用户名: 密码: 验证码:
汽车被动安全性的模块化建模方法与多目标优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据2004年世界卫生组织提供的统计数据,全球死于交通事故的人数高达120万,如果不采取适当预防措施,预计在2020年,继缺血性心脏病和抑郁症之后,道路交通伤害将成为造成人类伤亡的第三大杀手。据汽车工业协会发布的数据,2012年中国汽车产销量已经超过1900万辆,并连续4年蝉联世界第一。随着我国机动车保有量的快速增长,道路交通安全形势日益严峻。在2010年,我国交通事故造成的伤亡人数达到65225人,平均每天有178人丧失生命。道路交通安全已经引起我国政府的高度重视,通过制定更严格的法规,引导汽车制造企业开发安全性更好的汽车产品。
     汽车制造企业和科研机构在积极开发主动安全产品的同时,也不断深入对汽车被动安全的研究。通常在产品开发过程中,为保障整车的被动安全性能,需要对整车的正面、侧面、后面抗撞性能进行全面的综合分析,而且此类分析伴随整个开发过程。一旦零部件有设计变更或结构改变,就需要再次评价产品的抗撞性能,以保证批量时产品性能的稳定性。所以在开发过程中,需要建立多种工况的仿真模型及优化模型,由此可见建模的工作量巨大。目前传统的建模方法,建模将占用全部仿真分析80%的工作量,而且多数是重复性工作,所以提高建模效率已成为仿真分析的首要任务。
     本文将模块化建模思想引入到碰撞仿真建模的工作中,提出模块化建模方法,将拉丁超立方和正交试验设计方法以及多项式响应面和Kriging近似模型应用到实际的工程分析当中,利用自适应模拟退火优化算法对车身侧面、正面结构安全性能进行多目标优化,以提高车身的抗撞性能。本文主要开展了以下几方面的研究内容:
     1.为了减少实际工作中建模及模型更新的大量重复性工作,提出并详细定义了模块化建模方法、原则及要求。按模块独立原则、模块间关联最小原则、功能和位置原则,将整车划分为多个独立的模块;为规范零部件网格质量,明确了结构特征的简化原则以及单元质量要求;针对整车中各零部件间物理和化学连接关系,推荐了相对应的模拟方法;规范了子模块中节点、单元及部件属性的号码范围;对于子模块间的连接方法、模型的装配方法以及模型调试等内容均进行了描述与说明。最后以发动机舱盖建模为例,介绍了建模过程。
     2.根据碰撞车辆的配置信息,利用模块化建模方法,组建了3个碰撞工况的仿真分析模型。车型配置参数为1.6L发动机、MQ200手动变速箱、16寸轮胎、无天窗车身等。为了检验仿真模型的精度是否满足工程要求,通过将整车加速度、评价位置点的侵入量和侵入速度以及结构的局部区域的变形量等指标与试验结果进行对比分析,对仿真模型进行试验验证。结果表明,仿真模型的精度满足工程分析要求,同时验证了模块化建模方法所定义的方法、原则是有效可行的。以此模型为基础,可以开展后续的优化工作。
     3.为满足客户对产品的多样性需求,在产品开发过程中,会同时开发多种配置的车型。通常采用安全性最差的配置车型用于结构的优化,所以需要分析不同配置模块对车身抗撞性能的影响程度。本文利用模块化建模方法,组建AQ250和MQ200两款不同变速箱整车正面碰撞仿真模型,通过对比分析发现,配置尺寸和质量较大的AQ250自动变速箱车型,在正面碰撞过程中,前围板向乘员舱的侵入量变大、加速度峰值变高、出现峰值时刻提前,其正面碰撞结果较差。对比了带天窗车身与无天窗车身侧面碰撞结果,结果表明:带天窗车身由于顶盖天窗位置增加了天窗导轨以及天窗加强板,其侧面碰撞性能优于无天窗车身。
     4.由于第四章建立的1.6L发动机、MQ200手动变速箱、16寸轮胎、无天窗车身模型,经过试验验证,其侧面抗撞性能没有达到设计要求。所以本文结合拉丁超立方试验设计方法,选择车身侧面8个零件板厚及5个零件的材料作为设计变量,以评价位置点的B柱侵入量,侵入速度和待优化部件的质量等7个响应量为目标函数,建立了200个试验样本点,根据变量和响应的样本数据,建立了3阶多项式响应面近似模型代替仿真模型,利用自适应模拟退火优化算法对近似模型进行多目标优化,得到一组非劣解集。根据侵入量、侵入速度最小,质量最轻的原则,兼顾产品的经济性,选择第223迭代点为最优方案,将最优方案仿真结果与最初方案进行对比分析,b4位置点的侵入量下降62%,b3点的侵入速度下降29%,虽然优化结构件的质量上升7.7%,但车辆的抗撞性能提高较为明显。结果表明:在B柱和门槛区域,使用高强度钢板或增加板厚,能有效果提高车身的侧面抗撞性能。
     5.为乘员约束系统匹配提供更宽松的设计环境,降低正面碰撞的整车加速度,对车身前端吸能盒和前纵梁进行多目标优化。选取吸能盒和前纵梁等7个变量为设计变量,利用正交试验设计方法,建立18个试验样本,以整车加速度、质量、能量以及前围板的侵入量为响应,组建18个变量与响应的样本数据,建立了kriging近似模型模拟变量和响应的函数关系。利用自适应模拟退火优化算法对kriging模型进行多目标优化。选取第9096次迭代点为最优方案,整车加速度降低7.4%,虽然侵入量和质量略有增加,但整车抗撞性能满足设计要求,达到预期效果。
According to the statistics provided by WHO in2004, people killed by trafficaccidents was up to1.2million, and the traffic accidents would be the thirdkiller to human being after ischemic heart disease and depression in2020.More than19million autos have been produced and sold in China and rankedfirst in the world in four consecutive years released by Association ofAutomobile Manufacturers which inducing a severe road traffic safetysituation. In2010, caused by the traffic accidents in China,65225people wereinjured and178people lost their lives in daily average. Chinese governmentnow is paying great attension to road traffic safety and enacting stricterregulations and requiring automobile companies to develop more secureproducts.
