用户名: 密码: 验证码:
循环流化床锅炉蒸汽热力系统的综合优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在分析了国内能源现状,确定以燃煤循环流化床驱动的蒸汽热力系统作为研究对象。首先回顾了燃煤循环流化床锅炉和蒸汽输配管网方面的研究成果和不足,并确定以蒸汽热力系统的联合优化控制策略为研究的问题,以蒸汽输配管网和循环流化床锅炉的动态系统建模研究作为控制策略研究的预备知识。该研究将控制系统范围由锅炉本体或者输配管网扩展至锅炉和输配管网的整体。
     首先对蒸汽输配管网和循环流化床锅炉的机理建模进行了回顾,确定两个子系统中的变量耦合关系,进而确定了动态系统模型的输入、输出变量。结合系统辨识和控制理论在近年来的发展成果,利用天津市空港经济区工业蒸汽热力系统的输配管网远程抄表系统和75t/h循环流化床锅炉DCS系统获取实验建模数据,分别建立了管网系统的仿真模型和锅炉系统的预测模型。
     然后,在此模型基础上,仿真了锅炉出口不同蒸汽参数(压力、温度)下各个蒸汽用户入口处的温度、压力和锅炉出口流量,进而讨论了影响蒸汽输配系统效率的主要因素,提出输配压力是影响蒸汽管网输配效率的主要因素,在压力较高的情况下,提高过热度对提高输配效率是有好处的。
     最后,联合循环流化床锅炉和输配管网的动态模型,提出了以模型预测控制为内核的带有流量负荷预测的优化控制策略。选取锅炉输出主蒸汽压力、温度和炉床温度为控制变量,给煤量、一次风量、二次风量和减温水量为操作变量,蒸汽流量负荷为可测量干扰,在仿真环境下对该控制系统进行了仿真。仿真控制效果优于现有的多回路PID控制效果,主要体现在控制精度明显提高,系统调节时间明显缩短。该结果证明本文提出的控制策略在蒸汽热力系统控制优化中是一种有效的方法。
Based on the statistical review of energy resources, steam heating system drivenby coal-fired circulating fluidized bed boiler is selected to be the subject. A literaturesurvey of research on circulating fluidized bed boiler and steam pipeline network iscarried out. The key results and drawbacks are pointed out. This paper focuses onunited optimal control strategy of boiler and the steam pipeline network. Dynamicmodeling of steam pipeline network and circulating fluidized bed boiler is studied aspriori knowledge for the control system development. The research extends thecontrol plant from boiler itself to the united body of boiler and pipelines.
     First, the paper reviewed the modeling process of steam pipeline networks andcirculating fluidized bed boiler from the first principles, clarified the correlationbetween system variables, and defined the input and output variables of each system.Experimental modeling data were collected through remote register system of steampipeline network and DCS of75t/h circulating fluidized bed boiler in Tianjin AirportIndustry Park. Taking advantages of the recent development in system identificationand control theory, a simulation model of the steam pipeline network and aprediction model of the boiler were built up.
     With help of these models, a simulation study on the energy efficiency of steamdelivery system was put forward. System performance, including pressures andtemperatures at user inlets and steam flow at boiler outlet, under different steam inputparameters was calculated as well as the energy efficiency. It is figured out that themain influence factor to the energy efficiency of steam delivery system is the steampressure. The degree of superheat helps under high pressures.
     Finally, taking both models of boiler and pipeline networks into account, acontrol strategy combining model predictive control and steam flow prediction isproposed. The system takes main steam pressure, main steam temperature and boilerbed temperature as control variables, coal supply, primary air, secondary air, andspray water as manipulated variables and main steam flow as measured disturbances.The system performance is simulated in MATLAB/SIMULINK. The controlperformance is better than overriding PID control. The main advantages of the proposed control are better control accuracy and shorter settling time. The resultdemonstrates the proposed control is an effective strategy for steam heating systems.
引文
[1]刘宏杰,李维哲.中国能源消费状况和能源消费结构分析[J].国土资源情报.2006,12:39–44.
