行计算方法。最后针对车首上水严重的现象,根据仿生学原理设计了一种新的防浪板类型,并通过仿真,对比分析了两种防浪板对水流的导流情况。
     对悬架结构优化前后的整车进行了仿真,分析了悬架变动前后车辆性能的变化。首先通过对比悬架变动前的整车动力学模型的仿真结果和实车试验结果,验证模型的正确性,然后对悬架优化前后的整车虚拟样机进行操纵稳定性和行驶平顺性的仿真分析,通过改变悬架优化后整车的一些参数,使其仍基本保持原车的性能。
High speed is one of the indexes to estimate amphibious vehicle`s performance. In order to advance the speed of amphibious vehicle of China when sailing in water, the strategy of reducing wheels` resistance and increasing speed is proposed, and design a scheme of retracting and deploying wheels.
     The scheme takes into account vehicle`s space configuration, wheels` deployed state, movement intervene, and security when running on land synthetically. The retracted mode, orientation mode, and prevent wheels from being retracted by mistake when vehicle running on land are all calculated, so wheels can be retracted smoothly and fleetly, and vehicle can run security and stability. The force that retracts wheels is supplied by hydraulic system; design the hydraulic circuit system, by setting the parameters of the hydraulic components and simulating to test the stability of hydraulic system. Displacements of spring and absorber upper ends are restricted by guide way to ensure the security and stability of vehicle. Resistance is reduced caused by wheels as much as possible by optimizeing suspension configuration parameter. Drive shafts and anti-roll bar with low arms are adopted appropriate joint to avoid movement intervene when retracting wheels, and keep wheels` retract and deploy successfully. The change of pressure is received by pressure detector after vehicle into water to control wheels retracting function, and ensure vehicle security running on land.
     Resistance variety of amphibious vehicles in wheels` retracting and deploying are analyzed using Fluent. Conbine with vehicle`s factual work condition, numerical simulation is carried through by VOF multiphase. Because the bodywork configuration is complexity, and turbulent was severity around it, flows are compartmentalized by using mixed grid to track flow field fully, and using parallel computation to enhance computing speed. In order to improve water loading of amphibious vehicle head, a new anti-wave board shape is designed based on bionics, and using simulating to analyze diversion water function.
     Simulation is carried through to contrast performance change when suspension is optimization. Firstly, by comparing the simulation results with real vehicle test results of previous vehicle to test the validity of multi-body dynamics model; secondly, simulate the handling stability and riding of previous vehicle and vehicle which suspension optimized, and by changing some parameters of vehicle that suspension optimized, let it remain previous vehicle`s performance basically.
引文
[1]杨楚泉.水陆两栖车辆原理与设计[M].北京:国防工业出版社,2003.
    [2]吴珂,王伟,赵丰.军用水陆两栖汽车发展现状和发展趋势[J].专用汽车,2004,(2):15~16.
    [3]吴春秋.论大战略和世界战争史[M].北京:解放军出版社,2002.
    [4]张云义.世界战争新形态[M].北京:解放军出版社,1990.
    [5]胡海坤.水陆两栖车辆水上行驶减阻增速模型研究[D].北京:北京理工大学,2006.
    [6]闫向东.两栖装甲车辆概述[J].现代舰船,2000,(1):35~37.
    [7]张声涛,熊克芳,胡海坤.系统综合集成思维方法[R].中国兵工学会第六次全国代表大会学术报告集,2003.
    [8]毛翔.“吉布斯”两栖装甲车族[J].兵器知识,2008,(8):54~56.
    [9]干戈.LVT——二战中的“水上蛟龙”(下)[J].坦克装甲车辆,2000,(6):21~25.
    [10]里土.雄霸天下之俄罗斯两栖装甲战车(上)[J].现代舰船,2000,(5):9~13.
    [11]钱建军.双水翼两栖车辆总体布局及水上性能分析[D].北京:北京理工大学,2006.