     New active safety product is developed by automobile manufactureenterprises and research institutions, as well as the passive safety. Generally,the crashworthiness of frontal, side and rear structure should be analyzedduring the product development in order to improve passive safety, and theanalysis goes with the whole product development. Once the design changedand structures optimized, the crashworthiness will be validated again to ensurethe crashworthiness stability. Therefore, there are several conditions andoptimization models should be rebuilt which resulted in huge modelingworkload. If using traditional modeling method, the modeling will occupy80%workload in analysis simulation. Improving modeling efficiency hasbecome a primary and importanr task to reduce repetitive works in analysissimulation.
     In this paper, modular strategy was introduced in the crash simulation modeling, and modular methodology was proposed. Latin hypercubeexperimental design, orthogonal design, polynomial response surface (PRS)and Kriging approximation were used in project analysis. Body structurescrashworthiness was improved by multi-objective optimization with thethird-order PRS, Kriging and adaptive simulated annealing (ASA). The maincontents in this thesis are showed as follows:
     Modular methodology was proposed in order to reduce repetitive works inmodeling and model updating. The vehicle was separated into severalindependent modules based on the principles of independent model, minimumassociation, function, and position. The principles were described as follows:1) to seperate the structures according to the principles of structuralsimplifying and element quality;2) to simulate the physical or chemicalconnection with correct element, number range for the node and element inthe modules, using the Rbody element to connect the module to body in white.Engine hatch is an example to show the modeling process.
     According to the collision vehicle configuration using modular methodology,3crash-condition models were built, including frontal impact, side impact,and rear impact model. The vehicle configuration is1.6L engine, MQ200manual transmission,16-inch tires and body without skylight. The moduleaccuracy was validated through comparison the acceleration, intrusion,intrusion velocity of simulation with test results. The accuracy reachedengineering requirements; the modular methodology and simulated methodare all validated as well. Based on the validated model, the body structureshould be optimized.
     Several configuration cars have been developed to meet customer for theproduct diversity. In generally, the least safe car should be selected as a basemodel to optimize. Based on the modular methodology, the frontal impactmodels with AQ250and MQ200transmission were built in order to assess theinfluence of crashworthiness on different modular. Comparing with the testand simulation results, the frontal crashworthiness of AQ250model is worsethan MQ200model, because the dimension and weight of AQ250transmission are larger and heavier than MQ200, which result in moreintrusion of firewall and more peak value of acceleration. The side impact results for the body with and without skylight were compared. The body sidecrashworthiness of the model with skylight is better than the model withoutskylight, because there is several reinforcing plate around the skylight.
     The model of1.6L engine, MQ200manual transmission,16-inch tires andbody without skylight was validated in chapter4. The crashworthiness ofbody side structures did not reach the engineering requirement. In order tocreat the third-order PRS, the part thickness and material was selected as adesign variable, the intrusion and intrusion velocity of B-pillar was selected asan objective function,200samples were created using Latin hypercubeexperimental design. Based on the limited number of design variablesengaged in the optimization, it is sufficient to obtain a good pareto frontdescriptive function using200input virtual data points and the ASA.Considering the minimum intrusion and velocity, a multi-objectiveoptimization scheme is the optimized point223. Comparing with the originalscheme, the intrusion in b4decreased62%, intrusion velocity in b3decreased29%. Although the mass increased7.7%, the side crashworthiness is improvedobviously. The scheme The results revealed that it is a good method toincrease the crashworthiness in the area of B-pillar and threshold used thehigh strength steel and increasing the thickness
     In order to get the more design environment to match the occupant restraintsystem and reduce the vehicle acceleration, the energy-box and frontallongitudinal beam as design variables were improved by multi-objectiveoptimization. The18test samples were built with the orthogonal design. Thefunction of the variables and response was simulated by Krigingapproximation, and to optimize with adaptive simulated annealing (ASA).Base on the better crashworthiness, the lower vehicle acceleration wasobtained at the cost of the higher intrusion and model quality.
