用户名: 密码: 验证码:
无线Mesh网络虚拟化关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线Mesh网络具有成本低廉、部署便捷、覆盖范围广、网络带宽高等显著优势,非常适合作为Internet”最后一公里”接入方案,已经受到了多国政府和运营商的重视,在实际中得到了越来越广泛的部署。然而,无线Mesh网络在实际部署过程中也面临着很多挑战性问题,如用户接入带宽难以保证、丢包率较高、移动用户通信容易中断等等。本文提出采用无线Mesh网络虚拟化的方案来克服这些问题。通过建立虚拟网络,无线Mesh网络虚拟化技术对用户屏蔽了底层物理网络的细节,使用户能够按需地获得服务。这对无线Mesh网络的进一步发展具有极为重要的意义。
     本文建立了无线Mesh网络虚拟化的理论框架,包括隔离式网络虚拟化、聚合式网络虚拟化和混合式网络虚拟化等三个方面,并分别以典型应用场景为出发点,从这三个方面对无线Mesh网络的虚拟化关键技术进行了研究。其中,在隔离式网络虚拟化方面,分别为单播服务和多播服务设计了资源分配机制以确保虚拟网络之间的隔离性,从而能够保证用户的服务质量;在聚合式网络虚拟化方面,设计了网络主导型关联机制,将多个无线Mesh接入点聚合抽象为统一的接入点,避免了用户因切换接入点而造成的通信中断;而混合式网络虚拟化则将上述两个方面的结合,虚拟网络之间的隔离性与异构物理网络的聚合性都需要考虑。本文主要研究内容和贡献包括以下几个方面。
     第一,提出了无线Mesh网虚拟接入网的概念并设计了相应的网络系统结构和虚拟接入网络映射算法。本文针对以无线Mesh网作为Internet接入网的应用场景,通过构建虚拟接入网络来满足用户的端到端带宽需求。为了实现这一目标,本文设计了基于OFDMA技术的双射频无线Mesh网节点、基于部分交叠信道的信道分配算法和相应的无线Mesh网络体系结构,能够确保虚拟网络之间相互隔离。本文还提出了基于贪心算法和遗传算法的虚拟接入网络映射算法,在网络中存在多个Internet网关且虚拟网络带宽总需求大于网络容量的条件下,使得物理网络资源得到了尽可能充分的利用。
     第二,提出了无线Mesh网中面向多播服务的虚拟网络映射算法。本文针对在无线Mesh网中运行面向多播服务的虚拟网络的需求,设计了基于机会主义重传的虚拟网络映射算法,能够在物理无线链路不可靠的条件下满足虚拟链路的传输可靠性要求。算法还通过适当的链路调度使每个多播虚拟网络的激活时间最小化,从而提高了物理网络资源的利用率。
     第三,提出了无线Mesh网网络主导型关联机制。本文针对移动客户机在接入无线Mesh网络时由于接入点发生切换而导致网络连接中断的问题,提出了网络主导型关联机制以实现移动客户机在无线Mesh网覆盖范围的无缝漫游。在这种机制下,整个无线Mesh网被虚拟为一个逻辑的接入点,客户机只与这个虚拟的接入点相关联而无需进行切换。网络主导型关联机制能够自适应地在客户机通信范围内的多个物理接入点中选择最佳的接入点为其提供报文转发服务,从而提高了网络吞吐率,降低了端到端传输时延和丢包率。
     第四,提出了基于无线Mesh网和电力线通信网的智能配电网通信框架与虚拟网络映射算法。本文针对智能配电网的通信需求,设计了结合无线Mesh网和电力线通信网的混合式通信框架。在此框架的基础上,为不同类型的业务分别建立虚拟网络并将其映射到异构的物理网络中,通过增加传输分集来保证实时业务的可靠性。映射算法在保证实时业务可靠性的基础上,使尽力而为型业务的吞吐率最大化。
     无线Mesh网络虚拟化理论的提出和关键技术的研究有助于解决无线Mesh网所面临的挑战性问题,对无线Mesh网络的发展将具有巨大的推动作用。
Wirelessmeshnetwork(WMN)haslotsofobviousadvantagesincludinglowcost,convenien-t deployment, wide coverage, high throughput, etc. These advantages make WMN quite suitablefor last-mile Internet access. Governments and operators in many countries have paid attention toWMNs, and deployed increasingly more WMNs in practice. However, several challenging prob-lems emerge in actual deployments, such as a user cannot get guaranteed bandwidth, packet lossrate is relatively high, and a mobile user tends to suffer from link disruption. Wireless mesh net-work virtualization is adopted to overcome these problems. Though establishing virtual networks,wireless mesh network virtualization technologies shield details of substrate networks to users,and serve users on their demands. Therefore, the wireless mesh network virtualization has greatsignificance for the evolution of WMNs.
     A theoretical framework for wireless mesh network virtualization is established in this the-sis. The framework contains three aspects, i.e., separation, aggregation and hybrid wireless meshnetwork virtualization. Based on typical application scenarios, key techniques of wireless meshnetwork virtualization are studied from these three aspects. For separation wireless mesh net-work virtualization, resource allocation mechanisms are designed for both unicast and multicastservices to guarantee the isolation among virtual networks. For aggregation wireless mesh net-work virtualization, cooperation protocols are designed to abstract multiple physical devices intoa unified logical device. The hybrid wireless mesh network virtualization is the combination ofthe above-mentioned two aspects, in which both separation of virtual networks and aggregation ofheterogeneous physical networks should be considered. The main contents and contributions ofthis thesis are described as follows.
