用户名: 密码: 验证码:
吲哚胺2,3-双加氧酶在T淋巴细胞对肝癌细胞发生免疫应答中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的肝癌患者的免疫系统不能有效地清除或杀伤癌细胞,是导致肝癌难以治愈、复发和转移的重要因素之一。探索肝癌细胞免疫逃逸的机制,将为肝癌的治疗提供新的思路。吲哚胺2,3-双加氧酶(IDO)是肝脏以外唯一可催化色氨酸分子氧化裂解的限速酶,在哺乳动物的组织和细胞中广泛表达。它通过降解局部组织中的色氨酸,在诱发宿主免疫防御、抑制T淋巴细胞免疫和抗肿瘤免疫、诱导母胎免疫耐受和移植物免疫耐受中均发挥重要的代谢性免疫调节作用。本研究通过观察IDO在抗肝癌免疫应答中的作用,为临床治疗肝癌提供新的理论依据。
     方法从健康人的外周血中分离出T淋巴细胞和HepG2细胞进行混合培养,分为对照组和实验组进行比较,对照组为空白组,实验组中分别加入IDO的抑制剂1-甲基色氨酸(1-MT)和外源性IDO;用RT-PCR检测每组中细胞IDOmRNA的表达水平,流式细胞仪分析混合反应体系中HepG2细胞的凋亡率,四噻唑蓝(MTT)实验检测混合反应体系中T淋巴细胞抗HepG2细胞的细胞毒活性。
     结果1.单独培养HepG2细胞,不表达IDOmRNA,而单独培养的T淋巴细胞表达微量的IDOmRNA;混合培养后,HepG2细胞表达IDOmRNA,而且表达水平较单独培养的T淋巴细胞高,其表达水平随着1-MT浓度的增高而降低,而随着外源性IDO浓度的增高而无明显变化。
     2.流式细胞仪分析混合反应体系中HepG2细胞的凋亡率,对照组中HepG2细胞的早期凋亡率为(3.48±0.34)%,1-MT组(浓度分别为1.25 mmol/l,2.5 mmol/l,5mmol/l)中分别为(7.82±0.41)%,(18.62±0.42)%,(25.32±0.40)%,加入1-MT组的HepG2细胞的早期凋亡率明显高于对照组,四者比较有显著性差异(P<0.01);外源性IDO组(浓度分别为0.05 mmol/l,0.5 mmol/l,5mmol/l)中分别为(3.32±0.35)%,(3.46±0.40)%,(2.75±0.26)%,只有当外源性IDO浓度为5mmol/l时HepG2细胞早期凋亡率与对照组比较才有统计学意义(P<0.01)。
     3. MTT实验显示,对照组中T淋巴细胞抗HepG2细胞的细胞毒活性为(17.36±1.24)%,1-MT组(浓度分别为1.25 mmol/l,2.5 mmol/l,5mmol/l)中分别为(25.48±1.48)%、(32.89±1.73)%、(42.04±2.16)%,四者比较有显著性差异(P<0.01),并且T淋巴细胞抗HepG2细胞的细胞毒活性随着1-MT浓度的增高而升高;外源性IDO组(浓度分别为0.05 mmol/l,0.5 mmol/l,5mmol/l)中分别为(17.30±0.52)%,(17.48±1.08)%,(15.74±0.79)%,同样也是只有当外源性IDO浓度为5mmol/l时与对照组比较才有统计学意义(P<0.01)。
     结论HepG2细胞表达的内源性IDO和一定浓度的外源性IDO均可抑制外周T淋巴细胞发挥抗HepG2细胞的细胞毒活性作用,降低HepG2细胞的早期凋亡率,它们可能参与了肝癌的免疫逃逸;而IDO的抑制剂1-MT却可以逆转这种作用,有望成为治疗肝癌的新靶点。
Objects Indoleamine 2,3-dioxygenase(IDO)catalyzes the rate-limiting step of tryptophan degradation along the kynurenine pathway , and both the reduction in local tryptophan concentration and the production of immunomodulatorytryptophan metabolites contribute to the immunosuppressive effects of IDO. Rencent studies have focused on immunoregulatory role of IDO in mononuclear cells. To seek the new way of curing hepatocellular carcinoma, we investigated the role of IDO in anticancer immune responses.