引文
[1] Margie Peden等著,刘光远译.世界预防道路交通伤害报告[M].北京:人民卫生出版社,2004.
    [2]中华人民共和国道路交通事故统计年报(2010年度).公安部交通管理局,2011.
    [3]黄金陵.汽车车身设计[M].北京:机械工业出版社,2007.
    [4]张金换,杜汇良,马春生,等.汽车碰撞安全性设计[M].北京:清华大学出版社,2010.
    [5] Andrews K R F, England G L, Ghani E. Classification of the axial collapse ofcylindrical tubes under quasi-static loading[J]. International Journal of MechanicalSciences,1983,(25):687-696.
    [6] Guillow S R, Lu G, Grzebieta R H. Quasi static axial compression of thin-walledcircular aluminum tubes[J].International Journal of Mechanical Sciences,2001,435:2103-2123.
    [7] Zarei H R, Kroeger M. On the dynamic crash load efficiency of circular aluminumtubes[J]. Thin-Walled Structures,2006,44(3):301-308.
    [8]李桂花.超细晶材料高应变率下力学行为的数值模拟[D].宁波大学硕士学位论文,2012.
    [9]孙宏图,申国哲.汽车镁合金车身设计[J].机械设计与制造,2009,12(7):4-6.
    [10] Santosa S, Wierzbicki T. Crash behavior of box columns filled with aluminumhoneycomb or foam[J].Computers&Structures1998,68(4)343-367.
    [11] Ghamarian A, Zarei H R, Abadi M T. Experimental and numerical crashworthinessinvestigation of empty and foam-filled end-capped conical tubes[J]. Thin-WalledStructures,2011,49(10):1312-1319.
    [12] Yin H F, Wen G L, Hou S J, et al. Multiobjective crashworthiness optimization offunctionally lateral graded foam-filled tubes[J].Materials&Design,2013,44:414-428.
    [13] Gedikli H. Crashworthiness optimization of foam-filled tailor-welded tube usingcoupled finite element and smooth particle hydrodynamics method[J].Thin-WalledStructures,2013,67:34-48.
    [14] Zhang Y, Sun G Y, Li G Y, et al. Optimization of foam-filled bitubal structures forcrashworthiness criteria[J]. Materials&Design,2012,38:99-109.
    [15] Mirfendereski L, Salimi M, Ziaei-rad S. Parametric study and numerical analysis ofempty and foam-filled thin-walled tubes under static and dynamic loadings[J].International Journal of Mechanical Sciences,2008,50(6):1042-1057.
    [16] Attia M S, Meguid S A, Nouraei H. Nonlinear finite element analysis of the crushbehaviour of functionally graded foam-filled columns[J]. Finite Elements in Analysisand Design,2012,61:50-59.
    [17] Cui X T, Zhang H W, Wang S X, et al. Design of lightweight multi-materialautomotive bodies using new material performance indices of thin-walled beams forthe material selection with crashworthiness consideration[J]. Materials&Design,2011,32(2):815-821.
    [18] Zarei H R, Kr ger M. Bending behavior of empty and foam-filled beams: Structuraloptimization [J]. International Journal of Impact Engineering,2008,35(6):521-529.
    [19]张宗华.轻质吸能材料和结构的耐撞性分析与设计优化[D].大连理工大学博士学位论文,2010.
    [20] Castejón L, Cuartero J, Clemente R, et al. Energy absorption capability of compositematerials applied to automotive crash absorbers design[J]. SAE paper,980964.
    [21] Li Y, Lin Z, Jiang A. Experimental study of glass-fiber mat thermoplastic materialimpact properties and lightweight automobile body analysis[J]. Materials and Design,2004,25(7):579-585.
    [22] Lee K S, Im K H, Yang I Y. Experimental evaluation of the crashworthiness forlightweight composite structural member[J]. Thin Solid Films,2010,518(20):5637-5641.
    [23] White M D, Jones N. Experimental quasi-static axial crushing of top-hat anddouble-hat thin-walled sections[J]. International Journal of Mechanical Sciences,1999,41(9):179-208.
    [24] White M D, Jones N, Abramowicz W. A theoretical analysis for the quasi-static axialcrushing of top-hat and double-hat thin-walled sections[J]. International Journal ofMechanical Sciences,1999,41(5):209-303.
    [25] Tai Y S, Huang M Y, Hu H T. Axial compression and energy absorptioncharacteristics of high-strength thin-walled cylinders under impact load[J].Theoretical and Applied Fracture Mechanics,2010,53(3):1-8.
    [26]葛树文,王国强,李红建.高强度钢对车体侧面抗撞性影响的研究[J].汽车工程,2008,12(4):17-21.
    [27] Hsu S S, Jones N. Quasi-static and dynamic axial crushing of thin-walled circularstainless steel, mild steel and aluminium alloy tubes[J]. International Journal ofCrashworthiness,2004,9(2):195-217.
    [28] Liu Y. Design optimization of tapered thin-walled square tubes[J]. InternationalJournal of Crashworthiness,2008,13(5):543-550.
    [29] Williams B W, Oliveira D A, Simha C H M, et al. Crashworthiness of straight sectionhydroformed aluminum tubes[J]. International Journal of Impact Engineering,2007,34(8):1451-1464.