     First, the concept of virtual access network is firstly proposed, and the corresponding WM-N architecture and the virtual access network embedding algorithm are designed. Virtual accessnetworks are built to guarantee the end-to-end bandwidth requirements of users when a WMNis deployed as an access network for the Internet. In order to achieve this goal, OFDMA-baseddual-radio mesh node, partially overlapped channel-based channel assignment algorithm, and theWMN architecture are designed to insure the separation among the virtual access networks. Agreedy and genetic-based algorithm for virtual access network embedding is also represented inthis thesis. When multiple Internet gateways exist in the WMN and the total bandwidth require-ment of users exceeds the total capacity of these Internet gateways, the algorithm can enhance the utilization of the substrate network resources.
     Second, an algorithm for multicast service-oriented virtual network embedding in the WMNis proposed for the first time. Based on opportunistic rebroadcasting, the algorithm can satisfy thereliability requirements of virtual links under the condition that physical wireless links are lossy.According to appropriate scheduling, the algorithm also minimizes the activation time of eachvirtual network, which improves the utilization of substrate network resources.
     Third, a network-leading association scheme is firstly proposed. Movement of a station maytrigger its handoff between access points, which can incur interruption of network connection.Aiming at this problem, the network-leading association scheme is designed to achieve seamlessroaming of the moving station in the coverage of the WMN. With this scheme, the whole WMN isvirtualized as a single access point with which the station is associated, and no explicit handoff isneeded. Theschemecanadaptivelyselecttheoptimalmeshaccesspointwithinthecommunicationrange of the station to forward its packets, which improves the throughput and reduces end-to-endairtime and packet loss rate.
     Finally, WMN and powerline-based communication framework for smart grid communica-tions as well as algorithms for virtual network embedding is proposed for the first time. Accordingto communication requirements of smart grid, a hybrid framework combining both WMN andpowerline communication network is designed. Based on the framework, virtual networks areestablished for various types of services respectively, and are embedded onto the heterogeneoussubstrate networks. Reliability of realtime services is satisfied through transmission diversity en-hancement, while throughput of best-effort service is maximized.
     The theoretical framework and the key technologies of wireless mesh network virtualizationare conducive to solve challenging problems of WMNs. Thus, wireless mesh network virtualiza-tion is a powerful impetus WMNs.
引文
[1]徐明,曹建农,彭伟.移动计算技术[M].北京:清华大学出版社,2008.
    [2] Akyildiz I, Wang X, Wang W. Wireless mesh networks: a survey [J]. Computer Networks.2005,47(4):445–487.
    [3] Akyildiz I, Wang X. A survey on wireless mesh networks [J]. IEEE Communications Mag-azine.2005,43(9): S23–S30.
    [4] Akyildiz I, Wang X. Wireless mesh networks [M]. Chichester: John Wiley&Sons Inc,2009.
    [5]方旭明.下一代无线因特网技术:无线Mesh网络[M].北京:人民邮电出版社,2006.
    [6]张勇,郭达.无线网状网原理与技术[M].北京:电子工业出版社,2007.
    [7] Kyasanur P, Vaidya N. Capacity of multi-channel wireless networks: impact of number ofchannels and interfaces [C]. In Proceedings of the11th annual international conference onMobile computing and networking (MobiCom’05).2005:43–57.
    [8] Kodialam M, Nandagopal T. Characterizing the capacity region in multi-radio multi-channel wireless mesh networks [C]. In Proceedings of the11th annual international con-ference on Mobile computing and networking (MobiCom’05).2005:73–87.
    [9] Miorando E, Granelli F. On Connectivity and Capacity of Wireless Mesh Networks [C]. InProceedingsofIEEEInternationalConferenceonCommunications(ICC’07).2007:91–95.
    [10] Bohacek S, Wang P. Toward tractable computation of the capacity of multi-hop wirelessnetworks[C].InProceedingsofthe26thIEEEInternationalConferenceonComputerCom-munications (INFOCOM’07).2007:2099–2107.
    [11] Xiang W,Pratt T,WangX. A software radio testbed for two-transmitter two-receiver space-time coding OFDM wireless LAN [J]. IEEE Communications Magazine.2004,42(6):S20–S28.
    [12] Babich F, Comisso M, Mania L. Multi-antenna techniques for wireless mesh networks inan outdoor environment [C]. In Proceedings of IEEE International Conference on Commu-nications (ICC’07).2007:4961–4966.
    [13] AdyaA,BahlP,PadhyeJ,etal.Amulti-radiounificationprotocolforIEEE802.11wirelessnetworks [C]. In Proceedings of the First International Conference on Broadband Networks(BroadNets’04).2004:344–354.
    [14] Raman B, Chebrolu K. Design and evaluation of a new MAC protocol for long-distance802.11mesh networks [C]. In Proceedings of the11th annual international conference onMobile computing and networking (MobiCom’05).2005:156–169.
    [15] Kim S, Lee S, Choi S. The impact of IEEE802.11MAC strategies on multi-hop wirelessmesh networks [C]. In Proceedings of the2nd IEEE Workshop on Wireless Mesh Networks(WiMesh’06).2006:38–47.