     Methods T-lymphocytes freshly isolated from healthy people and HepG2 cell were cocultured, and IDO inhibitor (1-methyl-tryptophan,1-MT) or exogenous IDO was added to make an intervening experiment. The level of IDO mRNA expression in HepG2 cell cocultured with T-lymphocyte was detected by RT-PCR;the apoptosis rate of HepG2 cell cocultured with T-lymphocyte was analyzed by flow cytometer; the cytotoxicity of T-lymphocyte against HepG2 cell was examined by MTT assay.
     Results 1.In HepG2 cell studied, IDO mRNA was not expressed under normal culture conditions. A low level of IDO mRNA expression was detectable in T-lymphocyte under normal culture conditions. The IDO mRNA was expressed exclusively when HepG2 cell was cultured with T-lymphocyte. The level of IDO mRNA expression in HepG2 cells cultured with T-lymphocyte was especially higher than that in na?ve T-lymphocyte. And the level of IDO mRNA expression was faintly induced after addition of 1-MT, but that was not altered by exogenous IDO.
     2.The earlier apoptosis rate of HepG2 cell in control group was (3.48±0.34)% and 1-MT(1.25 mmol/l,2.5 mmol/l,5mmol/l) group was respectively(7.82±0.41)%,(18.62±0.42)%,(25.32±0.40)%, the earlier apoptosis rate of HepG2 cell was significantly higher in cocultured condition with 1-MT group than without 1-MT group; the exogenous IDO (0.05 mmol/l,0.5 mmol/l,5mmol/l) group was respectively(3.32±0.35)%,(3.46±0.40)%,(2.75±0.26)%, it was considered statistically significant compared with control group when the concentration of exogenous IDO was 5mmol/l.
     3.The cytotoxicity of T-lymphocyte against HepG2 cell in control group was (17.36±1.24)%,and 1-MT(1.25 mmol/l,2.5 mmol/l,5mmol/l) group was respectively(25.48±1.48)%,(32.89±1.73)%,(42.04±2.16)%, there was a significant increase in the cytotoxicity of T-lymphocyte against HepG2 cell in cocultured condition with 1-MT group than without 1-MT group; the exogenous IDO (0.05 mmol/l,0.5 mmol/l,5mmol/l) group was respectively(17.30±0.52)%,(17.48±1.08)%,(15.74±0.79)%, it was considered statistically significant compared with control group when the concentration of exogenous IDO was 5mmol/l, too.
     Conclusions These results suggest that IDO from HepG2 cell and some concentration of exogenous IDO can suppress the cytotoxicity of T-lymphocyte against HepG2 cell and the earlier apoptosis rate of HepG2 cell , which may be contributing to hepatocellular carcinoma immune escape , but 1-MT can reverse the immunoregulatory role. In the future, it maybe become a new target for treatment of hepatocellular carcinoma.
引文
[1] Lau WY, Lai EC. Salvage surgery following downstaging of unresectable hepatocellular carcinoma--a strategy to increase resectability.Ann Surg Oncol [J].2007;14(12):3301-3309.
    [2] Liu Z, Dai H, Wan N, et al. Suppression of memory CD8+ T cell generation and function by tryptophan catabolism. J Immunol, 2007;178:4260-4266.
    [3] Schrocksnadel K, Wirleitner B,Winkler C, et al. Monitoring tryptophan metabolism in chronic immune activation [J]. Clin Chim Acta, 2006;364(1-2):82-90.
    [4] Jung ID, Lee CM, Jeong YI, et al.Differential regulation of indoleamine 2,3-dioxygenase by lipopolysaccharide and interferon-gamma in murine bone marrow derived dendritic cells.FEBS Lett, 2007;581:1449-1456.
