用户名: 密码: 验证码:
Rubrene和开孔富勒烯衍生物等新型共轭分子的NLO性质理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代光通讯、光计算和光信号处理等领域的高速发展,越来越需要一些具有大的非线性光学系数的材料作为光子器件的基础。有机π电子共轭体系具有较大的非线性光学系数、响应速度快、成本低、容易加工、结构可调性好、高的损伤阈值,因此受到了人们广泛的关注。本论文利用密度泛函和半经验AM1、ZINDO等量子化学方法对系列rubrene和开孔富勒烯等新型π共轭体系的结构和非线性光学性质进行详细的理论讨论,主要内容包括以下五个方面:
     1.通过对红荧烯(rubrene)双光子吸收性质的理论研究,发现红荧烯相对于并四苯的双光子吸收截面值大得多,证实了存在着从悬挂的苯基到并四苯分子骨架间的对称电荷转移。故此引入对称性的电荷转移也是一个非常有效的增加双光子吸收截面的途径。此外,通过增加红荧烯的共轭范围,双光子截面增加明显。然而在红荧烯的悬挂苯基上引入电子的给体氨基或者电子受体硝基,均会使双光子吸收截面显著下降。所以从双光子吸收分子设计角度来说,增加有效π共轭范围是得到具有大的双光子吸收截面分子的最好选择。
     2.通过对一系列以硼为中心多分支低聚芴的双光子吸收性质理论研究,发现增加分支数目能够显著增加低聚芴的双光子吸收截面值。相对于双分支和单支低聚芴,三分支低聚芴CBTFn的双光子吸收截面值最大。采用简化激子模型来讨论CBTFn的双光子吸收截面值,说明在硼原子中心和芴分支间存在很强的有效电子耦合作用。此外存在于三分支CBTFn中的耦合作用要比双分支CBDFn中的耦合作用要强,这表明当分支与中心间的耦合允许时,三分支分子比双分支分子是更好的具有大的双光子吸收截面的选择。
     3.通过对在通常的有溶剂中就能很容易溶解的PPV衍生物poly [2-(9-phenylanthracen-10-yl)-1, 4-phenylenevinylene] (P1)的双光子吸收性质的理论研究,发现相对于PPV,由于在P1中引入悬挂基团,P1的双光子吸收截面值明显下降。这主要是由于悬挂基团大大减少了分子本身的有效共轭范围。P1的最大双光子吸收截面所对应电荷转移发生在PPV主链与悬挂基团之间,故此苯基蒽悬挂基团被认为是很好的双光子受体。从应用的角度来看,我们通过在PPV上引入某些基团使得PPV易于被加工,另一方面,应该尽可能保持PPV主链的π-共轭伸展。这两方面应该作为设计具有应用前景双光子吸收材料基本原则。
     4.通过对一系列富勒烯C_(60)开孔含氧衍生物的结构、稳定性和非线性光学性质理论研究,发现相对于C_(60),五元开孔含氧衍生物C_(55)O_5的HOMO-LUMO带隙比C_(60)的HOMO-LUMO带隙高,说明C_(55)O_5具有较高的化学稳定性。结合能计算表明五元开孔含氧衍生物C_(55)O_5要比六元开孔含氧衍生物C_(54)O_6更容易形成,我们预测C_(55)O_5的实验合成一定能够实现。由于开孔含氧富勒烯C_(60)衍生物破坏了C_(60)的对称中心,具有相对较大的二阶非线性光学响应,这一发现对于寻找基于C_(60)的新型非线性光学材料开拓了一个新的方向。对于C_(55)O_5与C_(54)O_6的二阶非线性光学响应的主要贡献分析表明沿Z轴的电荷转移是最重要的。
     5.通过对一系列富勒烯C_(50)开孔含氧衍生物的结构、稳定性和非线性光学性质理论研究,发现相对于D5h C_(50),将其五元开孔含氧衍生物用氟饱和5/5键C_2位置所形成C_(45)O_5F_(10)(C_(5V))的HOMO-LUMO带隙高于相同水平下C_(60)的HOMO-LUMO带隙,说明C_(45)O_5F_(10)具有较高的化学稳定性。结合能计算表明C_(45)O_5F_(10)相对于D5h C_(50)其他打开一个完整五元环或六元环形成的含氧衍生物(包括开孔后用卤素饱和5/5键C2位置所形成衍生物)更容易形成。表明C_(45)O_5F_(10)(C_(5V))的实验合成是可能的。对C_(45)O_5F_(10)(C_(5V))的二次谐波产生下动态一阶超极化率计算表明:C_(45)O_5F_(10)在从0到1.5 eV间很宽的范围内色散很小,这表明C_(45)O_5F_(10)在频率转换光学材料领域有着潜在的应用前景。对于C_(45)O_5F_(10)的二阶非线性光学响应的主要贡献分析表明沿Z轴(C_5)的电荷转移是最重要的。
With the rapid development of optical telecommunication, optical computing and signal-processing devices etc, materials with larger nonlinear optical coefficient are still in great demand due to the critical role that they are playing in photoelectric devices. The organic materials are of major interest in the nonlinear optical (NLO) field, due to their large nonlinear optical coefficient, fast nonlinear optical response times, relatively low cost, ease of fabrication and integration into devices, tailor ability which allows one to fine tune the chemical structure and properties for a given nonlinear optical process, high laser damage thresholds. In this thesis, in order to design and select organic materials with large two-photon absorption response, we have performed systematic theoretical research of novelπ-conjugated materials. The quantum chemical methods-density functional theory and AM1 have been applied to obtain the molecular equilibrium geometries. On the basis of the optimized molecular geometries, one- and two-photon absorption properties are obtained by ZINDO-SOS method. In addition, we also performed systematic investigations on the structure, stability and NLO properties of open-cage C_(60) and C_(50) derivatives. These results may provide a theoretical basis of designing novel fullerene derivatives with large NLO coefficients. Our work has been focus on the following five aspects:
     1. One- and two-photon absorption properties of a noteworthy perpendicularπ-electron system rubrene have been investigated. Calculation results show that relatively larger two-photon cross sections (δ_(max)) of rubrene than that of tetracene verify that there exits CT from phenyl groups to the tetracene backbone. So introducing symmetrical CT is also one of effective ways to enlarge theδ_(max). By enlarging theπ-conjugation extension of rubrene, theδ_(max) show a distinct increase, However, attaching electron donating amino group or electron withdrawing nitro group to rubrene bring apparent decrease ofδ_(max) in contrast with rubrene. So from the molecular designing aspect, the extension ofπ-conjugation is the best choice for relatively largerδ_(max).
     2. One- and two-photon absorption properties of a series of three-branched and two-branched as well as one-branched oligofluorenes with boron center have been theoretically investigated. Changing the number of branch brings significant enhancement on theδ_(max) values. CBTFn has the largestδ_(max) with respect to CBDFn and CBSFn. The comparisons ofδ_(max) with simplified exciton model show that the effective coupling between boron center and individual fluorene arm is relatively strong. Moreover, the coupling in CBTFn is larger than that in CBDFn, which also proves that the three-branched ologomer is a better choice for attaining largerδ_(max) than the two-branched counterpart when the coupling between the center and the individual arm is allowed. So CBTFn is a kind of promising TPA materials for optical power limiting.
     3. One- and two-photon absorption properties of a novel PPV derivative poly 2-(9-phenylanthracen-10-yl)-1,4-phenylenevinylene (P1), which are highly soluble in common organic solvents, have been investigated. The pendent groups bring a significant decrease on theδmax value of P1 compared with PPV. This decrease can be explained by the influence from pendent groups on the effectiveπ-conjugation length of P1. In addition, the charge transfer contributing to TPA of P1 is through backbone to pendent group, so the pendent group of P1 can be regarded as a good two-photon absorber. From the application point of view, on one hand, it should introduce certain group to make PPV easy fabrication. On the other hand, it should keep goodπ-conjugation extension of PPV backbone. In general, for a promising TPA materials for application, the above two aspects should be taken into consideration.
     4. The structural and electronic as well as NLO properties of a series of open-cage oxo fullerene C_(60) derivatives: C_(55)O_5 and C_(54)O_6 have been theoretically investigated. Calculation results indicate that C_(55)O_5 is a chemically stable structure with a larger band gap compared to C_(60) calculated at the same theory level. The cohesive energy calculations reveal that the formation of C_(55)O_5 may be easier than that of C_(54)O_6, which may provide useful guidance for experiments. Therefore, it makes us to believe that the experimental synthesis of C_(55)O_5 will certainly be able to achieve in the near future. When the cage of C_(60) is opened, it induces relatively larger second-order NLO response, thus it opens a novel route towards the research on searching new type of NLO materials based on C_(60) derivatives. Analysis of the main contributions to the second-order NLO response of C_(55)O_5 and C_(54)O_6 reveals that charge transfer along the z-axis direction plays a key role.
     5. The structural and electronic properties as well as NLO properties of a series of open-cage oxo D5h C_(50) derivatives: C45O5 and C44O6 have been theoretically investigated. Calculation results indicate that C_(45)O_5F_(10), which is from D5h C_(50) open-cage oxo derivative C45O5 and then saturated with ten fluorine atoms at pentagon-pentagon vertex fusions, is a chemically stable structure with a larger band gap compared to C_(60) calculated at the same theory level. The cohesive energy calculations reveal that the formation of C_(45)O_5F_(10) may be easier than the open-cage oxo D5h C_(50) derivatives: C45O5 and C44O6 (including their corresponding halogen passivated derivatives). Therefore, it makes us to believe that the experimental synthesis of C_(45)O_5F_(10) will certainly be able to achieve in the near future. The dynamic second-order NLO response of C_(45)O_5F_(10) shows small dispersion behavior in a wide frequency range from 0 to 1.5 eV under second harmonic generation (SHG) process, showing that C_(45)O_5F_(10) is available to be used for frequency conversion optical materials. Analysis of the main contributions to the second-order NLO response of C_(45)O_5F_(10) reveals that charge transfer along the z-axis direction plays a key role.
引文
[1] Franken P A, Hill A E, Peters C W, et al. Generation of optical harmonics[J]. Phys Rev Lett, 1961, 7 (4): 118-119.
    [2] G?ppert-Mayer M. Elementakte mit zwei Quantensprungen[J]. Ann Phys, 1931, 9 275-294.
    [3] Kaiser W and Garret C G B. Two photon excitation in CaF2:Eu2+[J]. Phys Rev Lett, 1961, 7 229-231.
    [4] He G S, Xu G C, Prasad P N, et al. 2-photon absorption and optical-limiting properties of novel organic-compounds[J]. Opt Lett, 1995, 20 (5): 435-437.
    [5] He G S, Bhawalkar J D, Prasad P N, et al. 3-Photon-absorption-induced fluorescence and optical limiting effects in an organic-compound[J]. Opt Lett, 1995, 20 (14): 1524-1526.
    [6] He G S, Zieba J, Bradshaw J T, et al. 2-Photon induced fluorescence behavior of deanst organic-crystal[J]. Opt Commun, 1993, 104 (1-3): 102-106.
    [7] Bhawalkar J D, He G S and Prasad P N. 3-Photon induced up-converted fluorescence from an organic-compound - application to optical power limiting[J]. Opt Commun, 1995, 119 (5-6): 587-590.
    [8] Lin T C, Chung S J, Kim K S, et al. Organics and polymers with high two-photon activities and their applications[M]. Polymers for Photonics Applications II, 2003, 161, 157-193
    [9] Zhao M T, Cui Y P, Samoc M, et al. Influence of 2-Photon Absorption on 3rd-Order Nonlinear Optical Processes as Studied by Degenerate 4-Wave-Mixing - the Study of Soluble Didecyloxy Substituted Polyphenyls[J]. J Chem Phys, 1991, 95 (6): 3991-4001.