    [16] Acharya A, Ganu S, Misra A. DCMA: a label switching MAC for efficient packet forward-ing in multihop wireless networks [J]. IEEE Journal on Selected Areas in Communications.2006,24(11):1995–2004.
    [17] Lim J, Chou C, Nyandoro A, et al. A cut-through mac for multiple interface, multiple chan-nel wireless mesh networks [C]. In Proceedings of the IEEE Wireless Communications andNetworking Conference (WCNC’07).2007:2373–2378.
    [18] Mishra A, Shrivastava V, Agrawal D, et al. Distributed channel management in uncoordi-natedwirelessenvironments[C].InProceedingsofthe12thannualinternationalconferenceon Mobile computing and networking (MobiCom’06).2006:170–181.
    [19] Xing K, Cheng X, Ma L, et al. Superimposed code based channel assignment in multi-radiomulti-channel wireless mesh networks [C]. In Proceedings of the13th annual ACM inter-national conference on Mobile computing and networking (MobiCom’07).2007:15–26.
    [20] Ramachandran K, Belding E, Almeroth K, et al. Interference-aware channel assignmentin multi-radio wireless mesh networks [C]. In Proceedings of the25th IEEE InternationalConference on Computer Communications (INFOCOM’06).2006:1–12.
    [21] Dhananjay A, Zhang H, Li J, et al. Practical, distributed channel assignment and routingin dual-radio mesh networks [C]. In ACM SIGCOMM Computer Communication Review.2009:99–110.
    [22] Couto D, Aguayo D, Bicket J, et al. A high-throughput path metric for multi-hop wirelessrouting [C]. In Proceedings of the9th ACM international conference on Mobile computingand networking (MobiCom’03).2003:134–146.
    [23] Draves R, Padhye J, Zill B. Routing in multi-radio, multi-hop wireless mesh networks [C].In Proceedings of the10th annual international conference on Mobile computing and net-working (MobiCom’04).2004:114–128.
    [24] Biswas S, Morris R. ExOR: opportunistic multi-hop routing for wireless networks [C]. InACM SIGCOMM Computer Communication Review.2005:133–144.
    [25] Flury R, Wattenhofer R. Routing, anycast, and multicast for mesh and sensor networks [C].In Proceedings of the26th IEEE International Conference on Computer Communications(INFOCOM’07).2007:946–954.
    [26] Wang W, Liu X, Krishnaswamy D. Robust routing and scheduling in wireless mesh net-works [C]. In Proceedings of the4th Annual IEEE Communications Society Conference onSensor, Mesh and Ad Hoc Communications and Networks (SECON’07).2007:471–480.
    [27] Alotaibi E, Mukherjee B. A survey on routing algorithms for wireless ad-hoc and meshnetworks [J]. Computer Networks.2012,56(2):940–965.
    [28] Mohsenian Rad A, Wong V. Joint optimal channel assignment and congestion control formulti-channel wireless mesh networks [C]. In Proceedings of the IEEE International Con-ference on Communications (ICC’06).2006:1984–1989.
    [29] RangwalaS,JindalA,JangK,etal.Understandingcongestioncontrolinmulti-hopwirelessmesh networks [C]. In Proceedings of the14th ACM international conference on Mobilecomputing and networking (MobiCom’08).2008:291–302.
    [30] Sharma G, Joo C, Shroff N, et al. Joint congestion control and distributed scheduling forthroughput guarantees in wireless networks [J]. ACM Transactions on Modeling and Com-puter Simulation (TOMACS).2010,21(1):5.
    [31] Lin X, Shroff N. The impact of imperfect scheduling on cross-layer congestion control inwireless networks [J]. IEEE/ACM Transactions on Networking.2006,14(2):302–315.
    [32] Athanasiou G, Korakis T, Ercetin O, et al. Dynamic cross-layer association in802.11-basedmeshnetworks[C].InProceedingsofthe26thIEEEInternationalConferenceonComputerCommunications (INFOCOM’07).2007:2090–2098.
    [33] Cao M, Wang X, Kim S, et al. Multi-hop wireless backhaul networks: a cross-layer designparadigm [J]. IEEE Journal on Selected Areas in Communications.2007,25(4):738–748.
    [34] Akyildiz I, Wang X. Cross-layer design in wireless mesh networks [J]. IEEE Transactionson Vehicular Technology.2008,57(2):1061–1076.
    [35] Lee P, Misra V, Rubenstein D. Distributed algorithms for secure multipath routing [C]. InProceedings of the24th Annual IEEE International Conference on Computer Communica-tions (INFOCOM’05).2005:1952–1963.
    [36] Maccari L, Fantacci R, Neira P, et al. Mesh network firewalling with bloom filters [C].In Proceedings of the IEEE International Conference on Communications (ICC’07).2007:1546–1551.
    [37] Ben Salem N, Hubaux J. Securing wireless mesh networks [J]. IEEE Wireless Communi-cations.2006,13(2):50–55.
    [38] Hugelshofer F, Smith P, Hutchison D, et al. OpenLIDS: a lightweight intrusion detectionsystem for wireless mesh networks [C]. In Proceedings of the15th annual internationalconference on Mobile computing and networking (MobiCom’09).2009:309–320.
    [39] Li L, Halpern J, Bahl P, et al. A cone-based distributed topology-control algorithm forwireless multi-hop networks [J]. IEEE/ACM Transactions on Networking.2005,13(1):147–159.