    [5]唐晓琼,赵智刚,王红祥等。急性髓细胞白血病细胞的吲哚胺2,3双加氧酶介导免疫逃避的实验研究。中国实验血液学杂志,2006;14(3):539-42.
    [6] Mackenzie CR, Hadding U, Daubener W. Interferon- gamma-induced activation of indoleamine 2,3-dioxygenase in cord blood monocyte-derived macrophages inhibits the growth of group B streptococci[J]. J Infect Dis,1998; 178(3):875-878.
    [7] Mellor A L, Munn D H. IDO expression by dendritic cells: tolerance and tryptophan catabolism [J]. Nat Rev Immunol, 2004; 4(10):762– 774.
    [8] Wirleitner B, Neurauter G, Schrocksnadel K, et al. Interferon-gamma-induced conversion of tryptophan: immunologic and neuropsychiatric aspects[J]. Curr Med Che, 2003;10(16): 1581 - 1591.
    [9] Uyttenhaove C, Pilotte L, Theate I, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase[J].Nat Med, 2003; 9(10):1269-1274.
    [10] Munn DH, Shafizadeh E, Attwood JT, et al. Inhibiton of T cell proliferation by acrophage tryptophan catabolism[J].Exp med, 1999;189:1363-1372.
    [11] Spiotto MT, Yu P, Rowley DA, et al. Increasing tumor antigen expression overcomes“ignorance”to solid tumors via crosspresentation by bone marrow-derived stromal cells[J].Immunity, 2002; 17(6):737-747.
    [12] David H.Munn , Andrew L.Mellor.IDO and tolerance to tumors[J]. TRENDS in Molecular Medicine , 2004; 10 (1):15-18.
    [13] Ishio T, Goto S, Tahara K, et al. Immunoactivative role of indoleamine 2,3-dioxygenase in human hepatocellular carcinoma[J]. Journal of Gastroenterology and Hepatology, 2004;19:319-326.
    [14] Ishio T, Goto S, Tahara K, et al. Inhibition of indoleamine 2,3-dioxygenase suppresses NK cell activity and accelerates tumor growth[J] .Journal of Experimental Therapeutics and Oncology, 2003; 3:336-345.
    [15] Tim FG , Michael PM , Firouzeh K. Immunotherapy of hepatocellular caicinoma[J] . Journal of Hepatology, 2006; 45( 6):868-878.
    [16] Brown RR, Lee CM, Kohler PC, et al. Altered tryptophan and neopterin metabolism in cancer patients treated with recombinant interleukin 2[J]. Cancer Res, 1989; 49(17):4941-4944.
    [17] Kai S, Goto S, Tahara K,et al. Indoleamine 2,3-dioxygenase is necessary for cytolytic activity of naturalkiller cells[J] .Scandinavian Journal of Immunology, 2004;59:177-182.
    [18]窦肇华主编。免疫细胞学与疾病。北京:中国医药科技出版社,2004,106-127.
    [19]刘尚梅,赵建军,杨晓洁等。肝细胞肝癌对机体细胞免疫的影响。实用癌症杂志,2005,20卷(1):68-74.
    [20] Mellor AL, Keskin DB, Johnson T , et al. Cells expressing indoleamine 2,3-dioxygenase inhibit T cell responses[J].J Immunol. 2002; 168(8):3771-3776.
    [21] Friberg M, Jennings R, Alsarraj M, et al. Indoleamine 2, 3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection[J]. Int J Cancer, 2002;101 (2):151 - 155.
    [22] Munn DH, Mellor AL . Indoleamine 2,3-dioxygenase and tumor-induced tolerance[J].J Clin Invest, 2007;117(5):1147-1154.
    [23] Munn D H, Sharma M D, Lee J R, et al. Potential regulatoryfunction of human dendritic cells exp ressing indoleamine 2, 3-diox-ygenase [J]. Science, 2002;297 (5588):1867 - 1870.