    [2]高文永,单葆国.中国能源供需特点与能源结构调整[J].华北电力大学学报(社会科学版).2010,05:1–6.
    [3]王智微,张岩丰,张彦军.循环流化床锅炉燃料适应性的研究分析[J].锅炉制造,2002,01:1–3.
    [4]戴冲霄,邵毅.国内外循环流化床锅炉现状及发展趋势[J].煤炭加工与综合利用,1990,01:24–28.
    [5] James B. Ang. Economic development, pollutant emissions and energyconsumption in Malaysia [J]. Journal of Policy Modeling,2008,30(02):271–278.
    [6] BP. Statistical review of world energy2011.2011(06).
    [7]陈干锦.循环流化床锅炉在我国的发展[J].锅炉技术.2002,33(07):1–6.
    [8] BP. Energy outlook2030.2012(01).
    [9]章春芳,解庆林,张萍,申泰铭,周海妙.煤炭生物脱硫技术研究进展[J].矿业安全与环保,2008,35(04):69–88.
    [10]孟哲,刘应宗,金宇澄.我国集中供热的现状与对策[J].华东交通大学学报,2004,03:66–69.
    [11]刘剑.城市集中供热系统优化研究[D].大连:大连理工大学,2006.
    [12]刘大山.不容忽视的节能领域——蒸汽管网系统[J].中国机械工程.2002,19:1634–1636.
    [13]张红玉.天津空港加工区蒸汽管网仿真[D].天津:天津大学,2010.
    [14]张洪伟.循环流化床锅炉的优点和技术发展方向[J].锅炉制造,2004,04:34–36.
    [15]陈亮.循环流化床锅炉建模及其智能控制系统的研究[D].杭州:浙江大学,2005.
    [16]岑可法,倪明江,骆仲映,等.循环流化床锅炉理论设计与运行[M].北京:水利电力出版社,1998.
    [17] S. J. Goidieh. Foster-Wheeler compact CFB boiler for utility scale [C].Proceedings of16thInternational Conference on Fluidized Bed Combustion,2001.4–5.
    [18] Ari Kokko. CYMIC-boiler scale-up and full scale demonstration experience [J].Fluidized Bed Combustion,2001,4–5.
    [19]岳光溪.循环流化床技术发展与应用[J].节能与环保,2003,12:3–4.
    [20]冯俊凯,岳光溪,吕俊复.循环流化床燃烧锅炉[M].北京:中国电力出版社,2009.
    [21]唐勇,王国鸿,等.东方引进型宁波50MW循环流化床锅炉[J].东方锅炉,2001,3:1–10.
    [22]傅宗海,徐辉强.内江电厂循环流化床锅炉示范电站及环境效益[J].电力环境保护,2000,16(02):1–6.
    [23]高嵩,秦初生,等.大型循环流化床锅炉在河北省的应用[J].中国电力,2002,35(07):18–21.
    [24]杨飞,顾磊.国内外电站循环流化床锅炉概况[J].电力情报,1998,01:8–11.
    [25]马强.循环流化床锅炉燃烧系统建模与卡农感知系统研究[D].北京:华北电力大学,2009.
    [26]赵伟杰,王勤辉,张文震,刘鹏翔,等.循环流化床锅炉控制系统的设计和应用[M].北京:中国电力出版社,2009.
    [27] Qingjin Meng, Baoling Xing, Hongliang Yu, Jingjian Wu. The Application ofintelligent control to combustion control system of CFB boiler [C]//J. Pan; J Liu; A.Abraham. Ninth International Conference on Hybrid Intelligent Systems, Vol.2.Shenyang: HIS,2009:163–167.
    [28] M. I. Menhas, L. Wang, H. Pan, M. R. Fei. CFBB PID controller tuning withprobability based binary particle swarm optimization algorithm [C]//K. Li, X. Li, S.Ma, G. W. Irwin. International Conference on Life System Modeling and Simulation/International Conference on Intelligent Computing for Sustainable Energy andEnvironment. Wu Xi, China,2010:44–51.