    [40] Muqattash A, Krunz M. POWMAC: A single-channel power-control protocol for through-put enhancement in wireless ad hoc networks [J]. IEEE Journal on Selected Areas in Com-munications.2005,23(5):1067–1084.
    [41] Kumar U, Gupta H, Das S. A topology control approach to using directional antennas inwireless mesh networks [C]. In Proceedings of the IEEE International Conference on Com-munications (ICC’06).2006:4083–4088.
    [42] Marina M, Das S, Subramanian A. A topology control approach for utilizing multiple chan-nelsinmulti-radiowirelessmeshnetworks[J].ComputerNetworks.2010,54(2):241–256.
    [43] Vutukuru M, Balakrishnan H, Jamieson K. Cross-layer wireless bit rate adaptation [C]. InACM SIGCOMM Computer Communication Review.2009:3–14.
    [44] CampJ,KnightlyE.Modulationrateadaptationinurbanandvehicularenvironments:cross-layer implementation and experimental evaluation [J]. Networking, IEEE/ACM Transac-tions on.2010,18(6):1949–1962.
    [45] AmirY,DanilovC,HilsdaleM,etal.Fasthandoffforseamlesswirelessmeshnetworks[C].In Proceedings of the4th international conference on Mobile systems, applications andservices (MobiSys’06).2006:83–95.
    [46] Ren M, Liu C, Zhao H, et al. MEMO: an applied wireless mesh network with client supportand mobility management [C]. In Proceedings of the IEEE Global TelecommunicationsConference (GLOBECOM’07).2007:5075–5079.
    [47] Huang R, Zhang C, Fang Y. A mobility management scheme for wireless mesh net-works [C]. In Proceedings of the IEEE Global Telecommunications Conference (GLOBE-COM’07).2007:5092–5096.
    [48] Xie J, Wang X. A survey of mobility management in hybrid wireless mesh networks [J].IEEE Network.2008,22(6):34–40.
    [49] Bicket J, Aguayo D, Biswas S, et al. Architecture and evaluation of an unplanned802.11b mesh network [C]. In Proceedings of the11th annual international conference on Mobilecomputing and networking (MobiCom’05).2005:31–42.
    [50] Camp J, Robinson J, Steger C, et al. Measurement driven deployment of a two-tier urbanmesh access network [C]. In Proceedings of the4th international conference on Mobilesystems, applications and services (MobiSys’06).2006:96–109.
    [51] Eriksson J, Agarwal S, Bahl P, et al. Feasibility study of mesh networks for all-wirelessoffices [C]. In Proceedings of the4th international conference on Mobile systems, applica-tions and services (MobiSys’06).2006:69–82.
    [52] Pathak P, Dutta R. A survey of network design problems and joint design approaches inwireless mesh networks [J]. IEEE Communications Surveys&Tutorials.2010,13(3):396–428.
    [53] Zhang Y, Hu H. Wireless mesh networking: architectures, protocols and standards [M].Boca Raton: Auerbach Pub,2006.
    [54] MIT Roofnet [EB/OL]. http://pdos.csail.mit.edu/roofnet/doku.php.
    [55] Georgia Tech BWN Wireless Mesh Networks [EB/OL]. http://www.ece.gatech.edu/research/labs/bwn/mesh/index.html.
    [56] Stanford Wireless Access Network (SWAN)[EB/OL]. http://sing.stanford.edu/swan/.
    [57] Purdue University Wireless Mesh Network Testbed [EB/OL]. https://engineering.purdue.edu/MESH/.
    [58] UCSB MeshNet [EB/OL]. http://moment.cs.ucsb.edu/meshnet/.
    [59] SMesh [EB/OL]. http://www.smesh.org/.
    [60] ORBIT [EB/OL]. http://www.orbit-lab.org/.
    [61] Emulab [EB/OL]. http://www.emulab.net/.
    [62] WiSeNet [EB/OL]. http://research.csc.ncsu.edu/netsrv/?q=content/wireless-and-sensor-network-group-wisenet.
    [63]李贺武,陈瑶,李凤华,等.2005新一代无线网络集萃地——清华大学无线实证网络系列报道[J].中国教育网络.2005,2005(5):42–44.
    [64]李贺武,陈瑶,李凤华,等.新一代无线Mesh网络——清华大学无线实证网络系列报道(二)[J].中国教育网络.2005,2005(6):30–32.
    [65]葛鑫,李贺武,陈瑶.基于无线交换技术的新一代无线校园网络——清华大学无线实证网络系列报道(三)[J].中国教育网络.2005,2005(7):37–39.
    [66]陈荣第.无线Mesh关键技术与实证——清华大学无线实证网络系列报道(四)[J].中国教育网络.2005,2005(8):40–42.
    [67]陈荣第,何涛,李贺武.无线安全狙击战——清华大学无线实证网络系列报道(五)[J].中国教育网络.2005,2005(10):31–33.
    [68]宫大伟,陈荣第,何涛,等.无线应用新篇章——清华大学无线实证网络系列报道(六)[J].中国教育网络.2005,2005(11):39–41.
    [69] Wireless Mesh Network-MEMO [EB/OL]. http://net.pku.edu.cn/mobile/doku/doku.php?id=project:memo:memo.
    [70] Yan W, Ren M, Tong Z, et al. A bandwidth management scheme support for real-time ap-plications in wireless mesh networks [C]. In Proceedings of the2008ACM symposium onApplied computing.2008:2063–2068.