    [24] Lee G K, Park H J, Macleod M, et al. Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division [J].Imm unology, 2002; 107 (4) : 452 - 460.
    [25] Fallarino F, Grohmann U, Vacca C, et al. T cell apop tosis by tryptophan catabolism[J]. Cell Death Differ, 2002; 9 (10):1069- 1077.
    [26] Weber WP, Feder-Mengus C, Chiarugi A, et al. Differential effects of the tryptophan metabolite 3-hydroxyanthranilic acid on the proliferation of human CD8+ T cells induced by TCR triggering or homeostatic cytokines[J]. Eur J Immunol, 2006;36(2):296-304.
    [27] Grohmann U, Orabona C, Fallarino F, et al. CTLA-4-Ig regulates tryptophan catabolism in vivo[J]. Nat Immunol, 2002; 3 ( 11 ):1097 - 1101.
    [28] Mellor A L, Baban B, Chandler P, et al. Cutting edge: induced indoleamine 2, 3 dioxygenaseexpression in dendritic cell subsetssupp resses T cell clonal expansion [J]. J Immunol, 2003; 171(4):1652 - 1655.
    [29] Muller A J, Du Hadaway J B, Donover P S, et al. Inhibition of indoleamine 2, 3- dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy[J]. Nat Med, 2005; 11 (3):312 - 319.
    [1]刘尚梅,赵建军,杨晓洁等。肝细胞肝癌对机体细胞免疫的影响。实用癌症杂志,2005,20卷(1):68-74.
    [2]窦肇华主编。免疫细胞学与疾病。北京:中国医药科技出版社,2004,106-127.
    [3] Vollmer CM Jr, Eilber FC, Butterfield LH, et al. Alpha-fetoprotein-specific genetic immunotherapy for hepatocellular carcinoma [J].Cancer Res,1999; 59(13):3064-3067.
    [4] Butterfield LH, Koh A, Meng W, et al. Generation of human T-cell responses to an LA-A2.1-restricted peptide epitope derived from alpha-fetoprotein [J].Cancer Res. 1999;59(13):3134-3142.
    [5] Meng WS, Butterfield LH, Ribas A, et al.Fine specificity analysis of an HLA-A2.1-restricted immunodominant T cell epitope derived from human alpha-fetoprotein [J].Mol Immunol. 2000;37(16):943-950.
    [6] Butterfield LH, Meng WS, Koh A, et al.T cell responses to HLA-A*0201-restricted peptides derived from human alpha fetoprotein [J]. Immunol. 2001;166(8):5300-5308.
    [7] Butterfield LH, Ribas A, Meng WS, et al. T-cell responses to HLA-A*0201 immunodominant peptides derived from alpha-fetoprotein in patients with hepatocellular cancer [J].Clin Cancer Res. 2003;9(16):5902-5908.
    [8] Lu J, Leng X,Peng J ,et al. Induction of cytotoxic T lymphocytes from the peripheral blood of a hepatocellular carcinoma patient using melanoma antigen-1(MAGE-1) peptide [J]. Chin Med J,2002;115(7):1002-1005.
    [9] Dong HL, Sui YF, Li ZS,et al. Efficient induction of cytotoxic T lymphocytes specific to hepatocellular carcinoma using HLA-A2-restricted MAGE-n peptide in vitro[J].Cancer Lett. 2004;211(2):219-225.
    [10] Bricard G, Bouzourene H, Martinet O,et al.Naturally acquired MAGE-A10- and SSX-2-specific CD8+ T cell responses in patients with hepatocellular carcinoma[J].J Immunol. 2005;174(3):1709-1716.
    [11] Unitt E, Rushbrook SM, Marshall A, et al.Compromised lymphocytes infiltrate hepatocellular carcinoma: the role of T-regulatory cells[J]. Hepatology. 2005;41(4):722-730.
    [12] Godfrey D I, Hammond K J, Poulton L D, et al. NKT cells:facts, functions and fallacies[J]. Immunol Today, 2000;21(11):573~583.