    [12]徐志伟.劈波斩浪铁骑威——水陆坦克面面观[J].兵器知识,2000,(10):6~9.
    [13]李仁业.水陆两栖战车发展对策研究[R].北京:兵器工业情报研究所,1997.
    [14] **兵武器装备论证手册编辑部.**兵武器装备论证手册[M].北京:中国科学技术出版社,1992.
    [15]庞宝文.美国AAAV先进两栖突击车[J].坦克装甲车辆,2000,(5):8~11.
    [16]王立祥.两栖**车海上高速航渡技术初探[J].船舶,1999(6):11~16.
    [17] Karniol R. South Korea will continue to produce amphibious vehicle[J]. Jane's Defence Weekly, 2006, (8): 89~92.
    [18] Stecklein G L, Treichel B. CONTROL SYSTEM DESIGN FOR A HIGH-SPEED TRACKED AMPHIBIOUS VEHICLE[C]. Computers in Engineering 1985, Proceedings of the 1985 ASME International Computers in Engineering Conference and Exhibition, Boston, USA, 1985:103~109.
    [19] Frejek M, Nokleby S. Design of a small-scale autonomous amphibious vehicle[C].2008 Canadian Conference on Electrical and Computer Engineering– CCECE, Niagara Falls, Canada, 2008:781~786.
    [20]辛志坡,王伟.高速水陆两栖车辆技术发展[J].专用汽车:2007,(6):18~21.
    [21]环球时报.三栖汽车水陆空都能跑[EB/OL] . (2004-02-23) [2008-04-16]. http://edu.anhui-news.com/system/2004/02/23/00571224.shtml
    [22]乐嘉渝.杨楚泉先生访谈录[J].坦克装甲车辆,2004,(1):1~5.
    [23]王进举,康珏.水陆铁骑中国两栖装甲车辆[J].中国海军,2004,(7):27~32.
    [24]张声涛.坦克设计新发展[J].兵工学报坦克装甲车与发动机分册,1994,(4):1~8.
    [25]张声涛.坦克系统总体设计与研究[J].兵工学报坦克装甲车与发动机分册,1995,(4):1~5.
    [26]中国航天工业总公司第二研究院二零七所.63改水陆坦克样车水上最大速度测试报告:63改联合试验组[R].中国:中国航天工业总公司第二研究院二零七所,2000.
    [27]网易汽车.看看千奇百怪的水陆两栖车[EB/OL]. (2007-07-18) [2008-04-17]. http://auto.163.com/07/0718/11/3JM92DLR000816IP.html.
    [28] Siuru B. By land and sea [amphibious recreational vehicle][J]. Diesel Progress, 2005, 71(10): 6~8.
    [29] Ehrlich I R, Kamm I O, Worden G. Water performance of amphibious vehicles: PartⅠ—Drag and water speeds[J], Journal of Terramechanics, 1970, 7(2): 61~102.
    [30] Ehrlich I R, Kamm I O, Worden G. Water performance of amphibious vehicles part II—Propulsion and maneuverability[J]. Journal of Terramechanics, 1970, 7 (3/4):69~99.
    [31]伊绍林.船舶阻力[M].北京:国防工业出版社,1985.
    [32]赵连恩.高性能船舶水动力原理与设计[M].哈尔滨:哈尔滨工程大学出版社,2000.
    [33]黄国成.关于排水型两栖车辆水上航速的研究[J].装甲兵工程学院学报,1995,1(9) :34~42.
    [34]邵世明.船舶阻力[M].北京:国防工业出版社,1995.
    [35] Rymiszewski A J. Improving the water speed of wheeled vehicles[J]. Journal of Terramechanics, 1964, 1(1): 75~90.
    [36]张小虞等.汽车工程手册·设计篇[M].北京:人民交通出版社,2001.
    [37]陈家瑞.汽车构造[M].北京:人民交通出版社,2000.