    [71] SWIM(SeamlessWIrelessMeshnetwork)[EB/OL].http://cs.nju.edu.cn/lwz/swim/swim.html.
    [72]张瑞.基于802.11的无线网状网路由与传输技术研究[D].合肥:中国科学技术大学,2008.
    [73]李可维.基于网络效用最大化的无线Mesh网跨层优化算法研究[D].武汉:华中科技大学,2010.
    [74]朱国梅.无线网格网中关键技术的研究[D].北京:北京邮电大学,2009.
    [75]曾锋.无线Mesh网流量负载均衡关键技术研究[D].长沙:中南大学,2010.
    [76] Cisco ServiceMesh [EB/OL]. http://www.cisco.com/web/CN/solutions/sp/mobile_internet/service_mesh.html.
    [77] SelfOrganizingWirelessMeshNetworks[EB/OL].http://research.microsoft.com/en-us/projects/mesh/.
    [78] Mesh Networks [EB/OL]. http://www.motorola.com/Business/CN-ZH/Business+Product+and+Services/Wireless+Broadband+Networks/Mesh+Networks.
    [79] Meraki [EB/OL]. http://www.meraki.com/.
    [80]2007年度100项最佳科技成果[J].科技新时代.2007,2007(12):51–57.
    [81] IEEE. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifi-cations Amendment10: Mesh Networking [S].2011.
    [82] Camp J, Knightly E. The IEEE802.11s extended service set mesh networking standard [J].Communications Magazine, IEEE.2008,46(8):120–126.
    [83] Linux2.6.26Changes [EB/OL]. http://kernelnewbies.org/Linux_2_6_26#head-26b4a3f6eb606c21056e4f906a4dae88077346f5.
    [84] IEEE. Part15.5: Mesh Topology Capability in Wireless Personal Area Networks (WPAN-s)[S].2009.
    [85] IEEE. IEEE Standard for Local and metropolitan area networks, Part16: Air Interfacefor Broadband Wireless Access Systems, Amendment1: Multiple Relay Specification [S].2009.
    [86]韩言妮,蕈毅芳,慈松.未来网络虚拟化关键技术研究[J].中兴通讯技术.2011,17(2):15–19.
    [87]吕博.网络虚拟化资源管理架构与映射算法研究[D].北京:北京邮电大学,2011.
    [88] Anderson T, Peterson L, Shenker S, et al. Overcoming the Internet impasse through virtu-alization [J]. Computer.2005,38(4):34–41.
    [89] ISO. Information processing systems-Open System Interconnection-Basic ReferenceModel Part4: Management framework (ISO/IEC7498-4)[S]. ISO,1989.
    [90] NSF. Report: NSF Workshop on Future Wireless Communication Research [R].2009.
    [91] GuoC,LuG,LiD,etal.BCube:ahighperformance,server-centricnetworkarchitectureformodular data centers [C]. In ACM SIGCOMM Computer Communication Review.2009:63–74.
    [92] Chen K, Guo C, Wu H, et al. Generic and automatic address configuration for data centernetworks [C]. In ACM SIGCOMM Computer Communication Review.2010:39–50.
    [93] Greenberg A, Hamilton J, Jain N, et al. VL2: a scalable and flexible data center network [J].ACM SIGCOMM Computer Communication Review.2009,39(4):51–62.
    [94] HalperinD,KandulaS,PadhyeJ,etal.Augmentingdatacenternetworkswithmulti-gigabitwireless links [C]. In Proceedings of the ACM SIGCOMM2011conference.2011:38–49.
    [95] Cui Y, Wang H, Cheng X, et al. Wireless data center networking [J]. IEEE Wireless Com-munications.2011,18(6):46–53.
    [96] Zhang W, Zhou X, Yang L, et al.3D beamforming for wireless data centers [C]. In Pro-ceedings of the10th ACM Workshop on Hot Topics in Networks (Hotnets’11).2011:4.
    [97] Shin J, Sirer E, Weatherspoon H, et al. On the feasibility of completely wireless data cen-ters [R].2011.
    [98] Smith G, Chaturvedi A, Mishra A, et al. Wireless virtualization on commodity802.11hard-ware [C]. In Proceedings of the2nd ACM international workshop on Wireless networktestbeds, experimental evaluation and characterization (WiNTECH’07).2007:75–82.
    [99] Guo S, Gu Y, Jiang B, et al. Opportunistic flooding in low-duty-cycle wireless sensor net-works with unreliable links [C]. In Proceedings of the15th annual international conferenceon Mobile computing and networking (MobiCom’09).2009:133–144.
    [100] Patterson D, Clark D, Karlin A, et al. Looking over the fence at networks: A neighbor’sview of networking research [M]. Washington, D.C.: National Academy Press,2001.
    [101] Chowdhury N, Boutaba R. Network virtualization: state of the art and research chal-lenges [J]. IEEE Communications Magazine.2009,47(7):20–26.
    [102] Chowdhury N, Boutaba R. A survey of network virtualization [J]. Computer Networks.2010,54(5):862–876.
    [103] TurnerJ,TaylorD.DiversifyingtheInternet[C].InIEEEGlobalTelecommunicationsCon-ference (GLOBECOM’05).2005:755–760.
    [104] Feamster N, Gao L, Rexford J. How to lease the Internet in your spare time [J]. ACMSIGCOMM Computer Communication Review.2007,37(1):61–64.