    [10] Sheikbahae M, Said A A, Wei T H, et al. Sensitive measurement of optical nonlinearities using a single beam[J]. IEEE J Quantum Electron, 1990, 26 (4): 760-769.
    [11] Sheikbahae M, Said A A and Vanstryland E W. High-sensitivity, single-beam N2 measurements[J]. Opt Lett, 1989, 14 (17): 955-957.
    [12] Kuzyk M G. Fundamental limits on third-order molecular susceptibilities[J]. Opt Lett, 2000, 25 (16): 1183-1185.
    [13] Kuzyk M G. Physical limits on electronic nonlinear molecular susceptibilities[J]. Phys Rev Lett, 2000, 85 (6): 1218-1221.
    [14] Kuzyk M G. Fundamental limits on two-photon absorption cross sections[J]. J Chem Phys, 2003, 119 (16): 8327-8334.
    [15] Denk W, Strickler J H and Webb W W. Elementakte mit zwei quantensprungen[J]. Science, 1990, 248 (4951): 73-76.
    [16] He G S, Bhawalkar J D, Zhao C F, et al. 2-Photon-pumped cavity lasing in a dye-solution-filled hollow-fiber system[J]. Opt Lett, 1995, 20 (23): 2393-2395.
    [17] He G S, Zhao C F, Bhawalkar J D, et al. Two-photon pumped cavity lasing in novel dye doped bulk matrix rods[J]. Appl Phys Lett, 1995, 67 (25): 3703-3705.
    [18] Bhawalkar J D, He G S, Park C K, et al. Efficient, two-photon pumped green upconverted cavity lasing in a new dye[J]. Opt Commun, 1996, 124 (1-2): 33-37.
    [19] He G S and Prasad P N. Phase-conjugation properties of two-photon-pumped backward-stimulated emission. I. Experimental studies[J]. J Opt Soc Am B: Opt Phys, 1998, 15 (3): 1078-1085.
    [20] Ogawa S, Tomoda K and Noda S. Effects of structural fluctuations on three-dimensional photonic crystals operating at near-infrared wavelengths[J]. J Appl Phys, 2002, 91 (1): 513-515.
    [21] Maruo S, Nakamura O and Kawata S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization[J]. Opt Lett, 1997, 22 (2): 132-134.
    [22] Borisov R A, Dorojkina G N, Koroteev N I, et al. (1998) in 1998 Spring Meeting of theGerman-Physical-Society (Constance, Germany), pp. 765-767.
    [23] Sun H B, Matsuo S and Misawa H. Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin[J]. Appl Phys Lett, 1999, 74 (6): 786-788.
    [24] Cumpston B H, Ananthavel S P, Barlow S, et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication[J]. Nature, 1999, 398 (6722): 51-54.
    [25] Bhawalkar J D, He G S and Prasad P N. Nonlinear multiphoton processes in organic and polymeric materials[J]. Rep Prog Phys, 1996, 59 1041-1070.
    [26] Dichtel W R, Serin J M, Edder C, et al. Singlet oxygen generation via two-photon excited FRET[J]. J Am Chem Soc, 2004, 126 (17): 5380-5381.
    [27] Dvornikov A S and Rentzepis P M. Accessing 3d memory information by means of nonlinear absorption[J]. Opt Commun, 1995, 119 (3-4): 341-346.
    [28] Parthenopoulos D A and Rentzepis P M. 3-Dimensional optical storage memory[J]. Science, 1989, 245 (4920): 843-845.
    [29] Xu G B, Hu D, Zhao X, et al. Fluorescence upconversion properties of a class of improved pyridinium dyes induced by two-photon absorption[J]. Opt Laser Technol, 2007, 39 (4): 690-695.
    [30] Kim S, Zheng Q, He G S, et al. Aggregation-enhanced fluorescence and two-photon absorption in nanoaggregates of a 9,10-bis[4 '-(4 ''-aminostyryl)styryl]anthracene derivative[J]. Adv Fucnt Mater, 2006, 16 (18): 2317-2323.
    [31] Padmawar P A, Rogers J E, He G S, et al. Large cross-section enhancement and intramolecular energy transfer upon multiphoton absorption of hindered diphenylaminofluorene-C-60 dyads and triads[J]. Chem Mater, 2006, 18 (17): 4065-4074.
    [32] Terenziani F, Katan C, Badaeva E, et al. Enhanced Two-Photon Absorption of Organic Chromophores: Theoretical and Experimental Assessments[J]. Adv Mater, 2008, 20 (24): 4641-4678.
    [33] Reinhardt B A, Brott L L, Clarson S J, et al. Highly active two-photon dyes: Design, synthesis, and characterization toward application[J]. Chem Mater, 1998, 10 (7): 1863-1874.
    [34] Albota M, Beljonne D, Bredas J L, et al. Design of organic molecules with large two-photon absorption cross sections[J]. Science, 1998, 281 (5383): 1653-1656.
    [35] Zyss J and Ledoux I. Nonlinear optics in multipolar media - theory and experiments[J]. Chem Soc Rev, 1994, 94 (1): 77-105.
    [36] Cho B R, Son K H, Lee S H, et al. Two photon absorption properties of 1,3,5-tricyano-2,4,6-tris(styryl)benzene derivatives[J]. J Am Chem Soc, 2001, 123 (41): 10039-10045.
    [37] Kannan R, He G S, Lin T C, et al. Toward highly active two-photon absorbing liquids. Synthesis and characterization of 1,3,5-triazine-based octupolar molecules[J]. Chem Mater, 2004, 16 (1): 185-194.
    [38] Westlund R, Glimsdal E, Lindgren M, et al. Click chemistry for photonic applications: triazole-functionalized platinum(II) acetylides for optical power limiting[J]. J Mater Chem, 2008, 18 (2): 166-175.
    [39] Zhao L, Yang G C, Su Z M, et al. Cooperative enhancement of two-photon absorption cross sections in three-branched oligofluorene with boron center[J]. J Mol Struct-Theochem, 2008, 855 (1-3): 69-76.
    [40] Chung S J, Lin T C, Kim K S, et al. Two-photon absorption and excited-state energy-transfer properties of a new multibranched molecule[J]. Chem Mater, 2001, 13 (11): 4071-4076.
    [41] Liu Z Q, Fang Q, Wang D, et al. Trivalent boron as an acceptor in donor-pi-acceptor-type compounds for single- and two-photon excited fluorescence[J]. Chem Eur J, 2003, 9 (20): 5074-5084.
    [42] Zhou X, Feng J K and Ren A M. One- and two-photon absorption properties of octupolar molecules with tetrahedral structure[J]. Chem Phys Lett, 2005, 403 (1-3): 7-15.
    [43] Das S, Nag A, Goswami D, et al. Zinc(II)- and copper(I)-mediated large two-photon absorption cross sections in a bis-cinnamaldiminato Schiff base[J]. J Am Chem Soc, 2006, 128 (2): 402-403.
    [44] Tian Y P, Li L, Zhou Y H, et al. Design and synthesis of two new two-photon absorbing pyridine salts as ligands and their rare earth complexes[J]. Cryst Growth Des, 2009, 9 (3): 1499-1504.
    [45] Yang Z D, Feng J K and Ren A M. Theoretical investigation of one- and two-photon absorption properties of platinum acetylide chromophores[J]. Inorg Chem, 2008, 47 (23): 10841-10850.
    [46] Tao C H, Yang H, Zhu N Y, et al. Branched luminescent multinuclear platinum(II) alkynyl complexes: candidates for efficient two-photon induced luminescence[J]. Organometallics, 2008, 27 (21): 5453-5458.
    [47] He G S, Tan L S, Zheng Q, et al. Multiphoton absorbing materials: Molecular designs, characterizations, and applications[J]. Chem Soc Rev, 2008, 108 (4): 1245-1330.
    [48] McDonagh A M, Humphrey M G, Samoc M, et al. Organometallic complexes for nonlinear optics. 17. Synthesis, third-order optical nonlinearities and two-photon absorption cross section of an alkynylruthenium dendrimer[J]. Organometallics, 1999, 18 (25): 5195-5197.
    [49] Pond S J K, Tsutsumi O, Rumi M, et al. Metal-ion sensing fluorophores with large two-photon absorption cross sections: Aza-crown ether substituted donor-acceptor-donor distyryl benzenes[J]. J Am Chem Soc, 2004, 126 (30): 9291-9306.
    [50] Chung S J, Kim K S, Lin T H, et al. Cooperative enhancement of two-photon absorption in multi-branched structures[J]. J Phys Chem B, 1999, 103 (49): 10741-10745.
    [51] Lee H J, Sohn J, Hwang J, et al. Triphenylamine-cored bifunctional organic molecules for two-photon absorption and photorefraction[J]. Chem Mater, 2004, 16 (3): 456-465.
    [52] Wu J, Zhao Y X, Li X, et al. Multibranched benzylidene cyclopentanone dyes with large two-photon absorption cross-sections[J]. New J Chem, 2006, 30 (7): 1098-1103.
    [53] Li B, Tong R, Zhu R Y, et al. The ultrafast dynamics and nonlinear optical properties of tribranched styryl derivatives based on 1,3,5-triazine[J]. J Phys Chem B, 2005, 109 (21): 10705-10710.
    [54] Abbotto A, Beverina L, Bozio R, et al. Novel heteroaromatic-based multi-branched dyes with enhanced two-photon absorption activity[J]. Chem Comm, 2003 (17): 2144-2145.
    [55] Abbotto A, Beverina L, Bradamante S, et al. (2003) in 5th International Topical Conference on Optical Probes of Conjugated Polymers, Organic and Inorganic Nanostructure (Venice, Italy), pp. 795-797.
    [56] Cho B R, Piao M J, Son K H, et al. Nonlinear optical and two-photon absorption properties of 1,3,5-tricyano2,4,6-tris(styryl)benzene-containing octupolar oligomers[J]. Chem Eur J, 2002, 8 (17): 3907-3916.
    [57] Yang W J, Kim C H, Jeong M Y, et al. Synthesis and two-photon absorption properties of 9,10-bis(arylethynyl)anthracene derivatives[J]. Chem Mater, 2004, 16 (14): 2783-2789.
    [58] Kato S, Matsumoto T, Shigeiwa M, et al. Novel 2,1,3-benzothiadiazole-based red-fluorescent dyes with enhanced two-photon absorption cross-sections[J]. Chem Eur J, 2006, 12 (8): 2303-2317.
    [59] Zheng Q D, He G S and Prasad P N. pi-Conjugated dendritic nanosized chromophore with enhanced two-photon absorption[J]. Chem Mater, 2005, 17 (24): 6004-6011.
    [60] (a)Zhou X, Feng J K and Ren A M (2004) in International Conference on Science and Technology of Synthetic Metals (Wollongong, AUSTRALIA)[C], pp. 615-617; (b)周新,双光子吸收材料分子设计研究(D),吉林大学博士学位论文,2005.
    [61] Wang H L, Li Z, Shao P, et al. Synthesis and properties of new two-photon absorption chromophores containing 3,5-dicyano-2,4,6-tristyrylpyridine as the core[J]. New J Chem, 2005, 29 (6): 792-797.
    [62] Joshi M P, Swiatkiewicz J, Xu F M, et al. Energy transfer coupling of two-photon absorption and reverse saturable absorption for enhanced optical power limiting[J]. Opt Lett, 1998, 23 (22): 1742-1744.
    [63] Wei P, Bi X D, Wu Z, et al. Synthesis of triphenylamine-cored dendritic two-photon absorbing chromophores[J]. Org Lett, 2005, 7 (15): 3199-3202.
    [64] Barzoukas M and Blanchard-Desce M. Molecular engineering of push-pull dipolar and quadrupolar molecules for two-photon absorption: A multivalence-bond states approach[J]. J Chem Phys, 2000,113 (10): 3951-3959.