    [38]菲利普·弗雷德里克·里斯,安东尼·罗伊·马德.两栖车辆悬架:英国,200480009045.X [P],2004-10-14.
    [39]时彦林.液压传动[M].北京:化学工业出版社,2006.
    [40]丁树模,周骥平.液压传动[M].北京:机械工业出版社,1998.
    [41]机械手册委员会编著.机械设计手册[M](第三卷).北京:机械工业出版社,2004.
    [42]庞利平.水下航行器深度模拟系统研究及实现[D].西安:西北工业大学,2007.
    [43]秦家升,游善兰.AMESim软件的特征及应用[J].微机应用与智能化,2004,(12):6~9.
    [44]杨非,雷金柱.基于AMESim的工程车辆液压悬架系统仿真[J].液压气动与密封,2008,(2):31~34.
    [45]郑建荣.ADAMS-虚拟样机技术入门与提高[M].北京:机械工业出版社,2001.
    [46]陈立平,张云清,任卫群,等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005.
    [47]冯永华.高速汽车侧风稳定性研究[D].南京:南京航空航天大学,2007.
    [48]王国林,蒋国平,李守成.车轮跳动对定位参数影响的试验分析[J].农业机械学报,36(7):29~31.
    [49]张志杰.基于悬架参数测量试验台的操纵稳定性仿真分析[D].长春:吉林大学,2006.
    [50] Lotus Engineering. Control Systems SOFTWARE USER GUIDE, 2004.
    [51] Ferry William B. Combining virtual simulation and physical vehicle test data to optimize automotive durability testing[D]. Canda: University of Windsor, 2004.
    [52] Kenneth William. Coupling suspension complex system optimization[D]. New York: State University of New York at Buffalo, 2001.
    [53]黄伟.越野车操纵稳定性和行驶平顺性仿真及应用研究[D].合肥:合肥工业大学,2007.
    [54] Lotus Engineering. Auto Plot SOFTWARE USER GUIDE, 2004.
    [55] Lotus Engineering. K&C PCFs USER GUIDE, 2004.
    [56] Cai Zhanglin, Song Chuanxue. An Xiaojun Virtual Simulation Research on Vehicle Ride Comfort[C]. SAE paper, 2006-01-3499.
    [57]郭孔辉.汽车操纵动力学[M].长春:吉林科学技术出版社,1991.
    [58] Bend Weber. Identification of Model Parameters with ADAMS/Design of Experiments (DOE) and ADANMS/Optimization[C]. 13th European ADAMS Users` Conference, 1995.
    [59] DR M A Pendlebury. MBS modeling of the levland Trucks 55 Siries 12Te[C]. ADAMS User Conference`98, 1998.
    [60]姚征,陈康民.CFD通用软件综述[J].上海理工大学学报,2002,24(2):137~144.
    [61]李勇,刘志友,安亦然.介绍计算流体力学通用软件—Fluent[J].水动力学研究与进展,2001,16(2):254~258.
    [62] Shyy V. Thakur S S. et al. Computational Techniques for Complex Transport Phenomena[M]. New York: Cambridge University Press, 1997.
    [63] Lannder B E, Spalding D B. The Numerical Computation of Turbulent Flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, (3): 269~289.
    [64] Rodi W. A New Algebraic Relations for Calculating Reynolds Stresses[J]. Z Angew Math Mech, 1976, (56): 219~221.
    [65]林斌良,Shiono K.矩形明渠三维紊流的数值模拟[J].水利学报,1994,(3):47~56.
    [66]林斌良,Shiono K.复式断面明渠三维紊流的数值模拟[J].水利学报,1995,(3):52~61.
    [67] Yakhot V, Orszag S A. Renomalization group analysis of turbulence[J]. Journal of Scientific Computing, 1986, 1(1): 3~5.
    [68] Smagorinsky J. Generea Circulation Experiments with the Primitive Equations: Part 1-the Basic Experiment[J]. Monthly Weather Review, 1963, 91(3): 99~164.