    [29]衣立波.蒸汽管网现状分析及发展前景[J].价值工程.2010,09:254.
    [30] R. Marconcine, G. Neri. Numerical simulation of a steam pipeline network [J].Geothermics,1979,10:17–27.
    [31] Sylvie Lorente, Wish sanuruk Wechsatol, Adrian Bejan. Fundamentals oftreeshaped networks of insulated pipes for hot water and energy [J]. Exergy,2002,2(04):227–236.
    [32] Y. Huang. Geothermal pipe network system modeling [D]. Auckland: TheUniversity of Auckland,1990..
    [33] Y. Huang, D. H. Freeston. Non-linear modeling of a geothermal steam pipenetwork [C]. Proceedings of the14th New Zealand Geothermal Workshop. Auckland,New Zealand.1992:105–110.
    [34] Y. Huang, D. H. Freeston. Geothermal pipe network simulation sensitivity topipe roughness [C]. Proceedings of the15th New Zealand Geothermal Workshop.Auckland, New Zealand.1993:253–258.
    [35] Leyla Ozgener, Arif Hepbasli, Ibrahim Dince. Energy and exergy analysis ofgeothermal district heating systems: an application [J]. Building and Environment,2005,40(10):1309~1322.
    [36] Leyla Ozgener, Arif Hepbasli, Ibrahim Dincer. Effect of reference state on theperformance of energy and exergy evaluation of geothermal district heating systems:Balcova example [J]. Building and Environment,2006,41(6):699~709.
    [37] Irina Gabrielaitiene, Benny Bohm, Bengt Sunden. Modelling temperaturedynamics of a district heating system in Naestved, Denmark-A case study [J].Energy Conversion and Management,2007,48(1):78–86.
    [38]赵钦,王志勤,史挺进等.大型蒸汽管网仿真的数学模型研究[J].热能动力工程,1997,12(3):173–175.
    [39]田子平,鲍福民.特大型热网的计算机实时仿真[J].上海交通大学学报,2000,34(04):486–490.
    [40]宋扬,程芳真,蔡瑞忠等.蒸汽供热管道的动态仿真建模[J].清华大学学报,2001,41(10):101–104.
    [41]孙玉宝.蒸汽管网水力热力联合计算数学模型及应用方法的研究[J].水运工程,2006,10:242–246.
    [42]殷戈,葛斌,王培红.蒸汽管网热力系统的建模与软件开发[J].热力发电,2008,37(5):24–28.
    [43] L. Ljung. System identification–Theory for the user2ndEd [M]. EnglewoodCliffs, N J: Prentice-Hall,1999.
    [44] Torsten S derstr m, Petre Stoica. System Identification [M]. Hemel Hempstead,UK: Prentice Hall International,1989.
    [45] Marco Munchhof, Rolf Isermann. Identification of Dynamic Systems: AnIntroduction with Applications [M]. Berlin, Germany: Springer-Verlag,2009.
    [46]李鹏波,胡德文,张纪阳,等.系统辨识[M].北京:中国水利水电出版社,2010.
    [47] Oliver Nelles. Nonlinear System Identification: From Classical Approaches toNeural Networks and Fuzzy Models [M]. Berlin, Germany: Springer,2000.
    [48] I. Goethals, K. Pelckmans, J. A. K. Suykens, B. De Moor. Identification ofMIMO Hammerstein models using least squares support vector machines [J].Automatica,2005,41(07):1263–1272.
    [49] M. Knotters, M. F. P. Bierkens. Physical basis of time series models for watertable depths [J]. Water Resources Research,2000,36(01):181–188.
    [50] A. L. Juloski, S. Weiland, WPMH. Heemels. A Bayesian approach toidentification of hybrid systems [J]. IEEE Transactions on Automatic Control,2005,50(10):1520–1533.
    [51] SW. Wang, F. Xiao. Detection and diagnosis of AHU sensor faults usingprincipal component analysis method [J]. Energy Conversion and Management,2004,45(17):2667–2686.