    [65] Drobizhev M, Karotki A, Rebane A, et al. Dendrimer molecules with record large two-photon absorption cross section[J]. Opt Lett, 2001, 26 (14): 1081-1083.
    [66] Drobizhev M, Karotki A, Dzenis Y, et al. Strong cooperative enhancement of two-photon absorption in dendrimers[J]. J Phys Chem B, 2003, 107 (31): 7540-7543.
    [67] Bonnett R. Photosensitizers of the Porphyrin and Phthalocyanine Series for Photodynamic Therapy[J]. Chem Soc Rev, 1995, 24 (1): 19-33.
    [68] Screen T E O, Thorne J R G, Denning R G, et al. Amplified optical nonlinearity in a self-assembled double-strand conjugated porphyrin polymer ladder[J]. J Am Chem Soc, 2002, 124 (33): 9712-9713.
    [69] Kuebler S M, Denning R G and Anderson H L. Large third-order electronic polarizability of a conjugated porphyrin polymer[J]. J Am Chem Soc, 2000, 122 (2): 339-347.
    [70] Ogawa K, Zhang T Q, Yoshihara K, et al. Large third-order optical nonlinearity of self-assembled porphyrin oligomers[J]. J Am Chem Soc, 2002, 124 (1): 22-23.
    [71] Frampton M J, Akdas H, Cowley A R, et al. Synthesis, crystal structure, and nonlinear optical behavior of beta-unsubstituted meso-meso E-vinylene-linked porphyrin dimers[J]. Org Lett, 2005, 7 (24): 5365-5368.
    [72] Drobizhev M, Stepanenko Y, Dzenis Y, et al. Extremely strong near-IR two-photon absorption in conjugated porphyrin dimers: Quantitative description with three-essential-states model[J]. J Phys Chem B, 2005, 109 (15): 7223-7236.
    [73] Ogawa K, Ohashi A, Kobuke Y, et al. Strong two-photon absorption of self-assembled butadiyne-linked bisporphyrin[J]. J Am Chem Soc, 2003, 125 (44): 13356-13357.
    [74] Drobizhev M, Karotki A, Kruk M, et al. Photon energy upconversion in porphyrins: one-photon hot-band absorption versus two-photon absorption[J]. Chem Phys Lett, 2003, 370 (5-6): 690-699.
    [75] Drobizhev M, Karotki A, Kruk M, et al. Drastic enhancement of two-photon absorption in porphyrins associated with symmetrical electron-accepting substitution[J]. Chem Phys Lett, 2002, 361 (5-6): 504-512.
    [76] Drobizhev M, Karotki A, Kruk M, et al. Resonance enhancement of two-photon absorption in porphyrins[J]. Chem Phys Lett, 2002, 355 (1-2): 175-182.
    [77] Drobizhev M, Makarov N S, Rebane A, et al. Strong two-photon absorption in push-pull phthalocyanines: Role of resonance enhancement and permanent dipole moment change upon excitation[J]. J Phys Chem C, 2008, 112 (3): 848-859.
    [78] Drobizhev M, Makarov N S, Rebane A, et al. Very efficient two-photon induced photo-tautomerization in non-symmetrical phthalocyanines[J]. J Lumin, 2008, 128 (2): 217-222.
    [79] Hildner R, Lemmer U, Scherf U, et al. Continuous-wave two-photon spectroscopy on a ladder-type conjugated polymer[J]. Chem Phys Lett, 2007, 448 (4-6): 213-217.
    [80] Corredor C C, Huang Z L, Belfield K D, et al. Photochromic polymer composites for two-photon 3D optical data storage[J]. Chem Mater, 2007, 19 (21): 5165-5173.
    [81] Chung S J, Maciel G S, Pudavar H E, et al. Two-photon properties and excitation dynamics of poly(p-phenylenevinylene) derivatives carrying phenylanthracene and branched alkoxy pendents[J]. J Phys Chem A, 2002, 106 (33): 7512-7520.
    [82] Heath J R, Obrien S C, Zhang Q, et al. Lanthanum complexes of spheroidal carbon shells[J]. Journal of the American Chemical Society, 1985, 107 (25): 7779-7780.
    [83] Bethune D S, Johnson R D, Salem J R, et al. Atoms in carbon cages - the structure and properties of endohedral fullerenes[J]. Nature, 1993, 366 (6451): 123-128.
    [84] Shinohara H. Endohedral metallofullerenes[J]. Rep Prog Phys, 2000, 63 (6): 843-892.
    [85] Nagase S, Kobayashi K and Akasaka T. Endohedral metallofullerenes: New spherical cage molecules with interesting properties[J]. Bull Chem Soc Jpn, 1996, 69 (8): 2131-2142.
    [86] Liu S Y and Sun S Q. Recent progress in the studies of endohedral metallofullerenes[J]. JOrganomet Chem, 2000, 599 (1): 74-86.
    [87] Hummelen J C, Prato M and Wudl F. There is a hole in my bucky[J]. J Am Chem Soc, 1995, 117 (26): 7003-7004.
    [88] Birkett P R, Avent A G, Darwish A D, et al. Holey fullerenes - a bis-lactone derivative of
    [70]fullerene with an 11-atom orifice[J]. J Chem Soc, Chem Commun, 1995 (18): 1869-1870.
    [89] Iwamatsu S and Murata S. Open-cage fullerenes: Synthesis, structure, and molecular encapsulation[J]. Synlett, 2005 (14): 2117-2129.
    [90] Nierengarten J F. Ring-opened fullerenes: An unprecedented class of ligands for supramolecular chemistry[J]. Angew Chem, Int Ed, 2001, 40 (16): 2973-2974.
    [91] Rubin Y. Organic approaches to endohedral metallofullerenes: Cracking open or zipping up carbon shells?[J]. Chem Eur J, 1997, 3 (7): 1009-1016.
    [92] Arce M J, Viado A L, An Y Z, et al. Triple scission of a six-membered ring on the surface of C-60 via consecutive pericyclic reactions and oxidative cobalt insertion[J]. J Am Chem Soc, 1996, 118 (15): 3775-3776.
    [93] Murata Y, Murata M and Komatsu K. Synthesis, structure, and properties of novel open-cage fullerenes having heteroatom(s) on the rim of the orifice[J]. Chem Eur J, 2003, 9 (7): 1600-1609.
    [94] Inoue H, Yamaguchi H, Iwamatsu S, et al. Photooxygenative partial ring cleavage of bis(fulleroid): synthesis of a novel fullerene derivative with a 12-membered ring[J]. Tetrahedron Lett, 2001, 42 (5): 895-897.
    [95] Iwamatsu S, Ono F and Murata S. A novel migrative addition reaction of hydrazines to the diketone derivative of C-60[J]. Chem Comm, 2003 (11): 1268-1269.
    [96] Iwamatsu S, Murata S, Andoh Y, et al. Open-cage fullerene derivatives suitable for the encapsulation of a hydrogen molecule[J]. J Org Chem, 2005, 70 (12): 4820-4825.
    [97] Iwamatsu S, Uozaki T, Kobayashi K, et al. A bowl-shaped fullerene encapsulates a water into the cage[J]. J Am Chem Soc, 2004, 126 (9): 2668-2669.
    [98] Iwamatsu S, Stanisky C M, Cross R J, et al. Carbon monoxide inside an open-cage fullerene[J]. Angew Chem, Int Ed, 2006, 45 (32): 5337-5340.
    [99] Xiao Z, Yao J Y, Yang D Z, et al. Synthesis of [59]fullerenones through peroxide-mediated stepwise cleavage of fullerene skeleton bonds and x-ray structures of their water-encapsulated open-cage complexes[J]. J Am Chem Soc, 2007, 129 (51): 16149-16162.
    [100] Komatsu K, Murata M and Murata Y. Encapsulation of molecular hydrogen in fullerene C 60 by organic synthesis[J]. Science, 2005, 307 (5707): 238-240.
    [101] Whitener K E, Cross R J, Saunders M, et al. Methane in an Open-Cage [60]Fullerene[M]. J Am Chem Soc, 2009, 131 (18): 6338-6339.
    [102] Shameema O, Ramachandran C N and Sathyamurthy N. Blue shift in X-H stretching frequency of molecules due to confinement[J]. J Phys Chem A, 2006, 110 (1): 2-4.
    [103] Rehaman A, Gagliardi L and Pyykko P. Pocket and antipocket conformations for the CH4@C-84 endohedral fullerene[J]. Int J Quantum Chem, 2007, 107 (5): 1162-1169.
    [104] Zhang G H, Huang S H, Xiao Z, et al. Preparation of azafullerene derivatives from fullerene-mixed peroxides and single crystal X-ray structures of azafulleroid and azafullerene[J]. J Am Chem Soc, 2008, 130 (38): 12614.
    [105] Rubin Y, Jarrosson T, Wang G W, et al. Insertion of helium and molecular hydrogen through the orifice of an open fullerene[J]. Angew Chem, Int Ed, 2001, 40 (8): 1543.
    [106] Shabtai E, Weitz A, Haddon R C, et al. He-3 NMR of He@C-60(6-) and He@C-70(6-). New records for the most shielded and the most deshielded He-3 inside a fullerene[J]. J Am Chem Soc, 1998, 120 (25): 6389-6393.
    [107] Laskin J, Peres T, Lifshitz C, et al. An artificial molecule of Ne-2 inside C-70[J]. Chem Phys Lett, 1998, 285 (1-2): 7-9.
    [108] Murata Y, Maeda S, Murata M, et al. Encapsulation and dynamic behavior of two H-2 molecules in an open-cage C-70[J]. J Am Chem Soc, 2008, 130 (21): 6702.
    [109] Chuang S C, Murata Y, Murata M, et al. An orifice-size index for open-cage fullerenes[J]. J Org Chem, 2007, 72 (17): 6447-6453.
    [110] Wang G W, Wu P and Tian Z G. Endohedral H-1 NMR chemical shifts of H-2-, H2O- and NH3-encapsulated fullerene compounds: accurate calculation and prediction[J]. Eur J Org Chem, 2009 (7): 1032-1041.
    [111] Pankewitz T and Klopper W. Theoretical investigation of equilibrium and transition state structures, binding energies and barrier heights of water-encapsulated open-cage [59] fullerenone complexes[J]. Chem Phys Lett, 2008, 465 (1-3): 48-52.
    [1] Roothaan C C J. New developments in molecular orbital theory [J]. Rev. Mod. Phys. 1951, 23(2): 69-89.
    [2] Hoffmann R, An extended Hückel theory. I. Hydrocarbons [J]. J Cheml Phys, 1963, 39: 1397-1412.
    [3] Pople J A, Segal G A. Approximate self-consistent molecular orbital theory.Ⅱ. Calculation with complete neglect of differential overlap [J]. J Cheml Phys, 1965, 43: S136-S151.
    [4] Pople J A, Beveridge D L,近似分子轨道理论方法[M].江元生译.北京:科学出版社, 1976.
    [5] Ridley J E, Zerner M C, Triplet states via intermediate neglect of differential overlap: benzene, pyridine and the diazines [J]. Theoretical Chem Acta, 1976, 42: 223-236.
    [6] Stewart J J P, Optimization of Parameters for Semi-Empirical Methods I-Method [J]. J Comput Chem, 1989, 10:209–220.
    [7] Koch W, Holthausen M C, A Chemist’s Guide to Density Functional Theory [M]. Weinheim, Germany: Wiley-VCH, 2000.
    [8] Stratmann R E, Scuseria G E, Frisch M J, An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules [J]. J Chem Phys, 1998, 109: 8218-8225.
    [9] Hohenbeg P, kohn W, Inhomogenerous electron gas [J]. Phys Rev, 1964, 136: B864- B871.