    [105] Boucadair M, Levis P, Griffin D, et al. A framework for end-to-end service differentiation:Network planes and parallel Internets [J]. IEEE Communications Magazine.2007,45(9):134–143.
    [106] IEEE. IEEE Standard for Local and metropolitan area networks–Media Access Control(MAC) Bridges and Virtual Bridged Local Area Networks [S].2011.
    [107] Ferguson P, Huston G. What is a VPN?[R].1998.
    [108] McDysanD,CarugiM.Servicerequirementsforlayer3providerprovisionedvirtualprivatenetworks (PPVPNs). RFC4031.2005.
    [109] CallonR,SuzukiM.Aframeworkforlayer3provider-provisionedvirtualprivatenetworks(PPVPNs). RFC4110.2005.
    [110] Freier A, Karlton P, Kocher P. The Secure Sockets Layer (SSL) Protocol Version3.0. RFC6101.2011.
    [111] Dierks T, Rescorla E. The Transport Layer Security (TLS) Protocol Version1.2. RFC5246.2008.
    [112] Andersson L, Rosen E. Framework for layer2virtual private networks (L2VPNs). RFC4664.2006.
    [113] Augustyn W, Serbest Y. Service Requirements for Layer2Provider-Provisioned VirtualPrivate Networks. RFC4665.2006.
    [114] BenhaddouD, Alanqar W.Layer1virtual private networks in multidomainnext-generationnetworks [J]. IEEE Communications Magazine.2007,45(4):52–58.
    [115] Takeda T, Inoue I, Aubin R, et al. Framework and requirements for layer1virtual privatenetworks. RFC4847.2007.
    [116] Tennenhouse D, Smith J, Sincoskie W, et al. A survey of active network research [J]. IEEECommunications Magazine.1997,35(1):80–86.
    [117] Campbell A, De Meer H, Kounavis M, et al. A survey of programmable networks [J]. ACMSIGCOMM Computer Communication Review.1999,29(2):7–23.
    [118] Andersen D, Balakrishnan H, Kaashoek F, et al. Resilient overlay networks [J]. ACM SIG-COMM Computer Communication Review.2002,32(1):66–66.
    [119] Jannotti J, Gifford D, Johnson K, et al. Overcast: reliable multicasting with on overlaynetwork [C]. In Proceedings of the4th conference on Symposium on Operating SystemDesign&Implementation (OSDI’00).2000:197–212.
    [120] DovalD,O’MahonyD.Overlaynetworks:AscalablealternativeforP2P[J].InternetCom-puting, IEEE.2003,7(4):79–82.
    [121] PlanetLab [EB/OL]. http://www.planet-lab.org/.
    [122] Peterson L, Anderson T, Culler D, et al. A blueprint for introducing disruptive technologyinto the Internet [J]. ACM SIGCOMM Computer Communication Review.2003,33(1):59–64.
    [123] Bavier A, Bowman M, Chun B, et al. Operating system support for planetary-scale net-work services [C]. In Proceedings of the1st Symposium on Network Systems Design andImplementation (NSDI’04).2004:253–266.
    [124] GENI [EB/OL]. http://www.geni.net/.
    [125] Peterson L, Anderson T, Blumenthal D, et al. GENI design principles [J]. IEEE Computer.2006,39(9):102–105.
    [126] Paul S, Seshan S. Virtualization and Slicing of Wireless Networks, GDD-06-17[R].2006.
    [127]4WARD [EB/OL]. www.4ward-project.eu.
    [128] Lu J, Turner J. Efficient mapping of virtual networks onto a shared substrate, WUCSE-2006-35[R].2006.
    [129] Zhu Y, Ammar M. Algorithms for assigning substrate network resources to virtual net-work components [C]. In Proceedings of the25th Annual IEEE International Conferenceon Computer Communications (INFOCOM’06).2006.
    [130] Andersen D. Theoretical Approaches to Node Assignment.2002. http://www.cs.cmu.edu/~dga/papers/andersen-assign.ps. Unpublished Manuscript.
    [131] Yu M, Yi Y, Rexford J, et al. Rethinking virtual network embedding: substrate supportfor path splitting and migration [J]. ACM SIGCOMM Computer Communication Review.2008,38(2):17–29.
    [132] Szeto W, Iraqi Y, Boutaba R. A multi-commodity flow based approach to virtual networkresource allocation [C]. In Proceedings of the IEEE Global Telecommunications Confer-ence (GLOBECOM’03).2003:3004–3008.
    [133] Lischka J, Karl H. A virtual network mapping algorithm based on subgraph isomorphis-m detection [C]. In Proceedings of the1st ACM workshop on Virtualized InfrastructureSystems and Architectures (VISA’09).2009:81–88.
    [134] Chowdhury N, Rahman M, Boutaba R. Virtual network embedding with coordinated nodeand link mapping [C]. In Proceedings of the28th Annual IEEE International Conferenceon Computer Communications (INFOCOM’09).2009:783–791.
    [135] Houidi I, Louati W, Zeghlache D. A distributed virtual network mapping algorithm [C].In Proceedings of the IEEE International Conference on Communications (ICC’08).2008:5634–5640.
    [136] Cai Z, Liu F, Xiao N, et al. Virtual network embedding for evolving networks [C]. In Pro-ceedings of the IEEE Global Telecommunications Conference (GLOBECOM’10).2010:1–5.
