用户名: 密码: 验证码:
基于并联机构理论大型锻造操作机设计与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锻造操作机是现代锻造系统的重要设备之一,它的使用能大大地提高大锻件锻造的生产效率和质量。但是国内大型锻造操作机的设计与分析还几乎处于空白,所以本文将基于并联机构相关理论对大型锻造操作机进行系统地设计与分析,主要研究内容如下:
     采用基于螺旋理论的约束综合法对大型锻造操作机的构型设计进行了系统地研究,得到了多种并联机构和串并联形式的混联机构锻造操作机新构型;提出了两种判别过约束并联机构自由度瞬时性的简便方法,并对构造得到的过约束并联机构锻造操作机构型进行了自由度瞬时性判别。
     从解耦性、侧向缓冲缸安装位置和夹持能力三个运动特性方面对一种典型DDS锻造操作机机构、一种典型SMS锻造操作机机构和四种新型锻造操作机机构进行了比较分析;分析了其中五种锻造操作机的主运动机构的位置正解和静力学,对其综合受力性能进行了比较分析,发现了操作机机构受力性能多个有规律的特征。
     提出了两种求解过约束并联机构变形协调方程的新方法,考虑系统弹性变形推导了冗余驱动并联机构驱动力/力矩解的一般解析表达式,同时证明了采用伪逆法求解冗余驱动并联机构的驱动力/力矩时不存在内力,并将理论分析结果应用到冗余驱动锻造操作机机构2SPS+R的驱动力求解;将被动过约束并联机构动平台受到的约束力螺旋中的线性相关部分定义为过约束力螺旋系,并将其转化成线性无关的等效约束力螺旋系,考虑连杆的弯曲、拉伸和扭转变形推导得到了分支过约束力螺旋刚度矩阵,建立了被动过约束并联机构受力分析比较完整的具有普适性的研究方法,并采用该方法对一种被动过约束锻造操作机悬挂机构4-SS进行了受力分析。
     考虑钳杆的所有锻造操作动作,以两种新型平行连杆式锻造操作机为例,采用修正的Grübler-Kutzbach公式计算了锻造操作机整体机构的自由度,并以机构重力势能最低为约束条件对机构的运动规律进行了优化分析,得到了符合实际情况的运动规律,对锻造操作机的整体机构进行了全面的运动学分析,并采用Adams软件对理论分析结果进行了仿真验证。
     提出了一种改进的比例系数法用于求解平面并联机构能承受的最大外力与最大力矩,与传统的比例系数法相比,该方法计算量小而且得到的结果更加精确,并采用改进的比例系数法分析了一种新型锻造操作机机构能夹持的最大锻件重力以及由于锻件重力引起的最大力矩。
     基于Adams仿真软件提出了一种建立并联机构仿真模型的新方法,这种方法建模简单、快捷,通用性强,能够快速地实现并联机构的运动学仿真与尺度优化分析,并采用该建模方法建立了一种新型锻造操作机主运动机构的参数化模型,对其进行了尺度优化。
     研制了一种新型锻造操作机机构的1/20比例实验模型,并开展了该操作机比例实验模型完成各种锻造操作动作和受力性能测试的实验研究,实验结果表明该操作机能实现构型理论分析的所有锻造操作动作,并验证了这样的结论:平行连杆式锻造操作机机构升降缸驱动力与锻件偏心距大小几乎无关。
Forging manipulator is one of the important equipments for the modern forgingsystem. By using the forging manipulator, production efficiency and quality of the heavyforged piece can be greatly improved. However, design and analysis of the large-scaleforging manipulator is still almost blank home, so design and analysis of the large-scaleforging manipulator will be carried out systematically based on parallel mechanism theoryin this paper. The main research contents are as follows:
     Type synthesis of the forging manipulator is studied systematically by using theconstraint-synthesis method based on screw theory, many new configurations of parallelmechanism and hybrid serial-parallel mechanism for the forging manipulator are obtained.Two simple methods for distinguishing the mobility’s instantaneity of the overconstrainedparallel mechanism are put forward, and the mobility’s instantaneity of theoverconstrained parallel mechanisms for the forging manipulator configurated above isdistinguished by using the proposed methods.