    [69]周晓泉.复杂边界条件下的三维紊流数值模拟研究[D].成都:四川大学,2003.
    [70] Orszag S A. Numerical methods for the simulation of turbulence[J]. Phys. Fluids, Suppl. II, 1972, 2(12): 250~257.
    [71] Chorin A. Numerical Solution of the Navier-Stokes Equations[J]. Journal of Math Comput, 1968, (22): 745~762.
    [72] Teman R. Approximation of the Navier-Stokes Equations by the Project Method(Ⅰ)[J], Arch Rat Mech Anal, 1969, 32(2): 135~153.
    [73] Teman R. Approximation of the Navier-Stokes Equations by the Project Method(Ⅱ)[J], Arch Rat Mech Anal, 1969, 33(5): 351~362.
    [74] Foias C, Shell G R. Teman R. Inertial manifolds for monlinear evolutionary equations[J]. Journal of Differential Equations, 1988, 73(3): 309~353.
    [75] Foris C, Manley O, Teman R. On the interaction of small eddies in two-dimentional turbulence flows[J]. Math Modeling and Numerical Analysis, 1988, 22(1): 93~114.
    [76] Marion M, Temam R. Nonlinear Galerkin methods[J]. SIAMJ Numer Anal, 1989, 26(5): 1139~1157.
    [77] Mcnamara G, Zanetti G. Use of the Boltzmann equation to simulate lattice-gas automata[J]. Phys. Rev. Lett, 1988, (61): 2332~2335.
    [78] Bhatagar P, Gross E P, and Krook M K. A Model for Collision Processes in Gases(Ⅰ): Small Amplitude Processes in Charged and Neutral One-Component Systems[J]. Phys. Rev., 1954, (94):5~11.
    [79] Launder B E, Spalding D B. Lectures inMathematicalModels ofTurbulence [M]. London, Academic Press, 1972.
    [80] Mashayek F, Ashgriz N. A Hybrid finite_element_volume_of_fluid method for simulating free surface flows and interfaces[J]. International Journal of Numerical Method in Fluids, 1995, (20):1363~1380.
    [81] Harlow F H, Welch J F. Numerical calculation oftime_dependentviscous incompressible flowof fluidwith free surface[J]. Phys. Fluids, 1965, (8): 2182~2190.
    [82] Miyata H, Nishimura S. Finite_difference simulation of nonlinear ship waves[J]. Journal of Fluid Mech, 1985, (157): 327~332.
    [83]张晓东.泄洪洞高速水流三维数值模拟[D].北京:中国水利水电科学研究院,2004.
    [84] Mashaye K F, Ashgriz N. Advection of axisymmetric interfaces by the volume_of_fluid method[J]. Int. J. Numer. Methods Fluids, 1995, (20): 1337~1361.
    [85] Chern I L, Glimm J, McBryan O. Front tracking for gas dynamics[J]. Journal of Comput. Phys., 1986, (62): 83~110.
    [86] Hirt C W, Nichols B D. Volume of fluid (VOF) method for the Dynamics of Free Boundaries [J]. Journal of Comput. Phys.,1981, (39): 201~225.
    [87] LAUNDER B E, SPALDING D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(5): 269~289.
    [88] Barbaba Ponizy. Numerical Computations and integrations of the wave Resistance Greens Functions[J]. Theoretical and computational Fluid Dynamics, 1998(3): 194~201.
    [89]尹则高.输水工程复杂边界条件下二、三维水流数值模拟[D].杭州:浙江大学,2005.
    [90] ASHGRIZ N, POO J Y. FLAIR: Flux line-segment model for advection and interface reconstruction, J comput Phys, 1991, (93): 273~285.
    [91]赵大勇,李维仲.VOF方法中几种界面重构技术的比较[J].热科学与技术,2003,2(4):318~323.
    [92] Fluent Inc. GAMBIT Modeling Guide. Fluent Inc, 2003.
    [93]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社, 2004.