    [10] Petersilka M, Gossmann U J, Gross E K U, Excitation energies from time-dependent density-functional theory [J]. Phys Rev Lett, 1996, 76: 1212-1215.
    [11] Born M, Oppenheimer, R. Zur Quantentheorie der Molekeln Ann. Phsik. (Quantum theory of the molecules) [J]. Ann. Phys. 1927, 84: 457-484.
    [12] Friedrich K, Seifert G., Grossmann, G. Nuclear magnetic shielding in molecules - the application of giaos in lcao-x-alpha-calculations [J]. Z. Phys .D. 1990, 17:45-46.
    [13] Ditchfild R.Self-consistent perturbation theory of diamagnetism [J]. Mol. Phys.1974, 27:789-807.
    [14] Schreckenbach G., Ziegler T. Calculation of NMR Shielding Tensors Using Gauge-Including Atomic Orbitals and Modern Density Functional Theory [J]. J. Phys. Chem. 1995, 99: 606-611.
    [15] Orr B J, Ward J F. Perturbation theory of the non-linear optical polarization of an isolated system [J]. Mol Phys, 1971, 20: 513-526.
    [16] Duangthai S, Webb G A. Sum-Over-States Perturbation Calculations of F-19-C-13 Coupling-Constants for Some Carbocations and Related Fluorobenzenes [J]. Organic Magnetic Resonance, 1979, 12 (2): 98-100.
    [17] Redmon L T, Browne J C. Sum-Over-States Calculations of Polarizabilities of Ground and 1st Excited-States of Lithium Atom [J]. International Journal of Quantum Chemistry, 1977, 11: 311-319.
    [18] Prasad P N, William D J. Introduction to Nonlinear Optical Effects in Molecules and Polymer [M] (Wiley, New York, 1991).
    [19] Chemla D S, Zyss J. Nonlinear Optical Properties of Organic Moleculesand Crystals [M] (Academic, New York, 1987)
    [20] (a) Yang G C, Fang L, Tan K, et al. Quantum chemical study of structures, electronic spectrum, and nonlinear optical properties of gold-pentacene complexes[J]. Organometallics, 2007, 26(8): 2082-2087; (b) Yang G C, Su Z M, Qin C S. Theoretical Study on the Second-Order Nonlinear Optical Properties of Asymmetric Spirosilabifluorene Derivatives[J]. J Phys Chem A, 2006, 110 (14): 4817-4821; (c) Yang G C, Su Z M, Qin C S. Theoretical Study on the Electronic Spectrum and the Origin of Remarkably Large Third-Order Nonlinear Optical Properties of Organoimide Derivatives of Hexamolybdates[J]. J Phys ChemB, 2006, 110 (46): 23092-23098; (d) Yang G C, Su Z M, Qin C S, et al. Predication of second-order optical nonlinearity of [(Bu2tIm)AuX](X=halogen using time-dependent density-functional theory combined with sum-over-states method[J]. J Chem Phys, 2005, 123: 134302-5.
    [21] Oudar J L, Chemla D S. Hyperpolarizabilities of Nitroanilines and Their Relations to Excited-State Dipole-Moment [J]. J Chem Phys, 1977, 66(6): 2664-2668.
    [22] Albota M, Beljonne D, Bredas J L, et al. Design of organic molecules with large two-photon absorption cross sections [J]. Science, 1998, 281: 1653-1656.
    [23] Oudar J L, Leperson H. 2nd-Order Polarizabilities of Some Aromatic-Molecules [J]. Optics Communications, 1975, 15(2):258-262.
    [24] Lu D Q, Chen G H, Perry J W, et al. Valence-Bond Charge-Transfer Model for Nonlinear Optical Properties of Charge-Transfer Organic Molecules [J]. J Am Chem Soc, 1994, 116:10679-10685.
    [25] Cho M, Kim H, Jeon S J. An elementary description of nonlinear optical properties of octupolar molecules: Four-state model for guanidinium-type molecules [J]. J Chem Phys, 1998, 108:7114-7120.
    [26] Hahn S, Kim D, Cho M H. Nonlinear optical properties of the linear quadrupolar molecule: Structure-function relationship based on a three-state model [J]. J Phys Chem B, 1999, 103 (39): 8221-8229.
    [27] Cho M H, An S Y, Lee H, et al. Nonlinear optical properties of tetrahedral donor-acceptor octupolar molecules: Effective five-state model approach [J]. J Chem Phys, 2002, 116 (21): 9165-9173.
    [28] Pawel N, Morel Y, Olivier S P, et al. Two-photon absorption spectrum of poly(fluorene) [J]. Chem Phys Lett, 2001, 343: 44-48.
    [1] Mukherjee A. 2-photon pumped up-converted lasing in dye-doped polymer wave-guides[J]. Appl Phys Lett, 1993, 62 (26): 3423-3425.
    [2] J. D. Bhawalkar N D K, C. F. Zhao , P. N. Prasad. J. Clin. Med. Surg. , 1997, 37 510.
    [3] He G S, Xu G C, Prasad P N, et al. 2-photon absorption and optical-limiting properties of novel organic-compounds[J]. Opt Lett, 1995, 20 (5): 435-437.
    [4] Cumpston B H, Ananthavel S P, Barlow S, et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication[J]. Nature, 1999, 398 (6722): 51-54.
    [5] Reinhardt B A, Brott L L, Clarson S J, et al. Highly active two-photon dyes: Design, synthesis, and characterization toward application[J]. Chem Mater, 1998, 10 (7): 1863-1874.
    [6] Albota M, Beljonne D, Bredas J L, et al. Design of organic molecules with large two-photon absorption cross sections[J]. Science, 1998, 281 (5383): 1653-1656.
    [7] Rumi M, Ehrlich J E, Heikal A A, et al. Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives[J]. J Am Chem Soc, 2000, 122 (39): 9500-9510.
    [8] Ventelon L, Moreaux L, Mertz J, et al. New quadrupolar fluorophores with high two-photon excited fluorescence[J]. Chem Comm, 1999 (20): 2055-2056.
    [9] Charlot M, Izard N, Mongin O, et al. Optical limiting with soluble two-photon absorbing quadrupoles: Structure-property relationships[J]. Chem Phys Lett, 2006, 417 (4-6): 297-302.
    [10] Ventelon L, Charier S, Moreaux L, et al. Nanoscale push-push dihydrophenanthrene derivatives as novel fluorophores for two-photon-excited fluorescence[J]. Angew Chem, Int Ed, 2001, 40 (11): 2098-2101.
    [11] Zojer E, Beljonne D, Kogej T, et al. Tuning the two-photon absorption response of quadrupolar organic molecules[J]. J Chem Phys, 2002, 116 (9): 3646-3658.
    [12] Yang W J, Kim D Y, Kim C H, et al. Triphenylamine derivatives with large two-photon cross-sections[J]. Org Lett, 2004, 6 (9): 1389-1392.
    [13] Cho B R, Son K H, Lee S H, et al. Two photon absorption properties of 1,3,5-tricyano-2,4,6-tris(styryl)benzene derivatives[J]. J Am Chem Soc, 2001, 123 (41): 10039-10045.
    [14] Beljonne D, Wenseleers W, Zojer E, et al. Role of dimensionality on the two-photon absorption response of conjugated molecules: The case of octupolar compounds[J]. Adv Fucnt Mater, 2002, 12 (9): 631-641.
    [15] Abbotto A, Beverina L, Bozio R, et al. Novel heteroaromatic-based multi-branched dyes with enhanced two-photon absorption activity[J]. Chem Comm, 2003 (17): 2144-2145.
    [16] Morel Y, Irimia A, Najechalski P, et al. Two-photon absorption and optical power limiting of bifluorene molecule[J]. J Chem Phys, 2001, 114 (12): 5391-5396.
    [17] Najechalski P, Morel Y, Stephan O, et al. Two-photon absorption spectrum of poly(fluorene)[J]. Chem Phys Lett, 2001, 343 (1-2): 44-48.
    [18] Li X D, Cheng W D, Wu D S, et al. Theoretical study on the photophysical properties of hexapyrrolidine C-60 adducts with T-h, D-3, and S-6 symmetries[J]. J Phys Chem B, 2005, 109 (12): 5574-5579.
    [19] Li X D, Cheng W D, Wu D S, et al. Modeling of configurations and third-order nonlinear optical properties of C-36 and C34X2 (X = B,N)[J]. J Chem Phys, 2004, 121 (12): 5885-5892.
    [20] Zhou X, Ren A M and Feng J K. Theoretical investigation on the two-photon absorption of C-60[J]. J Mol Struct-Theochem, 2004, 680 (1-3): 237-242.
    [21] Drobizhev M, Stepanenko Y, Dzenis Y, et al. Extremely strong near-IR two-photon absorption in conjugated porphyrin dimers: Quantitative description with three-essential-states model[J]. J Phys Chem B, 2005, 109 (15): 7223-7236.
    [22] Drobizhev M, Stepanenko Y, Dzenis Y, et al. Understanding strong two-photon absorption in pi-conjugated porphyrin dimers via double-resonance enhancement in a three-level model[J]. J Am Chem Soc, 2004, 126 (47): 15352-15353.
    [23] Rubio-Pons O, Luo Y and Agren H. Effects of conjugation length, electron donor and acceptor strengths on two-photon absorption cross sections of asymmetric zinc-porphyrin derivatives[J]. J Chem Phys, 2006, 124 (9): 094310.
    [24] Pond S J K, Rumi M, Levin M D, et al. One- and two-photon spectroscopy of donor-acceptor-donor distyrylbenzene derivatives: Effect of cyano substitution and distortion from planarity[J]. J Phys ChemA, 2002, 106 (47): 11470-11480.
    [25] Luo Y, Rubio-Pons O, Guo J D, et al. Charge-transfer Zn-porphyrin derivatives with very large two-photon absorption cross sections at 1.3-1.5 mu m fundamental wavelengths[J]. J Chem Phys, 2005, 122 (9): 096101.
    [26] Jaffe H H and Chalvet O. Interaction of perpendicularπ-electron systems[J]. J Am Chem Soc, 1963, 85 1561–1564.
    [27] Dutta A K, Misra T N and Pal A J. Two photon delayed fluorescence emission from aggregates of rubrene in Langmuir-Blodgett films at 77 K[J]. Solid State Commun, 1996, 99 (11): 767-771.
    [28] Goldmann C, Haas S, Krellner C, et al. Hole mobility in organic single crystals measured by a "flip-crystal" field-effect technique[J]. J Appl Phys, 2004, 96 (4): 2080-2086.
    [29] Algar B E and Stevens B. Photoperoxidation of unsaturated organic molecules. VI. Inhibited reaction[J]. J Phys Chem, 1970, 74 (16): 3029-3034.
    [30] Merkel P B and Kearns D R. Radiationless decay of singlet molecular-oxygen in solution - experimental and theoretical study of electronic-to-vibrational energy-transfer[J]. J Am Chem Soc, 1972, 94 (21): 7244-7253.
    [31] Stevens B and Ors J A. Photoperoxidation of unsaturated organic-molecules .16. excitation-energy fission[J]. J Phys Chem, 1976, 80 (20): 2164-2165.
    [32] Merkel P B and Herkstroeter W G. Fate of oxygen in quenching of excited singlet-states[J]. Chem Phys Lett, 1978, 53 (2): 350-354.
    [33] Sundar V C, Zaumseil J, Podzorov V, et al. Elastomeric transistor stamps: Reversible probing of charge transport in organic crystals[J]. Science, 2004, 303 (5664): 1644-1646.
    [34] Liu T H, Iou C Y and Chen C H. Doped red organic electroluminescent devices based on a cohost emitter system[J]. Appl Phys Lett, 2003, 83 (25): 5241-5243.