     Based on three motion characteristics, which are decoupling, installation position ofthe lateral buffering cylinder and clamping ability, respectively, a typical mechanism ofDDS forging manipulator, a typical mechanism of SMS forging manipulator, and four newmechanisms of forging manipulator are compared. Forward positon and static analysis ofthe main motion mechanism of five mechanisms among them are conducted, thencomparative analysis on comprehensive force performance of these five mechanisms iscarried out, and several regular features of force performance of the forging manipulatorare also discovered.
     Two novel methods for establishing deformation compatibility equations of theoverconstrained parallel mechanism are proposed, and the general analytical expression ofthe actuated force/moment solution to the redundantly actuated parallel manipulators isderived in the condition that system elastic deformation is taken into account. Besides, it isproved that no internal forces exist within the pseudo-inverse solution to the actuated force/moment of the redundantly actuated parallel manipulators. And then, theoreticalanalysis results are applied to solving the actuated forces of the redundantly actuatedforging manipulator2SPS+R. The linearly dependant constraint wrenches imposed on themoving platform of the passive overconstrained parallel mechanism are defined asoverconstraint wrenches, and they are transformed into equivalent linearly independantconstraint wrenches. Then considering the link’s bending, tensile and torsionaldeformation, Stiffness matrix of the branch’s overconstraint wrenches is deduced, a morecomplete and universal method for force analysis of the passive overconstrained parallelmechanism is built up, and force analysis of a passive overconstrained suspensionmechanism4-SS of forging manipulator is performed by using this method.
     Considering the gripper carrier’s all forging operation action, two new parallel linkmechanisms of forging manipulator are taken as examples, the degree of freedom of thewhole mechanism of forging manipulator is calculated by using the modifiedGrübler-Kutzbach criterion. Taking minimum gravitational potential energy of themechanism as the constraint condition, optimization analysis of the mechanism isperformed, and the actual motion law is obtained. Kinematic analysis of the wholemechanism of forging manipulator is carried out, and the mechanism is simulated byAdams software to testify the correctness of the theoretical analysis results.
     A modified scaling factor method for force capabilities analysis of the planar parallelmanipulators is presented, by which the solution of the largest force and the largestmoment can be derived. For this modified method, the process is computationally smalland the results obtained are more exact. The largest weight of the forged piece and thelargest moment generated by the eccentricity of the forged piece that a new mechanism offorging manipulator is analyzed by using this modified scaling factor method.
     A new approach for establishing simulation model of the parallel mechanism basedon Adams software is proposed.This modeling method is simple, fast and versatile, whichcan realize kinematic simulation and dimensional optimization analysis of the parallelmechanism quickly. And then, parametric model of the main motion mechanism of a newforging manipulator is established by using the new approach, dimensional optimization ofthe mechanism is carried out.
     Experimental model with ratio1/20of a new forging manipulator is developed, andexperimental study on completing various forging operation action and force performancetesting is performed. The experimental results show that the new forging manipulator canachieve all the forging operation action as the configuration theory analyzed, and verifythe conclusion that the lifting cylinder’s driving force of paralle link mechanism of forgingmanipulator is independent of the eccentricity of the forged piece.
引文
[1]余发国,高峰,郭为忠,等.锻造操作机的回顾与展望[J].机械设计与研究,2007,专刊:12-16.
    [2]王凤喜.锻造液压机与操作机的发展[J].锻压机械,1998,(6):3-5.
    [3]王凤喜.锻造操作机技术近期的发展[J].重型机械,1994,(6):12-17.
    [4]孝桥要二,杨尽臣.日本新建以8000吨锻造液压机为核心设备的大型铸锻件厂[J].重型机械,1977,6:55-65.
    [5] Forging and Handling Technology[EB/OL].[2012-06-18]. http://www.dds-gmbh.com/cms/front_content.php?idcat=9&lang=6.
    [6] Manipulators-Forging[EB/OL].[2012-06-18]. http://www.wepuko.com/wpe-manipulators. html.