    [52] S. Katipamula, MR. Brambley. Methods for fault detection, diagnostics, andprognostics for building systems-A review, Part II [J]. HVAR&R Research,2005,11(02):169–187.
    [53] K. Li, S. Thompson, JX. Peng. Modelling and prediction of NOx emission in acoal-fired power generation plant [J]. Control Engineering Practice,2004,12(06):707–723.
    [54] H. Yoshida, S. Kumar. ARX and AFMM model-based on-line real-time database diagnosis of sudden fault in AHU of VAV system [J]. Energy Conversion andManagement,1999,40(11):1191–1206.
    [55] P. Castro-Tinttori, O. Ibarra-Manzano, Y. S. Shmaliy. Implementation of digitalunbiased FIR filters with polynomial impulse sesponses [J]. Circuits Systems andSignal Processing,2012,31(2):611–626.
    [56] D. A. Guenther, W. F. Walker. Robust finite impulse response beamformingapplied to medical ultrasound [J]. IEEE Transactions on Ultrasonics Ferroelectricsand Frequency Control,2009,56(06):1168–1188.
    [57] C. E. R. Fernandes, P. Comon, G. Favier. Blind identification of MISO-FIRchannels [J]. Signal Processing,2010,90(02):490–503.
    [58] Shengyong Mo, Xi Chen, Jun Zhao, Jixin Qian, Zhijiang Shao. A two-stagemethod for identification of dual-rate systems with fast input and very slow output[J]. Industrial&Engineering Chemistry Research,2009,48(04):1980–1988.
    [59] Y. S. Shmaliy, O. Ibarra-Manzano. Time-variant linear optimal finite impulseresponse estimator for discrete state-space models [J]. International Journal ofAdaptive Control and Signal Processing,2012,26(02):95–104.
    [60] G. J. Rios-Moreno, M. Trejo-Perea, R. Castaneda-Miranda, V. M. Hernandez-Guzman, G. Herrera-Ruiz. Modelling temperature in intelligent buildings by meansof autoregressive models [J]. Automation in Construction,2007,16(05):713–722.
    [61] H. U. Frausto, J. G. Pieters, J. M. Deltour. Modelling greenhouse temperatureby means of auto regressive models [J]. Biosystems Engineering,2003,84(02):147–157.
    [62] L. Ferkl, J. Siroky. Ceiling radiant cooling: Comparison of ARMAX andsubspace identification modelling methods [J]. Building and Environment,2010,45(01):205–212.
    [63] JCM. Yiu, Shengwei Wang. Multiple ARMAX modeling scheme for forecastingair conditioning system performance [J]. Energy Conversion and Management,2007,48(08):2276–2285.
    [64] G. Mustafaraj, J. Chen, G. Lowry. Development of room temperature andrelative humidity linear parametric models for an open office using BMS data [J].Energy and Buildings,2010,42(03):348–356.
    [65] G. E. P. Box, G. M. Jenkins, G. C. Reinsel. Time Series Analysis–Forecastingand Control,4thEd.[M]. Oxford: Wiley,2008.
    [66]王丽娜,肖冬荣.基于ARMA模型的经济非平稳时间序列的预测分析[J].武汉理工大学学报(交通科学与工程版),2004,28(01):133–136.
    [67] R. Billinton, H. Chen, R. Ghajar. Time-series models for reliability evaluationof power systems including wind energy [J]. Microelectronics and Reliability,1996,36(09):1253–1261.
    [68] R. Karki, R. Billinton. Cost-effective wind energy utilization for reliable powersupply [J]. IEEE Transactions on Energy Conversion,2004,19(02):435-440.
    [69] Xiangyu Kong, Dazhong Fang, T. S. Chung. Economy and reliability evaluationof generating including wind energy systems [C]//IEEE.3rdInternationalConference on Electric Utility Deregulation and Restructuring and PowerTechnologies, Nanjing: IEEE,2008:2653–2657.