    [35] Fatemi D J, Murata H, Merritt C D, et al. Highly fluorescent molecular organic composites for light-emitting diodes[J]. Synth Met, 1997, 85 (1-3): 1225-1228.
    [36] Li F, Lin J L, Feng J, et al. Electrical and optical characteristics of red organic light-emitting diodes doped with two guest dyes[J]. Synth Met, 2003, 139 (2): 341-346.
    [37] Zhang Z L, Jiang X Y, Xu S H, et al. In International Conference on Electroluminescence of Molecular Materials and Related Phenomena (Fukuoka, Japan)[C], 1997: 131-132.
    [38] Fong H H, So S K, Sham W Y, et al. Effects of tertiary butyl substitution on the charge transporting properties of rubrene-based films[J]. Chem Phys, 2004, 298 (1-3): 119-123.
    [39] da Silva D A, Kim E G and Bredas J L. Transport properties in the rubrene crystal: Electronic coupling and vibrational reorganization energy[J]. Adv Mater, 2005, 17 (8): 1072.
    [40] Shen Y R. The principles of nonlinear optics[M]. Wiley, New York, 1984, 576
    [41] Orr B J and Ward J F. Perturbation theory of non-linear optical polarization of an isolated system[J]. Mol Phys, 1971, 20 (3): 513-&.
    [42] Beljonne D, Cornil J, Shuai Z, et al. General model for the description of the third-order optical nonlinearities in conjugated systems: Application to the all-trans beta-carotene molecule[J]. Phys Rev B: Condens Matter, 1997, 55 (3): 1505-1516.
    [43] Xu J, Shen X and Knutson J R. Femtosecond fluorescence upconversion study of the rotations of perylene and tetracene in hexadecane[J]. J Phys Chem A, 2003, 107 (41): 8383-8387.
    [44] Liu Z Q, Fang Q, Cao D X, et al. Triaryl boron-based A-pi-A vs triaryl nitrogen-based D-pi-D quadrupolar compounds for single- and two-photon excited fluorescence[J]. Org Lett, 2004, 6 (17): 2933-2936.
    [1] Mukherjee A. 2-photon pumped up-converted lasing in dye-doped polymer wave-guides[J]. Appl Phys Lett, 1993, 62 (26): 3423-3425.
    [2] Bhawalkar J D, Kumar N D, Zhao C F, et al. Two-photon photodynamic therapy[J]. Journal of clinical laser medicine & surgery, 1997, 15 201-204.
    [3] He G S, Xu G C, Prasad P N, et al. 2-photon absorption and optical-limiting properties of novel organic-compounds[J]. Opt Lett, 1995, 20 (5): 435-437.
    [4] Cumpston B H, Ananthavel S P, Barlow S, et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication[J]. Nature, 1999, 398 (6722): 51-54.
    [5] Reinhardt B A, Brott L L, Clarson S J, et al. Highly active two-photon dyes: Design, synthesis, and characterization toward application[J]. Chem Mater, 1998, 10 (7): 1863-1874.
    [6] Belfield K D, Hagan D J, Van Stryland E W, et al. New two-photon absorbing fluorene derivatives: Synthesis and nonlinear optical characterization[J]. Org Lett, 1999, 1 (10): 1575-1578.
    [7] Liu Z Q, Fang Q, Wang D, et al. Trivalent boron as an acceptor in donor-pi-acceptor-type compounds for single- and two-photon excited fluorescence[J]. Chem Eur J, 2003, 9 (20): 5074-5084.
    [8] Albota M, Beljonne D, Bredas J L, et al. Design of organic molecules with large two-photon absorption cross sections[J]. Science, 1998, 281 (5383): 1653-1656.
    [9] Ventelon L, Moreaux L, Mertz J, et al. New quadrupolar fluorophores with high two-photon excited fluorescence[J]. Chem Comm, 1999 (20): 2055-2056.
    [10] Kotler Z, Segal J, Sigalov M, et al. Two photon absorption properties of bis(n-carbazolyl)-poly-phenylenes[J]. Synth Met, 2000, 115 (1-3): 269-273.
    [11] Rumi M, Ehrlich J E, Heikal A A, et al. Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives[J]. J Am Chem Soc, 2000, 122 (39): 9500-9510.
    [12] Ventelon L, Charier S, Moreaux L, et al. Nanoscale push-push dihydrophenanthrene derivatives as novel fluorophores for two-photon-excited fluorescence[J]. Angew Chem, Int Ed, 2001, 40 (11): 2098-2101.
    [13] Zojer E, Beljonne D, Kogej T, et al. Tuning the two-photon absorption response of quadrupolar organic molecules[J]. J Chem Phys, 2002, 116 (9): 3646-3658.
    [14] Yang W J, Kim D Y, Kim C H, et al. Triphenylamine derivatives with large two-photon cross-sections[J]. Org Lett, 2004, 6 (9): 1389-1392.
    [15] Chung S J, Rumi M, Alain V, et al. Strong, low-energy two-photon absorption in extended amine-terminated cyano-substituted phenylenevinylene oligomers[J]. J Am Chem Soc, 2005, 127 (31): 10844-10845.
    [16] Cho B R, Son K H, Lee S H, et al. Two photon absorption properties of 1,3,5-tricyano-2,4,6-tris(styryl)benzene derivatives[J]. J Am Chem Soc, 2001, 123 (41): 10039-10045.
    [17] Charlot M, Izard N, Mongin O, et al. Optical limiting with soluble two-photon absorbing quadrupoles: Structure-property relationships[J]. Chem Phys Lett, 2006, 417 (4-6): 297-302.
    [18] Drobizhev M, Karotki A, Rebane A, et al. Dendrimer molecules with record large two-photon absorption cross section[J]. Opt Lett, 2001, 26 (14): 1081-1083.
    [19] Beljonne D, Wenseleers W, Zojer E, et al. Role of dimensionality on the two-photon absorption response of conjugated molecules: The case of octupolar compounds[J]. Adv Fucnt Mater, 2002, 12 (9): 631-641.
    [20] Strehmel B, Sarker A M and Detert H. The influence of sigma and pi acceptors on two-photon absorption and solvatochromism of dipolar and quadrupolar unsaturated organic compounds[J]. Chemphyschem, 2003, 4 (3): 249-259.
    [21] Woo H Y, Liu B, Kohler B, et al. Solvent effects on the two-photon absorption of distyrylbenzene chromophores[J]. J Am Chem Soc, 2005, 127 (42): 14721-14729.
    [22] Li X D, Cheng W D, Wu D S, et al. Modeling of configurations and third-order nonlinear optical properties of C-36 and C34X2 (X = B,N)[J]. J Chem Phys, 2004, 121 (12): 5885-5892.
    [23] Zhou X, Ren A M and Feng J K. Theoretical investigation on the two-photon absorption of C-60[J]. J Mol Struct-Theochem, 2004, 680 (1-3): 237-242.
    [24] Li X D, Cheng W D, Wu D S, et al. Theoretical study on the photophysical properties of hexapyrrolidine C-60 adducts with T-h, D-3, and S-6 symmetries[J]. J Phys Chem B, 2005, 109 (12): 5574-5579.
    [25] Zheng Q D, He G S, Lu C G, et al. Synthesis, two- and three-photon absorption, and optical limiting properties of fluorene-containing ferrocene derivatives[J]. J Mater Chem, 2005, 15 (34): 3488-3493.
    [26] Zhang X B, Feng J K, Ren A M, et al. Theoretical study of two-photon absorption properties of a series of ferrocene-based chromophores[J]. J Phys Chem A, 2006, 110 (44): 12222-12230.
    [27] Misra R, Kumar R, Chandrashekar T K, et al. 22 pi smaragdyrin molecular conjugates with aromatic phenylacetylenes and ferrocenes: Syntheses, electrochemical, and photonic properties[J]. J Am Chem Soc, 2006, 128 (50): 16083-16091.
    [28] Drobizhev M, Stepanenko Y, Dzenis Y, et al. Understanding strong two-photon absorption in pi-conjugated porphyrin dimers via double-resonance enhancement in a three-level model[J]. J Am Chem Soc, 2004, 126 (47): 15352-15353.
    [29] Drobizhev M, Stepanenko Y, Dzenis Y, et al. Extremely strong near-IR two-photon absorption in conjugated porphyrin dimers: Quantitative description with three-essential-states model[J]. J Phys Chem B, 2005, 109 (15): 7223-7236.
    [30] Ray P C and Sainudeen Z. Very large infrared two-photon absorption cross section of asymmetric zinc porphyrin aggregates: Role of intermolecular interaction and donor-acceptor strengths[J]. J Phys Chem A, 2006, 110 (44): 12342-12347.
    [31] Rubio-Pons O, Luo Y and Agren H. Effects of conjugation length, electron donor and acceptor strengths on two-photon absorption cross sections of asymmetric zinc-porphyrin derivatives[J]. J Chem Phys, 2006, 124 (9):094310.
    [32] Kim K S, Noh S B, Katsuda T, et al. Charge transfer induced enhancement of near-IR two-photon absorption of 5,15-bis(azulenylethynyl)zinc(II) porphyrins[J]. Chem Comm, 2007 (24): 2479-2481.
    [33] Pond S J K, Rumi M, Levin M D, et al. One- and two-photon spectroscopy of donor-acceptor-donor distyrylbenzene derivatives: Effect of cyano substitution and distortion from planarity[J]. J Phys Chem A, 2002, 106 (47): 11470-11480.
    [34] Luo Y, Rubio-Pons O, Guo J D, et al. Charge-transfer Zn-porphyrin derivatives with very large two-photon absorption cross sections at 1.3-1.5 mu m fundamental wavelengths[J]. J Chem Phys, 2005, 122 (9): 096101.
    [35] Abbotto A, Beverina L, Bozio R, et al. Novel heteroaromatic-based multi-branched dyes with enhanced two-photon absorption activity[J]. Chem Comm, 2003 (17): 2144-2145.
    [36] Wang Y, He G S, Prasad P N, et al. Ultrafast dynamics in multibranched structures with enhanced two-photon absorption[J]. J Am Chem Soc, 2005, 127 (29): 10128-10129.
    [37] Bhaskar A, Ramakrishna G, Lu Z K, et al. Investigation of two-photon absorption properties in branched alkene and alkyne chromophores[J]. J Am Chem Soc, 2006, 128 (36): 11840-11849.
    [38] Kato S, Matsumoto T, Shigeiwa M, et al. Novel 2,1,3-benzothiadiazole-based red-fluorescent dyes with enhanced two-photon absorption cross-sections[J]. Chem Eur J, 2006, 12 (8): 2303-2317.
    [39] Katan C, Tretiak S, Werts M H V, et al. Two-photon transitions in quadrupolar and branched chromophores: Experiment and theory[J]. J Phys Chem B, 2007, 111 (32): 9468-9483.
    [40] Terenziani F, Le Droumaguet C, Katan C, et al. Effect of branching on two-photon absorption in triphenylbenzene derivatives[J]. Chemphyschem, 2007, 8 (5): 723-734.
    [41] Zyss J. Molecular engineering implications of rotational invariance in quadratic nonlinear optics - from dipolar to dctupolar molecules and materials[J]. J Chem Phys, 1993, 98 (9): 6583-6599.
    [42] Zyss J, Dhenaut C, Chauvan T, et al. Quadratic nonlinear susceptibility of octupolar chiral ions[J]. Chem Phys Lett, 1993, 206 (1-4): 409-414.
    [43] Zyss J and Ledoux I. Nonlinear optics in multipolar media - theory and experiments[J]. Chem Soc Rev, 1994, 94 (1): 77-105.
    [44] Chung S J, Kim K S, Lin T H, et al. Cooperative enhancement of two-photon absorption in multi-branched structures[J]. J Phys Chem B, 1999, 103 (49): 10741-10745.