    [7] Forging Technology[EB/OL].[2012-06-18]. http://www.glama.de/.
    [8] QKK Forging Manipulators[EB/OL].[2012-06-18]. http://www.zdas.cz/en/content.aspx?id=21.
    [9] Rail Forging Manipulators[EB/OL].[2012-06-18]. http://www.tkpo.ryazan.ru/index_e.htm.
    [10]尹朝国.自由锻操作机械化及其发展[J].锻压机械,1992,(4):40-42.
    [11]曹自立.31.5MN水压机和100KN操作机联动锻造成功[J].有色设备,1995,(1):46.
    [12] Lilly K W, Melligeri A S. Dynamic Simulation and Neural Network Compliance Control of anIntelligent Forging Center[J]. Journal of Intelligent&Robotic Systems,1996,17(1):81-99.
    [13] Merlet J P. Parallel Robots[M].2nd Edition. Dordrecht: Springer,2006.
    [14] Tsai L W. Robot Analysis: the Mechanics of Serial and Parallel Manipulator[M]. New York: JohnWiley&Sons,1999.
    [15] Arai T, Yuasa K, Mae Y, et al. A Hybrid Drive Parallel Arm for Heavy Material Handling[J]. IEEERobotics&Automation Magazine,2002,9(1):45-54.
    [16] Dango&Dienenthal M. Schmiedemanipulator[P]. DE: DE20108277,2001-09-06.
    [17] Nosaka K H. Forging Manipulator[P]. JP: JP61046340,1986-03-06.
    [18] Erwin K, Werner F. Gripper Feed and Gripper Resilience Cylinders on Forging Manipulators[P].US: US4420287,1983-12-13.
    [19] Schubert P. Forging Manipulator[P]. US: US4796458,1989-01-10.
    [20] Westermeyer W. Process and Apparatus for Operating a Press Unit[P]. US: US5454262,1995-10-03.
    [21] Yan C Y, Gao F, Zhang Y. Kinematic Modeling of a Serial-parallel Forging Manipulator WithApplication to Heavy-duty manipulations[J]. Mechanics Based Design of Structures and Machines,2010,38:105-129.
    [22]余发国,高峰,史巧硕.基于GF集的锻造操作机构型方法[J].机械工程学报,2008,44(11):152-159.
    [23] Yu F G, Gao F, Shi Q S, et al. Structure Synthesis for Forging Manipulators[C]. Proceedings of the7th World Congress on Intelligent Control and Automation. Chongqing, China,2008:400-403.
    [24] Ge H, Gao F. Type Design for Heavy-payload Forging Manipulators[J]. Chinese Journal ofMechanical Engineering,2012,25(2):197-205.
    [25]黄真,赵永生,赵铁石.高等空间机构学[M].北京:高等教育出版社,2006:326-385.
    [26] Huang, Z, Li Q C. Type Synthesis of Symmetrical Lower-Mobility Parallel Mechanisms Using theConstraint-synthesis Method[J]. International Journal of Robotics Research,2003,22(1):59-79.
    [27] Kong X W, Gosselin C M. Type Synthesis of Parallel Mechanisms[M]. Dordrecht: Springer,2007:26-28.
    [28] Kong X W, Gosselin C M. Type Synthesis of4-DOF SP-equivalent Parallel Manipulators: a VirtualChain Approach[J]. Mechanism and Machine Theory,2006,41(11):1306-1319.
    [29] Fang Y F, and Tsai L W. Structure Synthesis of a Class of4-DoF and5-DoF Parallel ManipulatorsWith Identical Limb Structures[J]. International Journal of Robotics Research,2002,21:799-810.
    [30] Hervé J M. The Lie Group of Rigid Body Displacements, a Fundamental Tool for MechanismDesign[J]. Mechanism and Machine Theory,1999,34:719-730.
    [31] Li Q C, Huang Z, Hervé J M. Type Synthesis of3R2T5-DOF Parallel Mechanisms Using the LieGroup of Displacements[J]. IEEE Transaction on Robotics and Automation,2004,20(2):173-180.