    [30] Ahmad Z, Thambiratnam D P, Tan A C C. A numerical study on the axial loading andenergy absorption of foam-filled conical tubes[C]. the7thinternational conference onshock&impact loads on structures, Beijing,2007:99-106.
    [31] Acar E, Guler M A, Gerc-eker B, et al. Multi-objective crashworthiness optimizationof tapered thin-walled tubes with axisymmetric indentations[J]. Thin-WalledStructures,2011,49:94-105.
    [32]荆友录.不同截面薄壁梁的轴向耐撞性对比研究[J].山东交通学院学报,2008,616(2):14-17.
    [33] Abe K, Nishigaki H, Ishivama S,et al. Collapse of Thin-walled curved beam withclosed-hat section-part2:simulation by plane plastic hinge model. SAE paper,900461.
    [34]宋宏伟,赵桂范,杜星文.提高汽车耐撞性的能量吸收结构撞击吸能特性研究[J].汽车技术,2000,11(11):11-14.
    [35] Yin H F, Wen G L, Hou S J, et al. Crushing analysis and multi-objectivecrashworthiness optimization of honeycomb-filled single and bitubular polygonaltubes[J]. Materials and Design,2011,32:4449-4460.
    [36]游国忠,葛如海,程勇,等.轿车车门侧面碰撞有限元模拟[J].中国公路学报,2006,19(5):119-122.
    [37]游国忠,陈晓东,程勇,等.汽车侧面碰撞有限元仿真建模[J].江苏大学学报(自然科学版),2005,26(6):484-487.
    [38]游国忠,陈晓东,程勇,等.轿车B柱的优化及对侧面碰撞安全性的影响.汽车工程,2006,28(11):972-975.
    [39]吴毅,朱平,张宇.基于侧面碰撞仿真的轿车防撞杆结构优化研究[J].机械设计与研究,2006,22(5):108-112.
    [40]侯飞.轿车侧面碰撞新车评价程序及提高轿车侧面碰撞性能的措施[J].汽车工程,2000,22(6):413-417.
    [41] Siegert K, Glasbrenner B, Possehn T. Forming of tailored blanks with non linearweld-lines[J]. SAE Papers,2000010414.
    [42]杨继昌,周建中,张永康.激光冲压金属板料成形的研究[J].江苏大学学报(自然科学版),2002,23(1):1-4.
    [43]谭耀武.轿车侧面碰撞中B柱的耐撞性优化设计研究[D].湖南大学硕士学位论文,2010.
    [44] Langseth M, Hopperstad O S. Static and dynamic axial crushing of square thin walledaluminum extrusions[J]. Impact Engineering,1996,18(78):949-968.
    [45]赵静宜.轿车副车架液压成形预弯工艺数值模拟分析[D].吉林大学硕士学位论文,2004.
    [46] Shapiro B. Using LS-DYNA for Hot Stamping[C]. the7th European LS-DYNAConference, Salzburg,2009.
    [47] Hao Q, Sun Y. Car door optimization based on Kriging model[C]. InternationalConference on Computer Application and System Modeling, Taiyuan,2010:15-24.
    [48] Marklund P O, Nilsson L. Optimization of a car body component subjected to sideimpact[J]. Industrial Applications and Case Studies,2001,21(3):383-392.
    [49] Liu Y C. Crashworthiness design of multi-corner thin-walled columns[J].Thin-Walled Structures,2008,46(12):1329-1337.
    [50] Liu Y C. Crashworthiness design of thin-walled curved beams with box and channelcross sections[J]. International Journal of Crashworthiness,2010,15(4):413-423.
    [51] Zhou Y J, Lan F C, Chen J Q. Crashworthiness research on S-shaped front rails madeof steel–aluminum hybrid materials[J]. Thin-Walled Structures,2011,49(2):291-297.
    [52] Giunta A, Watson L T. A comparison of approximation modeling techniques:polynomial vs Interpolating models[R]. AIAA-98-4758.
    [53] Simpson T W. Comparison of response surface and Kriging models in the multi-disciplinary design of an aerospace nozzle[R].NASA/CR-1998-206935, ICASEReport No.98-16.
    [54] Lucifredi A, Mazzieri C, Rossi M. Application of multi-regressive linear models,dynamic Kriging models and neural network models to predictive maintenance ofhydroelectric power systems[J]. Mechanical Systems and Signal,2000,14(3):471-494.
    [55] Youn B D, Choi K K. A new response surface methodology for reliability-baseddesign optimization[J]. Computers&Structures,2004,82(2-3):241-256.
    [56] Yamazaki K, Han J. Maximization of the crushing energy absorption of tubes[J].Structural and Multidisciplinary Optimization,1998,16(1):37-46.
    [57] Yamazaki K, Han J. Maximization of the crushing energy absorption of cylindricalshells[J]. Advances in Engineering Software,2000,31(6):425-434.
    [58] Redhe M, Nilsson L. Optimization of the new Saab9-3exposed to impact load usinga space mapping technique[J]. Structural and Multidisciplinary Optimization,2004,27(5):411-420.