    [45] Macak P, Luo Y, Norman P, et al. Electronic and vibronic contributions to two-photon absorption of molecules with multi-branched structures[J]. J Chem Phys, 2000, 113 (17): 7055-7061.
    [46] Drobizhev M, Karotki A, Dzenis Y, et al. Strong cooperative enhancement of two-photon absorption in dendrimers[J]. J Phys Chem B, 2003, 107 (31): 7540-7543.
    [47] Zojer E, Beljonne D, Pacher P, et al. Two-photon absorption in quadrupolar pi-conjugated molecules: Influence of the nature of the conjugated bridge and the donor-acceptor separation[J]. Chem Eur J, 2004, 10 (11): 2668-2680.
    [48] Wei P, Bi X D, Wu Z, et al. Synthesis of triphenylamine-cored dendritic two-photon absorbing chromophores[J]. Org Lett, 2005, 7 (15): 3199-3202.
    [49] Katan C, Terenziani F, Mongin O, et al. Effects of (multi)branching of dipolar chromophores on photophysical properties and two-photon absorption[J]. J Phys Chem A, 2005, 109 (13): 3024-3037.
    [50] Liu X J, Feng J K, Ren A M, et al. One- and two-photon absorption of three-coordinate compounds with different centers (B,Al,N) and a 2,2 '-dipyridylnitrogen functional group[J]. J Chem Phys, 2004, 121 (17): 8253-8260.
    [51] Liu Z Q, Fang Q, Cao D X, et al. Triaryl boron-based A-pi-A vs triaryl nitrogen-based D-pi-D quadrupolar compounds for single- and two-photon excited fluorescence[J]. Org Lett, 2004, 6 (17): 2933-2936.
    [52] Wang X F, Zhang X R, Wu Y S, et al. Two-photon photophysical properties of tri-9-anthrylborane[J]. Chem Phys Lett, 2007, 436 (1-3): 280-286.
    [53] Charlot M, Porres L, Entwistle C D, et al. Investigation of two-photon absorption behavior in symmetrical acceptor-pi-acceptor derivatives with dimesitylboryl end-groups. Evidence of new engineering routes for TPA/transparency trade-off optimization[J]. PCCP, 2005, 7 (4): 600-606.
    [54] Yuan Z, Taylor N J, Ramachandran R, et al. Third-order nonlinear optical properties of organoboron compounds: Molecular structures and second hyperpolarizabilities[J]. Appl Organomet Chem, 1996, 10 (3-4): 305-316.
    [55] Yuan Z, Collings J C, Taylor N J, et al. Linear and nonlinear optical properties of three-coordinate organoboron compounds[J]. J Solid State Chem, 2000, 154 (1): 5-12.
    [56] Entwistle C D and Marder T B. Boron chemistry lights the way: Optical properties of molecular and polymeric systems[J]. Angew Chem, Int Ed, 2002, 41 (16): 2927-2931.
    [57] Parab K, Venkatasubbaiah K and Jakle F. Luminescent triarylborane-functionalized polystyrene: Synthesis, photophysical characterization, and anion-binding studies[J]. J Am Chem Soc, 2006, 128 (39): 12879-12885.
    [58] Yuan Z, Entwistle C D, Collings J C, et al. Synthesis, crystal structures, linear and nonlinear optical properties, and theoretical studies of (p-R-phenyl)-, (p-R-phenylethynyl)-, and (E)-[2-(p-R-phenyl)ethenyl]dimesitylboranes and related compounds[J]. Chem Eur J, 2006, 12 (10): 2758-2771.
    [59] Morel Y, Irimia A, Najechalski P, et al. Two-photon absorption and optical power limiting of bifluorene molecule[J]. J Chem Phys, 2001, 114 (12): 5391-5396.
    [60] Najechalski P, Morel Y, Stephan O, et al. Two-photon absorption spectrum of poly(fluorene)[J]. Chem Phys Lett, 2001, 343 (1-2): 44-48.
    [61] Zhou X, Ren A M, Feng J K, et al. Theoretical study on the one- and two-photon absorption properties of a series of octupolar oligofluorenes and dipolar analogs[J]. Chem Phys Lett, 2004, 385 (1-2): 149-154.
    [62] Zhou X, Feng J K and Ren A M. Theoretical investigation on the one- and two-photon absorption properties of multi-branched oligomers with truxenone center and fluorene branches[J]. Chem Phys Lett, 2004, 397 (4-6): 500-509.
    [63] Barsu C, Anemian R, Andraud C, et al. (2005) in 8th International Conference on Frontiers of Polymers and Advanced Materials (Cancun, MEXICO), pp. 175-182.
    [64] Rogers J E, Slagle J E, McLean D G, et al. Insight into the nonlinear absorbance of two related series of two-photon absorbing chromophores[J]. J Phys Chem A, 2007, 111 (10): 1899-1906.
    [65] Shen Y R (1984) (John Wiley & Sons, New York ), p. 576.
    [66] Orr BJ W J. Perturbation theory of the nonlinear optical polarization of an isolated system[J]. Mol Phys, 1971, 20 513 - 526
    [67] Beljonne D, Cornil J, Shuai Z, et al. General model for the description of the third-order optical nonlinearities in conjugated systems: Application to the all-trans beta-carotene molecule[J]. Phys Rev B: Condens Matter, 1997, 55 (3): 1505-1516.
    [68] Meath W J and Power E A. On the importance of permanent moments in multiphoton absorption using perturbation-theory[J]. J Phys B: At, Mol Opt Phys, 1984, 17 (5): 763-781.
    [69] McRae EG K M. Enhancement of phosphorescence ability upon aggregation of dye molecules[J]. J Chem Phys, 1958, 28 (4): 721-722.
    [70] Gompper R, Mair H J and Polborn K. Synthesis of oligo(diazaphenyls). Tailor-made fluorescent heteroaromatics and pathways to nanostructures[J]. Synthesis, 1997 (6): 696-708.
    [1] Mukherjee A. 2-photon pumped up-converted lasing in dye-doped polymer wave-guides[J]. Appl Phys Lett, 1993, 62 (26): 3423-3425.
    [2] Bhawalkar J D, Kumar N D, Zhao C F, et al. J. Clin.Med. Surg., 1997, 37 510.
    [3] He G S, Xu G C, Prasad P N, et al. 2-photon absorption and optical-limiting properties of novel organic-compounds[J]. Opt Lett, 1995, 20 (5): 435-437.
    [4] Cumpston B H, Ananthavel S P, Barlow S, et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication[J]. Nature, 1999, 398 (6722): 51-54.
    [5] Reinhardt B A, Brott L L, Clarson S J, et al. Highly active two-photon dyes: Design, synthesis, and characterization toward application[J]. Chem Mater, 1998, 10 (7): 1863-1874.
    [6] Albota M, Beljonne D, Bredas J L, et al. Design of organic molecules with large two-photon absorption cross sections[J]. Science, 1998, 281 (5383): 1653-1656.
    [7] Rumi M, Ehrlich J E, Heikal A A, et al. Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives[J]. J Am Chem Soc, 2000, 122 (39): 9500-9510.
    [8] Ventelon L, Moreaux L, Mertz J, et al. New quadrupolar fluorophores with high two-photon excited fluorescence[J]. Chem Comm, 1999 (20): 2055-2056.
    [9] Kotler Z, Segal J, Sigalov M, et al. Two photon absorption properties of bis(n-carbazolyl)-poly-phenylenes[J]. Synth Met, 2000, 115 (1-3): 269-273.
    [10] Ventelon L, Charier S, Moreaux L, et al. Nanoscale push-push dihydrophenanthrene derivatives as novel fluorophores for two-photon-excited fluorescence[J]. Angew Chem, Int Ed, 2001, 40 (11): 2098-2101.
    [11] Zojer E, Beljonne D, Kogej T, et al. Tuning the two-photon absorption response of quadrupolar organic molecules[J]. J Chem Phys, 2002, 116 (9): 3646-3658.
    [12] Asselberghs I, Hennrich G and Clays K. Proton-triggered octopolar NLO chromophores[J]. J Phys Chem A, 2006, 110 (19): 6271-6275.
    [13] Cho B R, Son K H, Lee S H, et al. Two photon absorption properties of 1,3,5-tricyano-2,4,6-tris(styryl)benzene derivatives[J]. J Am Chem Soc, 2001, 123 (41): 10039-10045.
    [14] Beljonne D, Wenseleers W, Zojer E, et al. Role of dimensionality on the two-photon absorption response of conjugated molecules: The case of octupolar compounds[J]. Adv Fucnt Mater, 2002, 12 (9): 631-641.
    [15] Cui Y Z, Fang Q, Xue G, et al. Syntheses and two-photon absorption properties of multi-branched s-triazine derivatives[J]. Acta Chim Sinica, 2005, 63 (15): 1421-1428.
    [16] Morel Y, Irimia A, Najechalski P, et al. Two-photon absorption and optical power limiting of bifluorene molecule[J]. J Chem Phys, 2001, 114 (12): 5391-5396.
    [17] Najechalski P, Morel Y, Stephan O, et al. Two-photon absorption spectrum of poly(fluorene)[J]. Chem Phys Lett, 2001, 343 (1-2): 44-48.
    [18] Li X D, Cheng W D, Wu D S, et al. Theoretical study on the photophysical properties of hexapyrrolidine C-60 adducts with T-h, D-3, and S-6 symmetries[J]. J Phys Chem B, 2005, 109 (12): 5574-5579.
    [19] Li X D, Cheng W D, Wu D S, et al. Modeling of configurations and third-order nonlinear optical properties of C-36 and C34X2 (X = B,N)[J]. J Chem Phys, 2004, 121 (12): 5885-5892.
    [20] Zhou X, Ren A M and Feng J K. Theoretical investigation on the two-photon absorption of C-60[J].J Mol Struct-Theochem, 2004, 680 (1-3): 237-242.
    [21] Drobizhev M, Stepanenko Y, Dzenis Y, et al. Extremely strong near-IR two-photon absorption in conjugated porphyrin dimers: Quantitative description with three-essential-states model[J]. J Phys Chem B, 2005, 109 (15): 7223-7236.
    [22] Drobizhev M, Stepanenko Y, Dzenis Y, et al. Understanding strong two-photon absorption in pi-conjugated porphyrin dimers via double-resonance enhancement in a three-level model[J]. J Am Chem Soc, 2004, 126 (47): 15352-15353.
    [23] Rubio-Pons O, Luo Y and Agren H. Effects of conjugation length, electron donor and acceptor strengths on two-photon absorption cross sections of asymmetric zinc-porphyrin derivatives[J]. J Chem Phys, 2006, 124 (9).
    [24] Pond S J K, Rumi M, Levin M D, et al. One- and two-photon spectroscopy of donor-acceptor-donor distyrylbenzene derivatives: Effect of cyano substitution and distortion from planarity[J]. J Phys Chem A, 2002, 106 (47): 11470-11480.
    [25] Luo Y, Rubio-Pons O, Guo J D, et al. Charge-transfer Zn-porphyrin derivatives with very large two-photon absorption cross sections at 1.3-1.5 mu m fundamental wavelengths[J]. J Chem Phys, 2005, 122 (9).
    [26] Nalwa H S, Kasai H, Okada S, et al. Fabrication of organic nanocrystals for electronics and photonics[J]. Adv Mater, 1993, 5 (10): 758-760.
    [27] Jin J I, Lee Y H and Shim H K. Synthesis and characterization of poly(2-methoxy-5-nitro-1,4-phenylenevinylene) and poly(1,4-phenylenevinylene-co-2-methoxy-5-nitro-1,4-phenylenevinylene)s[J]. Macromolecules, 1993, 26 (8): 1805-1810.