    [13] Miyake S, Yamamura T.Therapeutic potential of glycolipid ligands for natural killer (NK) T cells in the suppression of autoimmune diseases[J].Curr Drug Targets Immune Endocr Metabol Disord. 2005;5(3):315-322.
    [14] Chang D H, Osman K, Connolly J, et al. Sustained expansionof NKT cells and antigen-specific T cells after injection ofα-galactosyl-ceramide loaded mature dendritic cells in cancer patients[J]. J Exp Med, 2005;201(9):1503~1517.
    [15] Kawano T, Cui J Q, Koezuka Y, et al. Natural killer-like nonspecific tumor cell lysis mediated by specific ligandactivatedVα14+ NKT cells[J]. Proc Natl Acad Sci USA, 1998; 95(10): 5690~5693.
    [16] Nicol A, Nieda M, Koezuka Y, et al. Human invariant Vα24+natural killer T cells activated byα-galactosylceramide(KRN7000) have cytotoxic anti-tumour activity through mechanisms distinct from T cells and natural killer cells[J].Immunology, 2000;99(2): 229~234.
    [17] Ishii R, Shimizu M, Nakagawa,et al. YIn vivo priming of natural killer T cells by dendritic cells pulsed with hepatoma-derived acid-eluted substances[J].Cancer Immunol Immunother. 2004;53(5):383-390.
    [18] Stober D, Jomantaite I, Schirmbeck R, et al. NKT cells provide help for dendritic cell-dependent priming of MHC class I-restricted CD8+ T cells in vivo[J].J Immunol. 2003;170(5):2540-2548.
    [19] Okumura A, Ishikawa T, Maeno T, et al. Changes in natural killer T cells subsets during therapy in type C hepatitis and hepatocellular carcinoma[J]. Hepatol Res. 2005;32(4):213-217.
    [20] Shibolet O, Alper R, Zlotogarov L, et al. NKT and CD8 lymphocytes mediate suppression of hepatocellular carcinoma growth via tumor antigen-pulsed dendritic cells[J].Int J Cancer. 2003;106(2):236-243.
    [21] Shibolet O, Alper R, Zlotogarov L, et al. Suppression of hepatocellular carcinoma growth via oral immune regulation towards tumor-associated antigens is associated with increased NKT and CD8+ lymphocytes[J]. Oncology. 2004; 66(4):323-330.
    [22] Margalit M, Shibolet O, Klein A Suppression of hepatocellular carcinoma by transplantation of ex-vivo immune-modulated NKT lymphocytes[J].Int J Cancer. 2005;115(3):443-449.
    [23] Jurisic V. Characteristics of natural killer cell[J]. Srp Arh Celok Lek, 2006;134(1-2):71-76.
    [24] Hallett WH, Murphy WJ. Natural killer cells: biology and clinical use in cancer therapy[J]. Cell Mol Immunol, 2004;1(1):12-21.
    [25] Seo N, Tokura Y, Takigawa M, et al. Depletion of IL-10- and TGF-beta-producing regulatory gamma delta T cells by administering a daunomycin-conjugated specific monoclonal antibody in early tumor lesions augments the activity of CTLs and NK cells[J]. J Immunol. 1999;163(1):242-249.
    [26] Sawayama T, Sakaguchi K, Senoh T, et al. Effects of pulsing procedure of interleukin-12 in combination with interleukin-2 on the activation of peripheral blood lymphocytes derived from patients with hepatocellular carcinoma[J]. Acta Med Okayama, 2003;57(6):285-292.
    [27] Okumoto K, Hattori E, Tamura K, et al. Possible contribution of circulating transforming growth factor-beta1 to immunity and prognosis in unresectable hepatocellular carcinoma[J]. Liver Int, 2004;24(1):21-28.
    [28] Elinav E, Abd-Elnabi A, Pappo O, et al . Suppression of hepatocellular carcinoma growth in mice via leptin, is associated with inhibition of tumor cell growth and natural killer cell activation[J]. J Hepatol, 2006;44(3):529-536.