    [94]李玉良,潘双夏.基于流体体积的两栖车辆阻力并行数值计算[J].浙江大学学报(工学版),2006,40(8):1333~1338.
    [95]林小平.潜艇水动力计算及型线生成研究[D].武汉:武汉理工大学,2005.
    [96]孙立宪.三体船和五体船的阻力与流场计算及比较[D].哈尔滨:哈尔滨工程大学,2006.
    [97]王先军.浅水域三体船阻力计算[D].哈尔滨:哈尔滨工程大学,2006.
    [98]傅德薰,马延文.平面混合流拟序结构的直接数值模拟[J].中国科学((A辑),1996,26(7):657-664.
    [99]韩占忠,王国玉,闫为革.两栖车辆航行粘性阻力数值分析[J].车辆与动力技术,2003,(2):6~10.
    [100]夏国泽.船舶流体力学[M].武汉:华中科技大学出版社,2004.
    [101]汪文龙.车辆操纵稳定性的虚拟仿真技术研究[D].合肥:合肥工业大学,2006.
    [102]蔡章林.基于VPD技术的悬架设计及整车试验优化[D].长春:吉林大学,2007.
    [103]项俊.轿车多体动力学建模仿真及应用研究[D].武汉:华中科技大学,2005.
    [104] W.Kortum, Schiehlen W. Genereal Purpose Vehicle System Dynamic Software Based on Multibody Formalisms[J]. Vehicle System Dynamic, 1985, (14): 25~38.
    [105] Hegazy S, Rahnejat H, Hussain K. Multi-body dynamics in full-vehicle handling analysis[J]. Proceeding of Institution of Mechanical Engineers(Part K), 1999, (213):19~35.
    [106] Rahnejat H. Multi-Body Dynamics: Vehicles: Machines, and Mechanisms[M]. Warrendale: Society of Automotive Engineers, 1998.
    [107]时培成,陈无畏,王其东,等.基于ADAMS软件的多功能车操纵稳定性仿真研究[J].合肥工业大学学报,2005,28(8):931-935.
    [108]郭正康.汽车整车转动惯量的计算与选取[J].汽车研究与开发,1993,(6):42-44.
    [109] Yi Lin,Wenzhang Zhan,Yan Liu and Xin Zhong. Dynamics Simulation Research on Rigid-Elastic Coupling System of Car Suspension[C]. SAE Paper 2000-01-1622.
    [110] Alasty A and Ramezani A. Genetic Algorithm Based Parameter Identification of a Nonlinear Full Vehicle Ride Model[C]. SAE Paper 2002-01-1583.
    [111]王树风.汽车操纵稳定性虚拟试验系统的研究[D].北京:中国农业大学,2002.
    [112] Mancos F. Non-linear Modal Rolling Tire Model For Dynamic Simulation With ADAMS[C].European Adams users’conference-November 18th-9th 1998, paris, 1998.
    [113] Hirschberg W, Rill G, Weinfurter H. User-Appropriate Tyre-Modelling for Vehicle Dynamics in Standard and Limit Situations[J]. Vehicle System Dynamics, 2003, 38(2): 103~125.
    [114]张建文.空气弹簧非线性有限元分析和空气悬架大客车隔振性能的研究[D].长春:吉林工业大学,2003.
    [115] MSC.Software Inc.ADAMS/Tire Option, 2005.
    [116]蔡章林.基于VPD技术的悬架设计与整车试验优化[D].长春:吉林大学,2007.
    [117]乔明侠.基于多体动力学的汽车平顺性仿真分析及悬架参数优化[D].合肥:合肥工业大学,2005.
    [118]郭二生.空气悬架大客车操纵稳定性和行驶平顺性仿真与试验研究[D].长春:吉林大学,2005.
    [119]项俊.轿车多体动力学建模仿真及应用研究[D].武汉,华中科技大学,2005.
    [120]中国汽车技术研究中心.GB/T6323.3-1994.转向盘转角脉冲输入[S].北京:中国标准出版社,1986.