    [28] Gustafsson G, Cao Y, Treacy G M, et al. Flexible light-emitting-diodes made from soluble conducting polymers[J]. Nature, 1992, 357 (6378): 477-479.
    [29] Marsella M J, Fu D K and Swager T M. Synthesis of regioregular poly(methyl pyridinium vinylene) - an isoelectronic analog to poly(phenylene vinylene)[J]. Adv Mater, 1995, 7 (2): 145-147.
    [30] Hagler T W, Pakbaz K and Heeger A J. Polarized-electroabsorption spectroscopy of a soluble derivative of poly(p-phenylenevinylene) oriented by gel processing in polyethylene - polarization anisotropy, the off-axis dipole-moment, and excited-state delocalization[J]. Phys Rev B: Condens Matter, 1994, 49 (16): 10968-10975.
    [31] Mathy A, Ueberhofen K, Schenk R, et al. Third-harmonic-generation spectroscopy of poly(p-phenylenevinylene): A comparison with oligomers and scaling laws for conjugated polymers[J]. Phys Rev B: Condens Matter, 1996, 53 (8): 4367-4376.
    [32] Martin S J, Bradley D D C, Lane P A, et al. Linear and nonlinear optical properties of the conjugated polymers PPV and MEH-PPV[J]. Phys Rev B: Condens Matter, 1999, 59 (23): 15133-15142.
    [33] Farinola G M, Babudri F, Naso F, et al. Structural effects on third order nonlinear optical properties of PPV derivatives[J]. Synth Met, 2003, 137 (1-3): 1473-1474.
    [34] Lal M, Kumar N D, Joshi M P, et al. Polymerization in a reverse micelle nonreactor: Preparation of processable poly(p-phenylenevinylene) with controlled conjugation length[J]. Chem Mater, 1998, 10 (4): 1065-1068.
    [35] Shoute L C T, Blanchard-Desce M and Kelley A M. Resonance hyper-Raman excitation profiles and two-photon states of a donor-acceptor substituted polyene[J]. J Phys Chem A, 2005, 109 (46): 10503-10511.
    [36] Zhou X, Ren A M, Feng J K, et al. Theoretical study on the one- and two-photon absorption properties of a series of octupolar oligofluorenes and dipolar analogs[J]. Chem Phys Lett, 2004, 385 (1-2): 149-154.
    [37] Norman P, Luo Y and Agren H. Structure-to-property relations for two-photon absorption of hydrocarbon oligomers[J]. Chem Phys Lett, 1998, 296 (1-2): 8-18.
    [38] Chung S J, Maciel G S, Pudavar H E, et al. Two-photon properties and excitation dynamics of poly(p-phenylenevinylene) derivatives carrying phenylanthracene and branched alkoxy pendents[J]. J Phys Chem A, 2002, 106 (33): 7512-7520.
    [39] Shen Y R. The Principles of Nonlinear Optics[M]. 1984, 576
    [40] Orr B J and Ward J F. Perturbation theory of non-linear optical polarization of an isolated system[J]. Mol Phys, 1971, 20 (3): 513 - 526
    [41] Meath W J and Power E A. On the importance of permanent moments in multiphoton absorption using perturbation-theory[J]. J Phys B: At, Mol Opt Phys, 1984, 17 (5): 763-781.
    [42] Yu J S K, Chen W C and Yu C H. Time-dependent density functional study of electroluminescent polymers[J]. J Phys Chem A, 2003, 107 (21): 4268-4275.
    [1] Kroto H W, Heath J R, Obrien S C, et al. C-60 - buckminsterfullerene[J]. Nature, 1985, 318 (6042): 162-163.
    [2] Diederich F and Thilgen C. Covalent fullerene chemistry[J]. Science, 1996, 271 (5247): 317-323.
    [3] Diederich F and Kessinger R. Templated regioselective and stereoselective synthesis in fullerene chemistry[J]. Acc Chem Res, 1999, 32 (6): 537-545.
    [4] Hirsch A. New cages and unusual guests: Fullerene chemistry continues to excite[J]. Angew Chem, Int Ed, 2001, 40 (7): 1195-1197.
    [5] Taylor R. Surprises, serendipity, and symmetry in fullerene chemistry[J]. Synlett, 2000 (6): 776-793.
    [6] Hummelen J C, Prato M and Wudl F. There is a hole in my bucky[J]. J Am Chem Soc, 1995, 117 (26): 7003-7004.
    [7] Birkett P R, Avent A G, Darwish A D, et al. Holey fullerenes - a bis-lactone derivative of [70]fullerene with an 11-atom orifice[J]. Chem Comm, 1995 (18): 1869-1870.
    [8] Arce M J, Viado A L, An Y Z, et al. Triple scission of a six-membered ring on the surface of C-60 via consecutive pericyclic reactions and oxidative cobalt insertion[J]. J Am Chem Soc, 1996, 118 (15): 3775-3776.
    [9] Schick G, Jarrosson T and Rubin Y. Formation of an effective opening within the fullerene core of C-60 by an unusual reaction sequence[J]. Angew Chem, Int Ed, 1999, 38 (16): 2360-2363.
    [10]Wudl F. Fullerene materials[J]. J Mater Chem, 2002, 12 (7): 1959-1963.
    [11] Kobayashi S, Mori S, Iida S, et al. Conductivity and field effect transistor of La-2@C-80 metallofullerene[J]. J Am Chem Soc, 2003, 125 (27): 8116-8117.
    [12]Friedman S H, Decamp D L, Sijbesma R P, et al. Inhibition of the Hiv-1 Protease by Fullerene Derivatives - Model-Building Studies and Experimental-Verification[J]. J Am Chem Soc, 1993, 115 (15): 6506-6509.
    [13]Kato H, Kanazawa Y, Okumura M, et al. Lanthanoid endohedral metallofullerenols for MRI contrast agents[J]. J Am Chem Soc, 2003, 125 (14): 4391-4397.
    [14]Whitener K E, Frunzi M, Iwamatsu S, et al. Putting ammonia into a chemically opened fullerene[J]. J Am Chem Soc, 2008, 130 (42): 13996-13999.
    [15]Komatsu K, Murata M and Murata Y. Encapsulation of molecular hydrogen in fullerene C 60 by organic synthesis[J]. Science, 2005, 307 (5707): 238-240.
    [16]Iwamatsu S and Murata S. Open-cage fullerenes: Synthesis, structure, and molecular encapsulation[J]. Synlett, 2005 (14): 2117-2129.
    [17]Rubin Y, Jarrosson T, Wang G W, et al. Insertion of helium and molecular hydrogen through the orifice of an open fullerene[J]. Angew Chem, Int Ed, 2001, 40 (8): 1543.
    [18]Murata Y, Maeda S, Murata M, et al. Encapsulation and dynamic behavior of two H-2 molecules in an open-cage C-70[J]. J Am Chem Soc, 2008, 130 (21): 6702-+.
    [19]Xiao Z, Yao J Y, Yang D Z, et al. Synthesis of [59]fullerenones through peroxide-mediated stepwise cleavage of fullerene skeleton bonds and x-ray structures of their water-encapsulated open-cage complexes[J]. J Am Chem Soc, 2007, 129 (51): 16149-16162.
    [20]Li J, Feng J K and Sun C C. Calculations on the electronic-structure and nonlinear 2nd-order optical susceptibility of the C-60/aniline charge-transfer complex[J]. J Phys Chem, 1994, 98 (35): 8636-8640.
    [21]Tsuboya N, Hamasaki R, Ito M, et al. Nonlinear optical properties of novel fullerene-ferrocene hybridmolecules[J]. J Mater Chem, 2003, 13 (3): 511-513.
    [22]Fu W, Zhang H X, Feng J K, et al. Calculations on the electronic structure and nonlinear second-order susceptibilities of fulleropyrrolidine-tetrathiafulvalene(C60PY-TTF) based on donor-bridge-acceptor dyads[J]. Can J Chem, 2001, 79 (9): 1366-1375.
    [23]Becke A D. Density-functional thermochemistry .3. the role of exact exchange[J]. J Chem Phys, 1993, 98 (7): 5648-5652.
    [24]Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, Revision C.02.Wallingford CT:Gaussian,Inc.,2004.
    [25]Orr BJ W J. Perturbation theory of the nonlinear optical polarization of an isolated system[J]. Mol Phys, 1971, 20 513-526.
    [26]Gu F L, Chen Z F, Jiao H J, et al. Study on the optical and magnetic properties of C48N12 azafullerene isomers[J]. Phys Chem Chem Phys, 2004, 6 (19): 4566-4570.
    [27]Feng J K, Li J, Wang Z Z, et al. Quantum-chemical investigation of buckminsterfullerene and related carbon clusters .1. the electronic-structure and Uv spectra of buckminsterfullerene, and other C60 cages[J]. Int J Quantum Chem, 1990, 37 (4): 599-607.
    [28]Feng J K, Ren A M, Tian W Q, et al. Theoretical studies on the structure and electronic spectra of some isomeric fullerene derivatives C60On (n=2, 3)[J]. Int J Quantum Chem, 2000, 76 (1): 23-43.
    [29]Tajima Y and Takeuchi K. Discovery of C60O3 isomer having C-3v symmetry[J]. J Org Chem, 2002, 67 (5): 1696-1698.
    [30]Hawkins J M, Meyer A, Lewis T A, et al. Crystal-structure of osmylated C60 - confirmation of the soccer ball framework[J]. Science, 1991, 252 (5003): 312-313.
    [31]Hu Y H and Ruckenstein E. Ab initio quantum chemical calculations for fullerene cages with large holes[J]. J Chem Phys, 2003, 119 (19): 10073-10080.
    [32]Iwamatsu S, Uozaki T, Kobayashi K, et al. A bowl-shaped fullerene encapsulates a water into the cage[J]. J Am Chem Soc, 2004, 126 (9): 2668-2669.
    [33]Schmalz T G, Seitz W A, Klein D J, et al. Elemental carbon cages[J]. J Am Chem Soc, 1988, 110 (4): 1113-1127.
    [34]Xu X and Kang H S. Computational evidence for the possible existence of the open heterofullerenes C56X2Y (X = N,P; Y = O,S) and C60-6kN4k[J]. Chem Phys Lett, 2007, 441 (4-6): 300-304.
    [35]Qian W Y, Bartberger M D, Pastor S J, et al. C-62, a non-classical fullerene incorporating a four-membered ring[J]. J Am Chem Soc, 2000, 122 (34): 8333-8334.
    [36]Leszczynski J and Yanov I. Possibility of the existence of non-carbon fullerenes: Ab initio HF and DFT/B3LYP studies of the IV main group fullerene-like species[J]. J Phys Chem A, 1999, 103 (3): 396-401.
    [37]Shukla M K and Leszczynski J. A density functional theory study on the effect of shape and size on the ionization potential and electron affinity of different carbon nanostructures[J]. Chem Phys Lett, 2006, 428 (4-6): 317-320.
    [38]Wang X B, Ding C F and Wang L S. High resolution photoelectron spectroscopy of C-60(-)[J]. J Chem Phys, 1999, 110 (17): 8217-8220.
    [39]Zettergren H, Alcami M and Martin F. First- and second-electron affinities of C-60 and C-70 isomers[J]. Phys Rev A, 2007, 76 (4).
    [40]Ajie H, Alvarez M M, Anz S J, et al. Characterization of the soluble all-carbon molecules C60 and C70[J]. J Phys Chem, 1990, 94 (24): 8630-8633.
    [41]Antoine R, Dugourd P, Rayane D, et al. Direct measurement of the electric polarizability of isolated C-60 molecules[J]. J Chem Phys, 1999, 110 (19): 9771-9772.
    [42]Hu Y H and Ruckenstein E. Endohedral chemistry of C-60-based fullerene cages[J]. J Am Chem Soc, 2005, 127 (32): 11277-11282.