    [32] Angeles J. The Qualitative Synthesis of Parallel Manipulators[J]. ASME Journal of MechanicalDesign,2004,126(4):617-624.
    [33] Meng J, Liu G F, Li Z X. A Geometric Theory for Analysis and Synthesis of Sub-6DOF ParallelManipulators[J]. IEEE Transactions on Robotics,2007,23(4):625-649.
    [34] Jin Q, Yang T L. Synthesis and Analysis of a Group of3-Degree-of-Freedom Partially DecoupledParallel Manipulators[J]. Journal of Mechanical Design,2004,126(2):301-306.
    [35]杨廷力.机器人机构拓扑结构学[M].北京:机械工业出版社,2004:80-103.
    [36] Gao F, Li W M, Zhao X C. New Kinematic Structures for2-,3-,4-, and5-DOF ParallelManipulator Designs[J]. Mechanism and Machine Theory,2002,37(11):135-141.
    [37]高峰.并联机器人型综合的GF集理论[M].北京:科学出版社,2011:43-84.
    [38] Ren Y P, Lu C S, Han Q K, et al. Simulated Comparison on Kinematics Properties of two TypicalMechanisms of Forging Manipulator[C]. International Conference on Mechatronics andInformation Technology. Gifu, JAPAN,2007: N7942-N7942.
    [39]赵勇,林忠钦,王皓.重型锻造操作机的操作性能分析[J].机械工程学报,2010,46(11):69-75.
    [40]童幸.锻造操作机主运动机构性能研究[D].上海:上海交通大学机械设计及理论学科硕士学位论文,2011:39-81.
    [41]童幸,高峰,张勇.操作机主运动机构的解耦性研究[J].机械工程学报,2010,46(11):14-20.
    [42] Chu X B, Gao F. Kinematic Coupling Complexity of Heavy-payload Forging Manipulator[J].Robotica,2011, online, DOI: http://dx.doi.org/10.1017/S0263574711000968.
    [43] Chu X, Gao F, Guo W, et al. Complexity of Heavy-payload Forging Manipulator Based onInput/output Velocity Relationship[J]. Proceedings of the Institution of Mechanical Engineers PartC-Journal of Mechanical Engineering Science,2010,224:1-9.
    [44] Xu Y D, Zhao Y S. Comparative Analysis of Two Typical Mechanisms of Forging Manipulator[C].International Conference on Electrical and Control Engineering. Wuhan, China,2010:2314-2317.
    [45]孔祥东,翟富刚,张杨,等.锻造操作机夹钳平行升降机构运动学特性分析[J].燕山大学学报,2011,35(3):198-202.
    [46]孟富明.锻造操作机的运动解耦、刚度分析和参数优化[D].武汉:华中科技大学机械电子工程学科硕士学位论文,2009:10-16.
    [47]王怀彬.锻造操作机运动学与逆动力学分析[D].上海:上海交通大学车辆工程学科硕士学位论文,2008:19-42.
    [48]余发国.锻造操作机的设计原理研究[D].秦皇岛:燕山大学机械电子工程学科工学博士学位论文,2008:35-90.
    [49]陈博翁.一种锻造操作机的机构分析及其虚拟样机建模[D].北京:清华大学机械工程学科工学硕士学位论文,2009:15-22.
    [50] Yan C, Gao F, Guo W. Coordinated Kinematic Modelling for Motion Planning of Heavy-dutyManipulators in an Integrated Open-die Forging Centre[J]. Proceedings of the Institution ofMechanical Engineers Part B: Journal of Engineering Manufacture,2009,223(10):1299-1313.
    [51]梁音,赵绪平,王驰,等.大型锻造操作机研究进展[J].科技成果纵横,2010,(2):55-57.
    [52] Salisbury J K, Craig J J. Articulated Hands: Force Control and Kinematic Issues[J]. InternationalJournal of Robotics Research,1982,1(1):4-17.
    [53] Yoshikawa T. Manipulability of Robotic Mechanisms[J]. International Journal of RoboticsResearch,1985,4:3-9.