    [59] Yu Q, Koizumi N, Yajiama H, etal. Optimum design of vehicle frontal structure andoccupant restraint system for crashworthiness[J]. Solid Mechanics and MaterialEngineering,2001,44(4):594-601.
    [60]张斌,张维刚,杨济匡,等.基于响应面法的汽车侧撞安全性仿真优化[J].系统仿真学报,2009,21(12):3850-3854.
    [61]杨卓懿,庞永杰,王建,等.响应面模型在艇型多目标优化中的应用[J].哈尔滨工程大学学报,2011,32(4):407-438.
    [62]房加志,焦群英,常崇义,等.响应面法在薄壁结构碰撞吸能上的应用[J].中国农业大学学报,2005,10(1):81-85.
    [63]邓乃上,方宗德,朱艳香,等.基于响应面模型的汽车传动系参数多目标优化[J].机械科学与技术,2011,30(9):1569-1578.
    [64] Ohata T, Nakamura Y, Katayama T, et al. Development of optimum process designsystem for sheet fabrication using response surface method[J]. Journal of MaterialsProcessing Technology,2003:667-672.
    [65] Parsopoulos K E, Varhatis M N. Particle swarm optimization method in multi-objective problems[C]. Applied Computing, Madrid,2002:603-607.
    [66] Hu X H, Eberhart, Russel C. Multiobjective using dynamic neighborhood particleswarm optimization[C]. Evolutionary Computation, Hawaii,2002:1677-1681.
    [67] Raquel C R, Naval P C. An effective use of crowding distance in multiobjectiveparticle swarm optimization[C]. Genetic and Evolutionary Computation Conference,Washington, D.C.,2005:257-264.
    [68] Sekulski Z. Multi-objective topology and size optimization of high-speed vehiclepassenger catamaran structure by genetic algorithm[J]. Marine Structures,2010,23(4):405-433.
    [69]曾三友,魏巍,康立山,等.基于正交设计的多目标演化算法[J].计算机学报,2005,10(6):17-19.
    [70]邹秀芬,刘敏忠,吴志健,等.解约束多目标优化问题的一种鲁棒的进化算法[J].计算机研究与发展,2004,14(3):27-31.
    [71] Gu J, Li G Y, Dong Z. Hybrid and adaptive metal-model based global optimization[C].Proceedings of the ASME2009international design engineering technicalconferences&computers and information in engineering conference, SanDiego,2009.
    [72]王国春,成艾国,顾纪超,等.基于混合近似模型的汽车正面碰撞耐撞性优化设计[J].中国机械工程,2011,22(17):2136-2141.
    [73] Shu Y, Chang Q. Multiobjective optimization for empty and foam-filled squarecolumns under oblique impact loading[J]. International Journal of Impact Engin-eering,2013,54:177-191
    [74]张维刚,廖兴涛,钟志华.基于逐步回归模型的汽车碰撞安全性多目标优化[J].机械工程学报,2007,43(8):142-147.
    [75] Cui X T, Wang S X, Hu J.A method for optimal design of automotive body assemblyusing multi-material construction[J]. Materials&Design,2008,29(2):381-387.
    [76] Sun G Y, Li G Y, Hou S J, et al. Crashworthiness design for functionally gradedfoam-filled thin-walled structures[J]. Materials Science and Engineering A,2010,527(7-8):1911-1919.
    [77]陈昌明,于永志.汽车侧面碰撞中车门内部缓冲泡沫刚度的匹配[J].山东交通学院学报,2010,18(1):5-8.
    [78]孙光永,李光耀,钟志华,等.基于序列响应面法的汽车结构耐撞性多目标粒子群优化设计[J].机械工程学报,2009,45(2):224-230.
    [79]尹郁琦,谷正气,杨易,等.基于近似模型的汽车除霜出风口参数优化设计[J].合肥工业大学学报(自然科学版),2011,34(1):972-975.
    [80]刘道华,张文峰,王淑礼.基于网络响应面的多目标优化方法[J].华中科技大学学报(自然科学版),2012,40(9):57-61.
    [81]李恩颖,李光耀,王琥.混合响应面法对汽车吸能部件优化关键技术[J].计算机应用研究,2008,25(2):368-375.
    [82]王国春,成艾国,胡朝辉,等.基于Kriging模型的汽车前部结构的耐撞性优化[J].汽车工程,2011,33(3):208-212.
    [83]刘克龙,姚卫星,穆雪峰.基于Kriging代理模型的结构形状优化方法研究[J].计算力学学报,2006,23(3):343-347:362.
    [84]韩永志,高行山,李立州,等.基于Kriging模型的涡轮叶片多学科设计优化[J].航空动力学报,2007,22(7):1055-1059.
    [85]张峻,柯映林.基于动态序列响应面方法的钣金成形过程参数优化[J].中国机械工程,2005,16(4):307-310.
    [86]季忠.板料激光成形数值模拟及工艺优化[D].山东大学博士学位论文,2001.
    [87]张崎,李兴斯.基于Kriging模型的结构可靠性分析[J].计算力学学报,2006,23(2):175-179.