    [137] Farooq Butt N, Chowdhury M, Boutaba R. Topology-awareness and reoptimization mech-anism for virtual network embedding [C]. In Proceedings of the9th IFIP NETWORKINGConference.2010:27–39.
    [138] He J, Zhang-Shen R, Li Y, et al. Davinci: Dynamically adaptive virtual networks for acustomized internet [C]. In Proceedings of the2008ACM CoNEXT Conference.2008:1–12.
    [139] Rahman M, Aib I, Boutaba R. Survivable virtual network embedding [C]. In Proceedingsof the9th IFIP NETWORKING Conference.2010:40–52.
    [140] Wang Y, Keller E, Biskeborn B, et al. Virtual routers on the move: live router migrationas a network-management primitive [C]. In ACM SIGCOMM Computer CommunicationReview.2008:231–242.
    [141] Yu H, Qiao C, Anand V, et al. Survivable Virtual Infrastructure Mapping in a FederatedComputing and Networking System under Single Regional failures [C]. In Proceedings ofthe IEEE Global Telecommunications Conference (GLOBECOM’10).2010:1–6.
    [142] YeowW,WestphalC,KozatU.Designingandembeddingreliablevirtualinfrastructures[J].ACM SIGCOMM Computer Communication Review.2011,41(2):57–64.
    [143] SysKonnect. Link Aggregation according to IEEE802.3ad [EB/OL]. http://legacyweb.triumf.ca/canarie/amsterdam-test/References/wp-lag-e.pdf.
    [144] Aust S, Kim J, Davis P, et al. Evaluation of Linux Bonding Features [C]. In Proceedings ofthe International Conference on Communication Technology (CCT’06).2006:1–6.
    [145] IEEE. IEEE standard802.3ad-2000Amendment to Carrier Sense Multiple Access WithCollision detection (CSMA/CD) Access Method and Physical Layer Specifications-Ag-gregation of Multiple Link Segments [S].2000.
    [146] Kim S, Ko Y. Wireless bonding for maximizing throughput in multi-radio mesh network-s [C]. In Proceedins of the5th Annual IEEE International Conference on Pervasive Com-puting and Communications Workshops (PerCom Workshops’07).2007:570–576.
    [147] Jayasuriya A, Aust S, Davis P, et al. Aggregation of Wi-Fi links: When does it work?[C].In Proceedings of the15th IEEE International Conference on Networks (ICON’07).2007:318–323.
    [148] Aust S, Davis P, Yamaguchi A, et al. Interface status monitoring for wireless link aggrega-tion in cognitive networks [C]. In Global Telecommunications Conference,2007. GLOBE-COM’07. IEEE.2007:4873–4877.
    [149] SMesh [EB/OL]. http://www.smesh.org/.
    [150] Houidi I, Louati W, Ben Ameur W, et al. Virtual network provisioning across multiplesubstrate networks [J]. Computer Networks.2011,55(4):1011–1023.
    [151] Zhu H, Li M, Chlamtac I, et al. A survey of quality of service in IEEE802.11networks [J].IEEE Wireless Communications.2004,11(4):6–14.
    [152] YinH,AlamoutiS.OFDMA:Abroadbandwirelessaccesstechnology[C].InIEEESarnoffSymposium.2006:1–4.
    [153] The MadWifi Project [EB/OL]. http://madwifi-project.org/.
    [154] Bhanage G, Vete D, Seskar I, et al. SplitAP: Leveraging Wireless Network VirtualizationFor Flexible Sharing Of WLANs [C]. In Proceedings of the IEEE Global Telecommunica-tions Conference (GLOBECOM’10).2010:1–6.
    [155] Zhu J, Waltho A, Yang X, et al. Multi-radio coexistence: Challenges and opportunities [C].In Proceedings of16th International Conference on Computer Communications and Net-works (ICCCN’07).2007:358–364.
    [156] AlicherryM,BhatiaR,LiL.Jointchannelassignmentandroutingforthroughputoptimiza-tion in multi-radio wireless mesh networks [C]. In Proceedings of the11th annual interna-tional conference on Mobile computing and networking (MobiCom’05).2005:58–72.
    [157] Mishra A, Shrivastava V, Banerjee S, et al. Partially overlapped channels not consideredharmful [C]. In ACM SIGMETRICS Performance Evaluation Review.2006:63–74.
    [158] Mohsenian Rad A, Wong V. Partially overlapped channel assignment for multi-channelwireless mesh networks [C]. In Proceedings of the IEEE International Conference on Com-munications (ICC’07).2007:3770–3775.
    [159] Hoque M, Hong X, Afroz F. Multiple radio channel assignement utilizing partially over-lapped channels [C]. In Proceedings of the IEEE Global Telecommunications Conference(GLOBECOM’09).2009:1–7.
    [160] Karp R. Reducibility among combinatorial problems [M]. Springer,1972.
    [161] Tanenbaum A. Computer Networks4th Edition [M]. Prentice-Hall,2003.
    [162] Zhang M, Wu C, Jiang M, et al. Mapping multicast service-oriented virtual networks withdelay and delay variation constraints [C]. In Proceedings of the IEEE Global Telecommu-nications Conference (GLOBECOM’10).2010:1–5.
    [163] OpenWRT [EB/OL]. https://openwrt.org/.