    [29] Wu F, Wang ZB, Lu P, et al. Activat ed anti-tumor immunity in cancer patients after high intensity focused ultrasound ablation[J].Ultrasound Med Biol, 2004;30(9):1217-1222.
    [30] Gonzalez S, Groh V, Spies T, et al. Immunobiology of human NKG2D and its ligands[J].Curr Top Microbiol Immunol, 2006;298:121-138.
    [31] Armeanu S, Bitzer M, Lauer UM, et al. Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate[J]. Cancer Res, 2005;65(14):6321-6329.
    [32] Jinushi M, Takehara T,Tatsumi T, et al. Impairment of natural killer cell and dendritic cell functions by the soluble form of MHC class I-related chain A in advanced human hepatocellular carcinomas[J]. J Hepatol, 2005;43(6):1013-1020.
    [33] Liu Z, Dai H, Wan N, et al. Suppression of memory CD8+ T cell generation and function by tryptophan catabolism. J Immunol, 2007;178:4260-4266.
    [34] Schrocksnadel K, Wirleitner B,Winkler C, et al. Monitoring tryptophan metabolism in chronic immune activation [J]. Clin Chim Acta, 2006;364(1-2):82-90.
    [35] Jung ID, Lee CM, Jeong YI, et al.Differential regulation of indoleamine 2,3-dioxygenase by lipopolysaccharide and interferon-gamma in murine bone marrow derived dendritic cells.FEBS Lett, 2007;581:1449-1456.
    [36] Mellor A L, Munn D H. IDO expression by dendritic cells: tolerance and tryptophan catabolism [J]. Nat Rev Immunol, 2004; 4(10):762– 774.
    [37] Wirleitner B, Neurauter G, Schrocksnadel K, et al. Interferon-gamma-induced conversion of tryptophan: immunologic and neuropsychiatric aspects[J]. Curr Med Che, 2003;10(16): 1581 - 1591.
    [38] Brown RR, Lee CM, Kohler PC, et al. Altered tryptophan and neopterin metabolism in cancer patients treated with recombinant interleukin 2[J]. Cancer Res, 1989; 49(17):4941-4944.
    [39] Ishio T, Goto S, Tahara K, et al. Immunoactivative role of indoleamine 2,3-dioxygenase in human hepatocellular carcinoma[J]. Journal of Gastroenterology and Hepatology, 2004; 19,319-326.
    [40] Ishio T, Goto S, Tahara K, et al. Inhibition of indoleamine 2,3-dioxygenase suppresses NK cellactivity and accelerates tumor growth[J].Journal of Experimental Therapeutics and Oncology ,2003;3:336-345.
    [41] Kai S, Goto S, Tahara K,et al. Indoleamine 2,3-dioxygenase is necessary for cytolytic activity of natural killer cells[J].Scandinavian Journal of Immunology, 2004;59:177-182.
    [42] Yoon SK, Kim TG, Cho HI, et al. Suppression of tumor formation and induction of natural killer cell activity in BALB/c nude mice by human B7-1 (CD80) gene transfer subcutaneously injected with human hepatocellular carcinoma cells (Huh-7) [J]. Taehan Kan Hakhoe Chi, 2003;9(2):124-134.
    [43] Ge NL, Ye SL, Zheng N, et al. Prevention of hepatocellular carcinoma in mice by IL-2 and B7-1 genes co-transfected liver cancer cell vaccines[J].World J Gastroenterol, 2003;9(10):2182-2185.
    [44] Peron JM, Couderc B, Rochaix P, et al.Treatment of murine hepatocellular carcinoma using genetically modified cells to express interleukin-12[J].J Gastroenterol Hepatol, 2004;19(4):388-396.
    [45] Wang H, Dai J, Hou S, et al. Treatment of hepatocellular carcinoma with adenoviral vector-mediated Flt3 ligand gene therapy[J].Cancer Gene Ther, 2005;12(9):769-777.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700