    [88] Salehghaffari S, Rais-Rohani M, Najafi A. Analysis and optimization of externallystiffened crush tubes[J]. Thin-Walled Structures,2011,49(3):397-408.
    [89]展新.卡车车架轻量化设计[D].吉林大学硕士学位论文,2010.
    [90] Kamel H. Design optimization of vehicle structures for crashworthinessimprovement[D]. Concordia University,2009.
    [91] Ishii K, Yamanaka I. Influence of vehicle deceleration curve on dummy injurycriteria[J]. SAE Paper,880612.
    [92] Matsumoto H, Sakakida M, Kurimoto K.A. Parametric evaluation of vehicle crashperformance[J]. SAE Paper,900465.
    [93] Wu J, Bilkhu S, Nusholtz G S. An Impact pulse-restraint energy relationship and itsapplications[J]. SAE Paper,2003010505.
    [94]林逸,刘静岩,张君媛,等.微型客车概念设计阶段车身结构抗撞性分析[J].吉林大学学报(工学版),2006,36(3):298-301.
    [95]林逸,刘静岩,张君媛,等.微型客车车身结构正面碰撞参数化模型的建立[J].汽车工程,2006,28(1):60-64.
    [96]张维刚,邹正宽,王祥.侧面碰撞中B柱侵入速度及变形模式对乘员损伤影响的研究[J].湖南大学学报(自然科学版),2009,36(8):28-32.
    [97]朱海涛,孙振东.侧面柱碰撞的研究[J].交通标准化,2006,3(7):174-178.
    [98] Dong G, Wang D Z, Zhang J H, et al. Side structure sensitivity to passenger car crashworthiness during pole side impact[J]. Tsinghua Science and Technology,2007,12(3):290-295.
    [99]张君媛,张敏,丁如芳,等.汽车侧面碰撞乘员约束系统的多目标优化[J].设计·计算·研究,2005,12(11):290-295.
    [100]丁如芳.轿车侧面碰撞乘员约束系统参数分析与性能改进[D].吉林大学硕士学位论文,2005.
    [101]赵桂范,林乐川,杨娜.汽车侧面碰撞响应与乘员保护分析[J].机械设计与制造,2008,4(4):210-211.
    [102]苏保国.轿车车身结构碰撞数值模拟计算研究[D].大连理工大学硕士学位论文,2001.
    [103]沈永峰,邸建卫.含乘员约束系统的轿车正面碰撞计算机模拟计算[J].现代制造工程,2008,(10):66-70.
    [104]许亮.商务车正面碰撞结构耐撞性模拟研究[D].上海交通大学硕士学位论文,2007.
    [105]贾宏波,黄金陵,谷安涛,等.数值模拟技术在汽车碰撞分析中的应用[J].中国公路学报,1999,12(2):100-104.
    [106]贾宏波,黄金陵,郭孔辉.汽车车身结构碰撞性能的计算机模拟、评价与改进[J].吉林工业大学学报,1998,284(2):6-11.
    [107]刘学术.汽车碰撞特征参数研究[D].大连理工大学硕士学位论文,2003.
    [108]雷正保,钟志华,李岳林.汽车碰撞过程中乘员冲击响应的分析方法及应用[J].中国公路学报,2001,14(2):115-120.
    [109]胡玉梅,李晓红,邓兆祥,等.微型客车正面碰撞仿真技术[J].重庆大学学报,2003,26(9):64-68.
    [110]王宏雁,高卫民,贾宏波.轿车正面碰撞计算机数值模拟的分析[J].安全与环境学报,2001,15(4):31-40.
    [111]陈晓东,苏清祖.汽车侧碰移动变形壁障有限元模型的开发[J].汽车工程,2003,25(3):65-69.
    [112]金鑫,张金换,黄世霖.汽车侧面碰撞试验用吸能材料研究[J].公路交通科技,2004,21(11):131-137.
    [113]Sun X, Elizabeth V, Stephens, et al. Effects of fusion zone size and failure mode onpeak load and energy absorption of advanced high strength steel spot welds under lapshear loading conditions[J]. Engineering Failure Analysis,2008,15(4):356-367.
    [114]高卫民,于宏雁,徐敦舸.碰撞模拟过程中焊点的影响[J].同济大学学报,2001,29(7):870-872.
    [115]程玲.轨道车辆被动安全系统及其模块化研究[D].同济大学硕士学位论文.2006.
    [116]渠瀛.机器人模块化可重用仿真平台的设计与研究[D].东北大学硕士学位论文,2010.
    [117]Subrato D, William E, Honstadt, et al. Integrated modular methodology philosophyand strategy to build full vehicle finite element model[J]. SAE Paper,2002013072.
    [118]Daniilidis H, Bauer W, Lindemann U. Compendium for modular and platform basedarchitecting[J]. Procedia Computer Science,2012,8:220-225.
    [119]Nepal B, Monplaisir L, Famuyiwa O. Matching product architecture with supplychain design[J]. European Journal of Operational Research,2012,216(2):312-325.