    [54] Gravagne I A, Walker I D. Manipulability, Force, and Compliance Analysis for Planar ContinuumManipulators[J]. IEEE Transactions on Robotics and Automation,2002,18(3):263-273.
    [55] Chiacchio P, Chiaverini S, Sciavicco L, et al. Global Task Space Manipulability Ellipsoids forMultiple-arm Systems[J]. IEEE Transactions on Robotics and Automation,1991,7(5):678-685.
    [56] Doty K L, Melchiorri C, Schwartz E M. Robot Manipulability[J]. IEEE Transactions on Roboticsand Automation,1995,11(3):462-468.
    [57] Kim H S, Choi Y J. Forward/inverse Force Transmission Capability Analyses of Fully ParallelManipulators[J]. IEEE Transactions on Robotics and Automation,2001,17(4):526-531.
    [58] Park F C, Kim J W. Manipulability of Closed Kinematic Chains[J]. ASME Journal of MechanicalDesign,1998,120(4),542-548.
    [59] Mermertas V. Optimal Design of Manipulator With Four-bar Mechanism[J]. Mechanism andMachine Theory,2004,39:545-554.
    [60] Chiacchio P, Bouffard-Vercelli Y, Pierrot F. Evaluation of Force Capabilities for RedundantManipulators[C]. Proceedings of the IEEE International Conference on Robotics and Automation.MN, USA,1996:3520-3525.
    [61] Finotello R, Grasso T, Rossi G, et al. Computation of Kinetostatic Performances of RobotManipulators With Polytopes[C]. Proceedings of the1998IEEE International Conference onRobotics&Automation. Leuven, Belgiu,1998:3241-3246.
    [62] Hwang Y S, Lee J, Hsia T C. A Recursive Dimension-growing Method for Computing RoboticManipulability Polytope[C]. Proceedings of the IEEE International Conference on Robotics andAutomation. San Francisco, USA,2000:2569-2574.
    [63] Chand D R, Kapur S S. An Algorithm for Convex Polytopes[J]. Journal of the Association forComputing Machinery,1970,17(1):78-86.
    [64] Kokkinis T, Paden B. Kinetostatic Performance Limits of Cooperatmg Robot Manipulators UsingForce-velocity Polytopes[C]. Proceedings of ASME Winter Annual Meeting-Robotics Research.San Francisco,1989:2581-2587.
    [65] Gallina P, Rosati G, Rossi A.3-D.O.F. Wire Driven Planar Haptic Interface[J]. Journal ofIntelligent&Robotic Systems,2001,32(1):23-36.
    [66] Firmani F, Zibil A, Nokleby S B, et al. Wrench Capabilities of Planar Parallel Manipulators. Part I:Wrench Polytopes and Performance Indices[J]. Robotica,2008,26(6):791-802.
    [67] Nokleby S B, Fisher R, Podhorodeski R P, et al. Force Capabilities of Redundantly-actuatedParallel Manipulators[J]. Mechanism and Machine Theory,2005,40:578-599.
    [68] Zibil A, Firmani F, Nokleby S B, et al. An Explicit Method for Determining the Force-momentCapabilities of Redundantly-actuated Planar Parallel Manipulators[J]. ASME Journal ofMechanical Design,2007,129(10):1046-1055.
    [69] Huang Z, Liu J F, Zeng D X. A General Methodology for Mobility Analysis of Mechanisms Basedon Constraint Screw Theory[J]. Science in China Series E: Technological Sciences,2009,52(5):1337-1347.
    [70]黄真,刘靖芳,李艳文.论机构自由度——寻找了150年的自由度通用公式[M].北京:科学出版社,2011:111-116.
    [71] Kong X W, Gosselin C M. Mobility Analysis of Parallel Mechanisms Based on Screw Theory andthe Concept of Equivalent Serial Kinematic Chain[C] The ASME International DesignEngineering Technical Conferences and Computers and Information in Engineering Conference.CA, United states,2005:911-920.