    [121]全国汽车标准化技术委员会.GB/T 6323.1-1994.蛇形试验[S].北京:中国标准出版社,1994.
    [122]姜斌.8*8轮式越野车独立悬架和整车性能仿真分析与优化[D].长春:吉林大学,2005.
    [123]方飞.麦弗逊前独立悬架汽车的操纵稳定性研究[D].武汉,武汉理工大学,2006.
    [124]姚亮.基于虚拟样机技术的某军用专用车平顺性研究[D].江苏,南京理工大学,2006.
    [125] Reicher W. Correlation Analysis of Open/Closed loop Data for Objective Assessment of Handling Characteristics of Cars[C]. SAE Paper 910238.
    [126]余志生.汽车理论[M].北京:机械工业出版社,2000.
    [127]全国汽车标准化技术委员会.GB/T6323.2-94.转向瞬态响应试验[S].北京:中国标准出版社,1994.
    [128]宋桂霞,赵又群.两栖车抗倾能力下降原因分析与改善措施研究[J].中国机械工程,2008,19(4):486~490.
    [129]鲍晓峰.汽车试验与检测[M].机械工业出版社,1995.
    [130]陈明岚.操纵稳定性综合评价和基于组合遗传算法的优化[D].长春:吉林大学,2002.
    [131]全国汽车标准化技术委员会.QC/T 480-1999.汽车操纵稳定性指标限值与评价方法[S].北京:中国标准出版社,1994.
    [132]全国汽车标准化技术委员会.GB/T6323.5 - 94.转向轻便性试验[S].北京:中国标准出版社,1994.
    [133]于海峰.基于ADAMS/CAR的悬架系统对操纵稳定性影响的仿真试验研究[D].大连:大连理工大学,2007.
    [134]全国汽车标准化技术委员会.GB/T6323.6-1994.稳态回转试验[S].北京:中国标准出版社,1994.
    [135] International Standards Organization. ISO 2631. Guide for the evaluation of human exposure to whole body vibration[S], 1974.
    [136] International Standards Organization. ISO 2631/1-1985. Evaluation of Human Exposure to Whole-Body Vibration-Part 1:General Requirements[S], 1985.
    [137] International Standards Organization. ISO2631/CD-1991(E), Guide to the Evaluation of Human Exposure to Whole-Body Mechanical Vibration[S], 1991.
    [138] International Standards Organization. ISO 2631-1. Mechanical vibration and shock-Evaluation of human exposure to whole-body vibration-part 1:General requirements[S], 1997.
    [139] International Standards Organization. ISO 2631-1:97(E). Mechanical vibration andshock-Evaluation of human exposure to whole-body vibration-PartⅡ: General requirements[S], 1997.
    [140]马广发,赵六奇,卢士富.GB/T 4970-1996.汽车平顺性随即输入行驶试验方法[S].北京:中国标准出版社,1996.
    [141]国家技术监督局. GB 15083-1994.汽车座椅系统强度要求及试验方法[S].北京:中国标准出版社,1994.
    [142]中国汽车技术研究中心.GB/T5902-86.汽车平顺性脉输入行驶[S].北京:中国标准出版社,1986.
    [143] International Standards Organization. First Draft proposal ISO/DP 860 For Mechanical Vibration-Road Surface Profiles-Reporting Measured Data[S], 1984.
    [144]中国汽车技术研究中心.GB7031-87.车辆振动输入路面平度表示方法[S].北京:中国标准出版社,1987.
    [145]高树新,宫镇.汽车脉冲输入评价指标限值的研究.汽车技术.1996,(9):1-4
    [146]全国汽车标准化技术委员会.GB/T4970—1996.汽车平顺性随机输入行驶试验方法[S].北京:中国标准出版社,1996.
    [147]饶剑.基于ADAMS的悬架系统动力学仿真分析与优化设计[D].武汉:武汉理工大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700