    [120]刘剑,黄文斌.基于多Agent的反潜水面舰艇仿真平台模块化设计[J].舰船科学技术,2010,32(3):61-65.
    [121]宋扬,金会庆,张维一,等.本体模块化的研究[J].计算机应用与软件,2009,26(3):184-187.
    [122]朱建国,李咸善,胡翔勇.水轮发电机组动态全过程仿真模块化建模研究[J].三峡大学学报(自然科学版),2006,28(1):35-39.
    [123]王东,黄效国,过跃.基于Matlab/Simulink的阀控缸模块化建模与研究[J].机床与液压,2009,37(9):240-242.
    [124]刘永文,张会生,苏明.舰船柴油机的模块化建模与仿真[J].船舶工程,2002,11(17):37-42.
    [125]李林磊.具有自定义功能的能源工程系统模块化仿真研究[D].中国科学院研究生院硕士学位论文,2012.
    [126]赖宇阳.Isight参数优化理论与实例详解[M].北京:北京航空航天大学出版社,2012.
    [127]赵晟辰.基于Isight的连杆有限元分析及多学科设计优化[D].江苏科技大学硕士学位论文,2011.
    [128]任利.基于Isight的多学科设计优化平台的研究与实现[D].山东科技大学硕士学位论文,2006.
    [129]高斯.车辆动力学稳定系统仿真及优化[D].华中科技大学硕士学位论文,2006.
    [130]唐超勇.车辆动力学操稳特性稳健性优化设计[D].华中科技大学硕士学位论文,2007.
    [131]朱成龙.基于NUMECA和Isight的叶轮机械三维气动优化设计的研究[D].哈尔滨工程大学硕士学位论文,2008.
    [132]杨铭.基于Isight的船型生成及耐波性优化研究[D].武汉理工大学硕士学位论文,2010.
    [133]金凌鸽.C级车悬架KnC特性优化设计方法研究[D].吉林大学博士学位论文,2010.
    [134]马静敏.基于Isight的电子汽车衡的多学科设计优化[D].山东科技大学硕士学位论文,2005.
    [135]兰文博,罗小云,郑安波.基于Isight的战术导弹多学科设计优化[J].战术导弹技术,2010,21(4):23-31.
    [136]卢健钊,殷国富,米良,等.基于Isight的主轴动静态性能优化设计方法[J].组合机床与自动化加工技术,2012,11(9):27-33.
    [137]程成,须文波,冷文浩.基于Isight平台DOE方法的螺旋桨敞水性能优化设计[J].计算机工程与设计,2007,7(21):45-47.
    [138]赵秀婷,张文明,申炎华,等.基于Isight软件的湿式多盘制动器6σ稳健设计[J].工程机械,2006,14(17):32-33.
    [139]彭迪,顾克秋.基于响应面法的三维炮尾结构设计优化[J].计算机辅助工程,2010,9(15):44-47.
    [140]吴光强,张曙.汽车数字化开发技术[M].北京:机械工业出版社,2009.
    [141]成棣.车轮型面多目标优化设计研究[D].中国铁道科学研究院博士学位论文,2011.
    [142]马宝胜.响应面方法在多种实际优化问题中的应用[D].北京工业大学硕士学位论文,2007.
    [143]Raissi S, Farsani R E. Statistical process optimization through multi-response surfacemethodology [J], World Academy of Science, Engineering and Technology,2009,39:280-284.
    [144]廖兴涛,李青,张维刚.基于连续响应表面法的汽车结构耐撞性仿真优化[J].机械强度,2007,29(6):941-945.
    [145]Stander N, Craig K J. On the robustness of the successive response surface methodfor simulation-based optimization[J]. Engineering Computations,2002,19:431-450.
    [146]易辉成.基于刚度和模态的车门结构件料厚多目标优化设计研究[D].湖南大学硕士学位论文,2011.
    [147]丁彦闯,兆文忠.基于Kriging模型的焊接构架抗疲劳优化设计[J].大连交通大学学报,2008,29(2):7-11.
    [148]谢延敏,于沪平,陈军,等.基于代理模型的板料成形优化技术进展[J].塑性工程学报,2006,13(2):20-24.
    [149]Sakata S, Ashida F, Zako M. An efficient algorithm for Kriging approximation andoptimization with large-scale sampling data[J]. Computer Methods in AppliedMechanics and Engineering,2004,193:385-404.
    [150]Sakata S, Ashida F, Zako M. Structural optimization using Kriging approximation[J].Computer Methods in Applied Mechanics and Engineering,2003,192:923-939.
    [151]Huang D, Allen T T, Notz W I, et al. Sequential Kriging optimization usingmultiplefidelity evaluations[J]. Structural and Multidisciplinary Optimization,2006,32:369-382.
    [152]尹芳华,李为民,姚超.基于神经网络遗传算法优化生物柴油制备工艺[J].化工进展,2008,27(8):1293-1297.
    [153]陈泽淮,张尧,武志刚.RBF神经网络在中长期负荷预测中的应用[J].电力系统及其自动化学报,2006,18(1):15-19.
    [154]Carlos A, Coello C. Evolutionary multi-objective optimization: current state andfuture challenges[C]. Computational Intelligence Magazine,2006,1(1):28-36.