    [72] Zhao J S, Zhou K, Feng Z J. A Theory of Degrees of Freedom for Mechanisms[J]. Mechanism andMachine Theory,2004,39(6):621-643.
    [73] Huang Z, Li Q C. General Methodology for Type Synthesis of Lower-Mobility SymmetricalParallel Manipulators and Several Novel Manipulators[J]. International Journal of RoboticsResearch,2002,21(2):131-146.
    [74]杨廷力,刘安心,罗玉峰,等.机器人机构结构综合方法的基本思想、特点及其发展趋势[J].机械工程学报,2010,46(9):1-11.
    [75]赵铁石,祁晓园,鹿玲,等.被约束刚体连续运动的充分必要条件[J].燕山大学学报,2000,24(3):224-227.
    [76]安培文.平面连杆机构的过约束及自调结构的分析与设计研究[D].重庆:重庆大学机械设计及理论学科博士学位论文,2003:9-37.
    [77] Dai J S, Huang Z, Lipkin H. Mobility of Overconstrained Parallel Mechanisms[J]. ASME Journalof Mechanical Design,2006,128:220-229.
    [78]王瑞,刘文涛,纪校娟.一种5轴混联加工中心的位姿正逆解分析[J].哈尔滨工业大学学报,2010,42(1):128-132.
    [79] Yao J T, Hou Y L, Chen J, et al. Theoretical Analysis and Experiment Research of a StaticallyIndeterminate Pre-stressed Six-axis Force Sensor[J]. Sensors and Actuators A-Physical,2009,150:1-11.
    [80]赵铁石,赵延治,丁长涛,等.过约束大量程并联六维测力平台[P]. CN: CN200910075789.6,2011-02-09.
    [81] Jia Z Y, Lin S, Liu W. Measurement Method of Six-axis Load Sharing Based on the StewartPlatform[J]. Measurement,2010,43(3):329-335.
    [82] Firmani F, Podhorodeski R P. Force-unconstrained Poses for a Redundantly-actuated PlanarParallel Manipulator[J]. Mechanism and Machine Theory,2004,39(5):459-476.
    [83]李剑锋,费仁元,范金红,等.驱动器布位及冗余驱动对Tricept并联机构性能的影响[J].机械工程学报,2008,44(1):31-39.
    [84] Zhao Y J, Gao F. Dynamic Performance Comparison of the8PSS Redundant Parallel Manipulatorand Its Non-redundant Counterpart—the6PSS Parallel Manipulator[J]. Mechanism and MachineTheory,2009,44(5):991-1008.
    [85]范凡,王皓,赵勇.自由锻造操作机冗余驱动系统的驱动力分配与协调[J].机械设计,2009,26(9):26-30.
    [86]何凯,金振林,郭为忠,等.新一代机械式可控金属压力机的设计[J].机械设计与研究,2005,(4):12-14.
    [87] Zheng Y F, Luh J Y S. Optimal Load Distribution for Two Industrial Robots Handling a SingleObject[C]. Proceedings of the IEEE International Conference on Robotics and Automation.Philadelphia, USA,1988:344-349.
    [88] Tao J M, Luh J Y S. Coordination of Two Redundant Manipulators[C]. Proceedings of the IEEEInternational Conference on Robotics and Automation. Scottsdale, USA,1989:425-430.
    [89] Nahon M A, Angeles J. Minimization of Power Losses in Cooperating Manipulators[J].Transactions of the ASME Journal of Dynamic Systems, Measurement, and Control,1992,114(2):213-219.
    [90] Merlet J P. Redundant Parallel Manipulators[J]. Laboratory Robotics and Automation,1996,8(1):17-24.
    [91] Zhao Y S, Ren J Y, Huang Z. Dynamic Loads Coordination for Multiple Cooperating RobotManipulators[J]. Mechanism and Machine Theory,2000,35(7):985-995.
    [92] Garg V, Nokleby S B, Carretero J A. Wrench Capability Analysis of Redundantly ActuatedSpatial Parallel Manipulators[J]. Mechanism and Machine Theory,2009,44(5):1070-1081.