    [70] D. Damian, N. Patrascu, C. G. Carstea, L. Patrascu, I.G. Ratiu, N. David. Timeseries applied in Romanian economy [C]//L. Trilling, D. Perkins, D. Dionysios, etc.8thWSEAS International Conference on Artificial Intelligence, KnowledgeEngineering and Data Bases. Athens, Greece: World Scientific and EngineeringAcad. and Soc.,2009.
    [71] R. Pintelon, Y. Rolain, J. Schoukens. Box-Jenkins identification revisited-PartII: Applications [J]. Automatica,2006,42(01):77–84.
    [72] R. Guidorzi. Canonical structures in the identification of multivariable systems[J]. Automatica,1975,11:361–374.
    [73]吴学礼,贾辉然,孟华,孟凡华.非线性过程的智能控制方法研究与应用[M].北京:国防工业出版社,2006.
    [74]魏东.非线性系统神经网络参数预测及控制[M].北京:机械工业出版社,2008.
    [75] Albert Boggess, Francis J. Narcowich. A First Course in Wavelets with FourierAnalysis [M]. Hoboken, New Jersey: John Wiley&Sons,2009.
    [76] E. Fogel, Y. Huang. On the value of information in system identification-bounded noise case [J]. Automatica,1982,18(02):229–238.
    [77] M. Milanese, A. Vicino. Optimal estimation theory for dynamic systems withset membership uncertainty: An overview [J]. Automatica,1991,27(06):997–1009.
    [78] F. C. Schweppe. Uncertain Dynamic Systems [M]. Engel-wood Cliffs, NewJersey: Prentice Hall,1973.
    [79] E. Walter, H. Piet-Lahanier. Estimation of parameter hounds from bounded-error data: a survey [J]. Mathematics and Computers in Simulation,1990,32(5-6):481–493.
    [80] Olav Reiers l. Confluence analysis by means of lag moments and other methodsof confluence analysis [J]. Econometrica,1941,9(01):1–24.
    [81] T. Soderstrom. A generalized instrumental variable estimation method for error-in-variables identification problems [J]. Automatica,2011,47(08):1656–1666.
    [82] Kwan Wong. Identification of linear discrete time systems using theinstrumental variable method [J]. IEEE Transactions on Automatic Control,1967,12(6):707–718.
    [83] T. Soderstrom, P. Stoica. Instrumental variable methods for systemidentification [M]. Berlin, Germany: Springer-Verlag,1983.
    [84] W. X. Zheng. Transfer function estimation form noisy input and output data [J].International Journal of Adaptive Control and Signal Processing,1998,12:365–380.
    [85] W. X. Zheng. A bias correction method for identification of linear dynamicerror-in-variables models [J]. IEEE Transactions on Automatic Control,2002,47(07):1142–1147.
    [86] B. L. Ho, R. E. Kalman. Effective construction of linear state-variable modelsfrom input/output functions [J]. Regelungstechnik,1966,14(12):545–592.
    [87] S. Kung. A new identification and model reduction algorithm via singular valuedecompositions [C]. Proceedings12thasilomar conference on circuits systems andcomputers, Pacific Grove, CA:705–714.
    [88] Van Overschee, B. de Moor. Subspace identification for linear systems [M].Dordrecht, The Netherlands: Kluwer Academic Publishers,1996.
    [89] Zoltán Szabó, Peter S. C. Heuberger, Jozsef Bokor, Paul M. J. Van den Hof.Extended Ho-Kalman algorithm for systems represented in generalized orthonormalbases [J]. Automatica,2000,36(12):1809–1818.
    [90]陆耀庆.实用供热空调设计手册(第2版)[M].北京:中国建筑工业出版社,2008.
    [91] Advantica, Ltd. SynerGEE Gas4.3.2help documentations,2008.
    [92] Lei Cao, Shijun You, Huan Zhang, Hongyu Zhang. Modelling and simulation ofsteam pipeline network: A case study in Tianjin Airport Industry Park [C]//Shengjun Xue.2011International Conference on Remote Sensing, Environment andTransportation Engineering. Nanjing, China: Institute of Electrical and ElectronicsEngineers,2011:8358~8361.
    [93]牛东晓.电力负荷预测技术及其应用(第2版)[M].北京:中国电力出版社,2009.