    [155]Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning[M]. Addison-Wesley Professional,1989.
    [156]Fonseca C M, Leming P J. Genetic algorithms for multi-objective optimization:formulation discussion and generalization[C]. the5th International Conference onGenetic Algorithms,1993.
    [157]Srinivas N, Deb K. Muilti-objective optimization using nondominated sorting ingenetic algorithms[J]. Evolutionary Computation,1994,2(3):221-248.
    [158]Horn J, Nafpliotis N, Goldberg D E. A niched pareto genetic algorithm formulti-objective optimization[C]. World Congress on Computational Intelligence,1994:82-87.
    [159]刘伟,史文库,桂龙明,等.基于平顺性与操纵稳定性的悬架系统多目标优化[J].吉林大学学报(工学版),2011,41(5):1199-1204.
    [160]张成芬,赵彦珍,陈锋等.基于改进NSGA-Ⅱ算法的干式空心电抗器多目标优化设计[J].中国电机工程学报,2010,30(18):115-121.
    [161]王丽蓉.模拟退火算法在电站锅炉燃烧优化中的应用[J].电脑知识与技术,2010,6(27):7756-7760.
    [162]芦金婵,李乃成,王伟东.基于模拟退火的多目标优化算法[J].计算机工程与应用,2003,23(1):92-95.
    [163]程林,郭永基,肖炎.模拟退火法用于电压稳定分析[J].清华大学学报(自然科学版,1999,39(1):4-7.
    [164]肖晓伟,肖迪,林锦国,等.多目标优化问题的研究概述[J].计算机应用研究,2011,28(3):805-808:827.
    [165]钟志华.汽车安全技术[M].北京:机械工业出版社,2003.
    [166]王爱俊,戴棣.高速碰撞中Lagrange有限元方法及其应用[J].南京航空航天大学学报,1998,30(6):675-679.
    [167]陈晓斌.基于现代设计方法和提高整车碰撞安全性的车身轻量化研究[D].吉林大学博士学位论文,2011.
    [168]刘军,李玉龙.PAM-CRASH应用基础[M].西安:西北工业大学出版社,2008.
    [169]公安部交通管理局.中华人民共和国道路交通事故统计资料汇编[G].北京:中国标准出版社,2007.
    [170]中国汽车技术研究中心.C-NCAP管理规则.2012.
    [171]王丽娟,范子杰,桂良进.基于GB20071-2006的侧面碰撞MDB数值模型设计开发[J].汽车技术,2008,24(7):13-15.
    [172]陈晓东,苏清祖,程勇,等.汽车侧碰移动变形壁障有限元模型的开发[J].汽车工程,2003,25(3):260-263.
    [173]陈晓东,朱西产,史广奎,等.汽车侧面碰撞安全性评价与改善[C].中国汽车工程学会2003年学术年会,2003,897-901.
    [174]曹立波,吴时兵.乘员侧面碰撞胸部损伤评价方法的计算机仿真研究[J].北京汽车,2007,5(7):86-92.
    [175]胡经国,徐立伟,吴沈荣,等.乘用车后部碰撞安全的初步研究[C].第七届国际汽车交通安全学术会议,长沙,2009,203-206.
    [176]Hynes L M, Dickey J P. The rate of change of acceleration: implications to headkinematics during rear-end impacts[J]. Accident Analysis and Prevention,2008,40(3):1063-1068.
    [177]Saczalski K J, Pozzi M C, Burton J L. Comparison of high&low speed rear-impacthead&neck injury risk measures related to occupant size&vehicle seat and vehicleseat strength characteristics[C].ASME International Mechanical EngineeringCongress and Exposition,2009,16:269-281.
    [178]Siegmund G P, Heinrichs B E, Chimich D D, et al. The effect of collision pulseproperties on seven proposed whiplash injury criteria[J]. Accident Analysis andPrevention,2005,37(2):275-285.
    [179]Hernàndez I A, Fyfe K R, Heo G, et al. Kinematics of head movement in simulatedlow velocity rear-end impacts[J]. Clinical Biomechanics,2005,20(10):1011-1018.
    [180]Luo M, Zhou Q. A vehicle seat design concept for reducing whiplash injury risk inlow-speed rear impact[J]. International Journal of Crashworthiness,2010,15(3):293-311.
    [181]肖志,杨济匡.汽车低速追尾碰撞中乘员动力学响应和颈部损伤的仿真研究[J].中国机械工程,2007,18(10):1239-1243.
    [182]Xiao Z, Yang J K. Simulation on the occupant kinematics response and neck injuriesduring low speed rear impacts[J]. Journal of Mechanical Engineering,2007,18(10):1239-1243.
    [183]Padmanaban J, Burnett R, Levitt A E. Relationship between seatback stiffness/strength and risk of serious&fatal injury in rear-impact crashes[J]. InternationalJournal of Passenger Cars Mechanical Systems.2009,2(1):1099-1107.
    [184]谢然.多目标优化方法在车身结构轻量化设计中的应用研究[D].华南理工大学硕士学位论文,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700