    [43]Oudar J L and Chemla D S. Hyperpolarizabilities of nitroanilines and their relations to excited-statedipole-moment[J]. J Chem Phys, 1977, 66 (6): 2664-2668.
    [44]Kanis D R, Ratner M A and Marks T J. Design and construction of molecular assemblies with Large 2nd-order optical nonlinearities - quantum-chemical aspects[J]. Chem Soc Rev, 1994, 94 (1): 195-242.
    [45]Kanis D R, Ratner M A and Marks T J. Calculation and electronic description of quadratic hyperpolarizabilities - toward a molecular understanding of nlo responses in organotransition metal chromophores[J]. J Am Chem Soc, 1992, 114 (26): 10338-10357.
    [1] Kroto H W, Heath J R, Obrien S C, et al. C-60 - Buckminsterfullerene[J]. Nature, 1985, 318 (6042): 162-163.
    [2] Kratschmer W, Lamb L D, Fostiropoulos K, et al. Solid C-60 - a New Form of Carbon[J]. Nature, 1990, 347 (6291): 354-358.
    [3] Diederich F and Kessinger R. Templated regioselective and stereoselective synthesis in fullerene chemistry[J]. Acc Chem Res, 1999, 32 (6): 537-545.
    [4] Diederich F and Thilgen C. Covalent fullerene chemistry[J]. Science, 1996, 271 (5247): 317-323.
    [5] Hirsch A. New cages and unusual guests: Fullerene chemistry continues to excite[J]. Angew Chem, Int Ed, 2001, 40 (7): 1195-1197.
    [6] Taylor R. Surprises, serendipity, and symmetry in fullerene chemistry[J]. Synlett, 2000 (6): 776-793.
    [7] Jagadeesh M N and Chandrasekhar J. Computational studies on C-36 and its dimer[J]. Chem Phys Lett, 1999, 305 (3-4): 298-302.
    [8] Piskoti C, Yarger J and Zettl A. C-36, a new carbon solid[J]. Nature, 1998, 393 (6687): 771-774.
    [9] Yuan L F, Yang J L, Deng K, et al. A first-principles study on the structural and electronic properties of C-36 molecules[J]. J Phys Chem A, 2000, 104 (28): 6666-6671.
    [10] Heine T, Fowler P W, Rogers K M, et al. Structural and energetic parallels between hydrogenated and fluorinated fullerenes: C36X6[J]. J Chem Soc, Perkin Trans 2, 1999 (4): 707-711.
    [11] Fowler P W, Heine T and Troisi A. Valencies of a small fullerene: structures and energetics of C24H2m[J]. Chem Phys Lett, 1999, 312 (2-4): 77-84.
    [12] Fowler P W, Heine T, Rogers K M, et al. C-36, a hexavalent building block for fullerene compounds and solids[J]. Chem Phys Lett, 1999, 300 (3-4): 369-378.
    [13] Heine T, Fowler P W and Seifert G. C-36: from dimer to bulk[J]. Solid State Commun, 1999, 111 (1): 19-22.
    [14] Lu X, Chen Z F, Thiel W, et al. Properties of fullerene[50] and D-5h decachlorofullerene[50]: A computational study[J]. J Am Chem Soc, 2004, 126 (45): 14871-14878.
    [15] Grossman J C, Louie S G and Cohen M L. Solid C-36: Crystal structures, formation, and effects of doping[J]. Phys Rev B: Condens Matter, 1999, 60 (10): R6941-R6944.
    [16] Wang C R, Kai T, Tomiyama T, et al. Materials science - C-66 fullerene encaging a scandium dimer[J]. Nature, 2000, 408 (6811): 426-427.
    [17] Xie S Y, Gao F, Lu X, et al. Capturing the labile fullerene[50] as C50Cl10[J]. Science, 2004, 304 (5671): 699-699.
    [18] Stevenson S, Fowler P W, Heine T, et al. Materials science - A stable non-classical metallofullerene family[J]. Nature, 2000, 408 (6811): 427-428.
    [19] Hirsch A, Chen Z F and Jiao H J. Spherical aromaticity in 1(h) symmetrical fullerenes: The 2(N+1)(2) rule[J]. Angew Chem, Int Ed, 2000, 39 (21): 3915-3917.
    [20] Fowler P W and Manlopoulos D E. An Atlas of Fullerenes (Clarendon, Oxford, 1995)[J].
    [21] Zhao X. On the structure and relative stability of C-50 fullerenes[J]. J Phys Chem B, 2005, 109 (11): 5267-5272.
    [22] Koshio A, Inakuma M, Sugai T, et al. A preparative scale synthesis of C-36 by high-temperature laser-vaporization: Purification and identification of C36H6 and C36H6O[J]. J Am Chem Soc, 2000, 122 (2): 398-399.
    [23] Boltalina O V, Markov V Y, Troshin P A, et al. C60F20: "Saturnene", an extraordinary squashed fullerene[J]. Angew Chem, Int Ed, 2001, 40 (4): 787-789.
    [24] Xu Z J, Han J G, Zhu Z Y, et al. Valence of D-5h C-50 fullerene[J]. J Phys Chem A, 2007, 111 (4): 656-665.
    [25] Chang Y F, Zhang J P, Hong B, et al. D-5h C50X10: Saturn-like fullerene derivatives (X=F, Cl, Br)[J]. J Chem Phys, 2005, 123 (9):094305.
    [26] Yang Y, Wang F H, Zhou Y S, et al. Density functional calculations of the polarizability and second-order hyperpolarizability of C50Cl10[J]. Phys Rev A, 2005, 71 (1):013202.
    [27] Komatsu K, Murata M and Murata Y. Encapsulation of molecular hydrogen in fullerene C 60 by organic synthesis[J]. Science, 2005, 307 (5707): 238-240.
    [28] Iwamatsu S and Murata S. Open-cage fullerenes: Synthesis, structure, and molecular encapsulation[J]. Synlett, 2005 (14): 2117-2129.
    [29] Murata Y, Maeda S, Murata M, et al. Encapsulation and dynamic behavior of two H-2 molecules in an open-cage C-70[J]. J Am Chem Soc, 2008, 130 (21): 6702-6703.
    [30] Rubin Y, Jarrosson T, Wang G W, et al. Insertion of helium and molecular hydrogen through the orifice of an open fullerene[J]. Angew Chem, Int Ed, 2001, 40 (8): 1543-1546.
    [31] Whitener K E, Frunzi M, Iwamatsu S, et al. Putting ammonia into a chemically opened fullerene[J]. J Am Chem Soc, 2008, 130 (42): 13996-13999.
    [32] Hu Y H and Ruckenstein E. Ab initio quantum chemical calculations for fullerene cages with large holes[J]. J Chem Phys, 2003, 119 (19): 10073-10080.
    [33] Xiao Z, Yao J Y, Yang D Z, et al. Synthesis of [59]fullerenones through peroxide-mediated stepwise cleavage of fullerene skeleton bonds and x-ray structures of their water-encapsulated open-cage complexes[J]. J Am Chem Soc, 2007, 129 (51): 16149-16162.
    [34] Becke A D. Density-Functional Thermochemistry .3. the Role of Exact Exchange[J]. Journal of Chemical Physics, 1993, 98 (7): 5648-5652.
    [35] Holder A J. AMPAC, version 8.16; Semichem, Inc.: Shavnee,KS, , 2004.
    [36] Dewar M J S, Jie C X and Yu J G. Sam1 - the 1st of a New Series of General-Purpose Quantum-Mechanical Molecular-Models[J]. Tetrahedron, 1993, 49 (23): 5003-5038.
    [37] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03,Revision C.02.Wallingford CT:Gaussian,Inc.,2004.
    [38] BJ O and JF W. Perturbation theory of the nonlinear optical polarization of an isolated system[J]. Mol Phys, 1971, 20 513 - 526
    [39] Feng J K, Li J, Wang Z Z, et al. Quantum-Chemical Investigation of Buckminsterfullerene and Related Carbon Clusters .1. the Electronic-Structure and Uv Spectra of Buckminsterfullerene, and Other C60 Cages[J]. Int J Quantum Chem, 1990, 37 (4): 599-607.
    [40] Feng J K, Ren A M, Tian W Q, et al. Theoretical studies on the structure and electronic spectra of some isomeric fullerene derivatives C60On (n=2, 3)[J]. Int J Quantum Chem, 2000, 76 (1): 23-43.
    [41] Gu F L, Chen Z F, Jiao H J, et al. Study on the optical and magnetic properties of C48N12 azafullerene isomers[J]. PCCP, 2004, 6 (19): 4566-4570.
    [42] Tajima Y and Takeuchi K. Discovery of C60O3 isomer having C-3v symmetry[J]. J Org Chem, 2002, 67 (5): 1696-1698.
    [43] Qian W Y, Bartberger M D, Pastor S J, et al. C-62, a non-classical fullerene incorporating a four-membered ring[J]. J Am Chem Soc, 2000, 122 (34): 8333-8334.
    [44] Xu X and Kang H S. Computational evidence for the possible existence of the open heterofullerenes C56X2Y (X = N,P; Y = O,S) and C60-6kN4k[J]. Chem Phys Lett, 2007, 441 (4-6): 300-304.
    [45] Leszczynski J and Yanov I. Possibility of the existence of non-carbon fullerenes: Ab initio HF and DFT/B3LYP studies of the IV main group fullerene-like species[J]. J Phys Chem A, 1999, 103(3): 396-401.
    [46] Shukla M K and Leszczynski J. A density functional theory study on the effect of shape and size on the ionization potential and electron affinity of different carbon nanostructures[J]. Chem Phys Lett, 2006, 428 (4-6): 317-320.
    [47] Boltalina O V (1999) in 16th International Conference on Fluorine Chemistry (ICFC 99) (Tokyo, Japan)[G], pp. 273-278.
    [48] Taylor R. Why fluorinate fullerenes?[J]. J Fluorine Chem, 2004, 125 (3): 359-368.
    [49] Fu W, Zhang H X, Feng J K, et al. Calculations on the electronic structure and nonlinear second-order susceptibilities of fulleropyrrolidine-tetrathiafulvalene(C60PY-TTF) based on donor-bridge-acceptor dyads[J]. Can J Chem, 2001, 79 (9): 1366-1375.
    [50] Li J, Feng J K and Sun C C. Calculations on the Electronic-Structure and Nonlinear 2nd-Order Optical Susceptibility of the C-60/Aniline Charge-Transfer Complex[J]. J Phys Chem, 1994, 98 (35): 8636-8640.
    [51] Tsuboya N, Hamasaki R, Ito M, et al. Nonlinear optical properties of novel fullerene-ferrocene hybrid molecules[J]. J Mater Chem, 2003, 13 (3): 511-513.
    [52] Kroto H W. The Stability of the Fullerenes C-24, C-28, C-32, C-36, C-50, C-60 and C-70[J]. Nature, 1987, 329 (6139): 529-531.
    [53] Fowler P W and Heine T. Stabilisation of pentagon adjacencies in the lower fullerenes by functionalisation[J]. J Chem Soc, Perkin Trans 2, 2001 (4): 487-490.
    [54] Zhechkov L, Heine T and Seifert G. D-5h C-50 fullerene: A building block for oligomers and solids?[J]. J Phys Chem A, 2004, 108 (52): 11733-11739.
    [55] Chen Z. The smaller fullerene C-50, isolated as C50Cl10[J]. Angew Chem, Int Ed, 2004, 43 (36): 4690-4691.
    [56] Xu Z J, Zhang W, Zhu Z Y, et al. A density functional study of C-50 passivation[J]. Chem Phys, 2006, 331 (1): 111-124.
    [57] Holder A J, AMPAC version 6.55[R], Semichem, Inc., Shavnee, KS 66222, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700