    [94]章健.电力系统负荷模型与辨识[M].北京:中国电力出版社,2007.
    [95]沈来宏.燃煤循环流化床模型与试验研究[J].热能动力工程,2000,15(03):249–251.
    [96]高建强.大型循环流化床锅炉实时仿真模型与运行特性研究[D].北京:华北电力大学,2005.
    [97]雍玉梅.循环流化床锅炉大型化的数值模拟[D].北京:中国科学院研究生院(工程热物理所),2004.
    [98]杨晨,何祖威,辛明道.大型循环流化床锅炉固体颗粒流动及分布的数值模拟[J].燃烧科学与技术,2000,6(03):238–243.
    [99] C. S. Rechard, C. Brereton. Modelling of circulating fluidized bed solids flowand distribution [J]. Chemical Engineering Science,1992,47(02):281–296.
    [100] Fei Wei, Xiaotao Wan, Yongqi Hu, Zhiguo Wang, Yanhui Yang, Yong Jin. Apilot plant study and2-D dispersion-reactor model for high-density riser reactor [J].Chemical Engineering Science,2001,56:613–620.
    [101] Nyoman S. Winaya, Prabir Basu. Effect of pressure and carbon dioxideconcentration on heat transfer at high temperature in pressurized circulating fluidizedbed combustor [J]. International Journal of Heat and Mass Transfer,2001,44:2965–2971.
    [102]张衍国,李清海,冯俊凯.炉内传热原理与计算[M].北京:清华大学出版社,2008.
    [103]刘文铁,李炳熙,赵广播,谭袖,陆慧林.燃用宽筛分煤循环流化床锅炉燃烧模拟计算[J].热能动力工程,1999,14(04):296–299.
    [104]王智微,李定凯,沈幼庭,郑洽余.一氧化碳在循环流化床燃烧室中的燃烧模型[J].清华大学学报(自然科学版),2000,40(02):110–113.
    [105] R. C. Darton, R. D. LaNauze, J. F. Davidson, D. Harrison. Bubble growth dueto coalescence in fluidized beds [J]. Transactions of the Institution of ChemicalEngineers,1977,55:274–280.
    [106] Y. Mahanne. Model predictive control pressure control of steam networks [J].Control Engineering Practice,2005,13(12),1499–1505.
    [107] M. Oshima, I. Hashimoto, H. Ohno, M. Takeda, T. Toneyama, F. Gotoh.Multirate multivariable model predictive control and its applications to apolymerization reactor [J]. International Journal of Control,1994,59(3),731–742.
    [108] B. A. Oguinnake. On-line modeling and predictive control of an industrialterpolymerization reactor [J]. International Journal of Control,1994,59(3),711–729.
    [109] H. J. Rho, Y. J. Huh, H. K. Rhee. Application of adaptive model-predictivecontrol to a batch MMA polymerization reactor [J]. Chemical Engineering Science,1998,53(21):3729–3739.
    [110] S. Rohani, M. Haeri, H. C. Wood. Modeling and control of a continuouscrystallization process-Part2. Model predictive control [J]. Computers&ChemicalEngineering,1999,23(03):279–286.
    [111] M. Alpbaz, H. Hapoglu, G. Ozkan, S. Altuntas. Application of self-tuning PIDcontrol to a reactor of limestone slurry titrated with sulfuric acid [J]. ChemicalEngineering Journal,2006,116(01):19–24.
    [112] R. N. Silva, P. O. Shirley, J. M. Lemos, A. C. Goncalves. Adaptive regulationof superheated steam temperature: A case study in an industrial boiler [J]. ControlEngineering Practice,2000,8:1404–1415.
    [113] J. M. Maciejowski. Predictive Control with Constraints [M]. Harlow, England:Prentice Hall,2002.
    [114]丁宝苍.预测控制的理论与方法[M].北京:机械工业出版社,2008.
    [115] E. F. Camacho, C. Bordons. Model Predictive Control2ndEd.[M]. London:Springer-Verlag,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700