    [164] The Click Modular Router Project [EB/OL]. http://www.read.cs.ucla.edu/click/click.
    [165] Kohler E, Morris R, Chen B, et al. The Click modular router [J]. ACM Transactions onComputer Systems.2000,18(3):263–297.
    [166] Kohler E. The Click Modular Router [D]. Boston: Massachusetts Institute of Technology,2001.
    [167] Bejerano Y, Han S, Li L. Fairness and load balancing in wireless LANs using associationcontrol [J]. IEEE/ACM Transactions on Networking.2007,15(3):560–573.
    [168] Nicholson A, Chawathe Y, Chen M, et al. Improved access point selection [C]. In Pro-ceedings of the4th International Conference on Mobile systems, applications and services(MobiSys’06).2006:233–245.
    [169] Fujiwara A, Sagara Y, Nakamura M. Access point selection algorithms for maximizingthroughputs in wireless LAN environment [C]. In Proceedings of the International Confer-ence on Parallel and Distributed Systems (ICPADS’07).2007:1–8.
    [170] Luo L, Liu H, Wu M, et al. End-to-end performance aware association mechanism for wire-less municipal mesh networks [J]. Computer Communications.2008,31(8):1602–1614.
    [171] Luo L, Raychaudhuri D, Liu H, et al. Improving end-to-end performance of wireless meshnetworks through smart association [C]. In Proceedings of the IEEE Wireless Communica-tions and Networking Conference (WCNC’08).2008:2087–2092.
    [172] He Y, Perkins D, Velaga S. Design and implementation of CLASS: A Cross-Layer ASSo-ciation scheme for wireless mesh networks [J]. Ad Hoc Networks.2011.
    [173] Makhlouf S, Chen Y, Emeott S, et al. A network-assisted association scheme for802.11-based mesh networks [C]. In Proceedings of the IEEE Wireless Communications and Net-working Conference (WCNC’08).2008:1339–1343.
    [174] Wang H, Wong W, Soh W, et al. Dynamic association in IEEE802.11based wireless meshnetworks [C]. In Proceedings of the6th International Symposium on Wireless Communi-cation Systems (ISWCS’09).2009:81–85.
    [175] The ns-3network simulator [EB/OL]. http://www.nsnam.org/.
    [176] Von Dollen D. Report to NIST on the smart grid interoperability standards roadmap [J].EPRI, Contract No. SB1341-09-CN-0031–Deliverable.2009,7.
    [177] Gharavi H, Hu B. Multigate communication network for smart grid [J]. Proceedings of theIEEE.2011,99(6):1028–1045.
    [178] Galli S, Scaglione A, Wang Z. For the grid and through the grid: the role of power linecommunications in the Smart Grid [J]. Proceedings of the IEEE.2011,99(6):998–1027.
    [179] Li H, Zhang W. QoS routing in smart grid [C]. In Proceedings of the IEEE Global Telecom-munications Conference (GLOBECOM’10).2010:1–6.
    [180] Xin Y, Baldine I, Chase J, et al. Virtual smart grid architecture and control framework [C].In Proceedings of the IEEE International Conference on Smart Grid Communications (S-martGridComm’11).2011:1–6.
    [181] Pothamsetty V, Malik S. Smart Grid: Leveraging Intelligent Communications to Transformthe Power Infrastructure [J]. Cisco White Paper.2009.
    [182] Schwartz M. Carrier-wave telephony over power lines: Early history [History of Commu-nications][J]. Communications Magazine, IEEE.2009,47(1):14–18.
    [183] Dostert K, et al. Powerline communications [M]. New Jersey: Prentice Hall PTR,2001.
    [184] Ferreira H, Lampe L, Newbury J, et al. Power Line Communications: Theory and Applica-tions for Narrowband and Broadband Communications over Power Lines [M]. Hoboken:Wiley,2010.
    [185] LichtensteigerB,BjelajacB,MüllerC,etal.RFMeshSystemsforSmartMetering:SystemArchitecture and Performance [C]. In Proceedings of the First IEEE International Confer-ence on Smart Grid Communications (SmartGridComm’10).2010:379–384.
    [186] IEEE. IEEE1901-2010Standard for Broadband over Power Line Networks: Medium Ac-cess Control and Physical Layer Specifications [S].2010.
    [187] Hoch M. Comparison of PLC G3and PRIME [C]. In2011IEEE International Symposiumon Power Line Communications and Its Applications (ISPLC).2011:165–169.
    [188] ERDF. PLC G3Physical Layer Specification [EB/OL]. http://www.maxim-ic.com/products/powerline/pdfs/G3-PLC-Physical-Layer-Specification.pdf.
    [189] ERDF. PLC G3MAC Layer Specification [EB/OL]. http://www.maxim-ic.com/products/powerline/pdfs/G3-PLC-MAC-Layer-Specification.pdf.
    [190] PRIME Alliance Technical Working Group. Draft Standard for PoweRline Intelligen-t Metering Evolution [EB/OL]. http://www.prime-alliance.org/Docs/Ref/PRIME-Spec_v1%203%20E_201005.pdf.
    [191] Bianchi G. Performance analysis of the IEEE802.11distributed coordination function [J].IEEE Journal on Selected Areas in Communications.2000,18(3):535–547.
    [192] IEEE. IEEE802.11Standard for Wireless LAN Medium Access Control (MAC) and Phys-ical Layer (PHY) Specifications [S]. IEEE,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700