    [93] Gao X C, Song S M, Zheng C Q. A Generalized Stiffness Matrix Method for Force Distribution ofRobotic Systems With Indeterminacy[J]. ASME Journal of Mechanics and Design,1993,115(3):585-591.
    [94]韩先国,陈五一.基于运动约束解过约束并联机构变形协调方程[J].力学与实践,2005,27(3):65-68.
    [95] Adli M A, Hanafusa H. Effect of Internal Forces on Stiffness of Closed Mechanisms[C]. FifthInternational Conference on Advanced Robotics. Pisa, Italy,1991:845-850.
    [96]白志富,梁辉,陈五一.冗余并联机构的内力及应用[J].机械设计与研究,2006,22(4):13-16.
    [97] Walker I D, Freeman R A, Marcus S I. Internal Object Loading for Multiple Cooperating RobotManipulators[C]. IEEE International Conference on Robotics and Automation. Scottsdale, USA,1989:606-611.
    [98] Adli M A, Hanafusa H. Contribution of Internal Forces to the Dynamics of Closed ChainMechanisms[J]. Robotica,1995,13(5):507-514.
    [99] Kumar V R, Waldron K J. Force Distribution in Closed Kinematic Chains[J]. IEEE Journal ofRobotics and Automation,1988,4(6):657-664.
    [100]刘善增,余跃庆,刘庆波,等.3-RRC并联机器人动力学分析[J].机械工程学报,2009,45(5):220-224.
    [101] Li C G, Wang H M, Zhu J Y. Dynamics Analysis of2-DOF Spherical Parallel Mechanism[J].Transactions of Nanjing University of Aeronautics and Astronautics,2009,26(2):95-100.
    [102]周玉林,刘磊,高峰.三自由度球面并联机构3-RRR静力全解[J].机械工程学报,2008,44(6):169-176.
    [103]张立杰,李永泉.球面2-DOF冗余驱动并联机器人静力学全解[J].机械工程学报,2011,47(19):22-29.
    [104] Kerr D R, Griffis M, Sanger D J, et al. Redundant Grasps, Redundant Manipulators, and TheirDual Relationship[J]. Journal of Robotics System,1992,9(7):973-1000.
    [105] Janusz F, Marek W. On the Unique Solvability of a Direct Dynamics Problem for MechanismsWith Redundant Constraints and Coulomb Friction in Joints[J]. Mechanism and Machine Theory,2011,46:312-334.
    [106] Huang Z, Zhao Y, Liu J F. Kinetostatic Analysis of4-R(CRR) Parallel Manipulator WithOverconstraints via Reciprocal-Screw Theory[J]. Advanced Mechanical Engineering,2010,(2010):1-11.
    [107]赵燕,黄真.含过约束力偶的少自由度并联机构的受力分析[J].机械工程学报,2010,46(5):15-21.
    [108]田冠男,黄田,李占贤,等.基于I-DEAS的Diamond并联机器人虚拟样机及运动仿真[J].机械设计,2005,22(7):13-15.
    [109]郭宗和,李连升,段建国.3-PRC并联机构的运动轨迹规划与仿真[J].农业机械学报,2007,38(9):126-129.
    [110]解本铭,江训忠.新型并联打磨机构的自由度分析与仿真[J].机械设计,2011,28(10):15-18.
    [111]高兴军,邹平,李斌.基于三并联机床螺旋面钻尖刃磨机运动学仿真[J].机械设计,2011,28(7):69-72.
    [112] Lu Y. Using CAD Functionalities for the Kinematics Analysis of Spatial Parallel ManipulatorsWith3-,4-,5-,6-Linearly Driven Limbs[J]. Mechanism and Machine Theory,2004,39(1):41-60.
    [113]路懿.用计算机几何技术求解多自由度平面机构的运动[J].中国机械工程,2003,14(16):1360-1364.
    [114] Pan X H. Kinematics Simulation on a Kind of Parallel Mechanism[J]. Applied Mechanics andMaterials,2011,101-102:245-249.
    [115]刘峰,王向军,许薇.三自由度并联机构参数化设计研究[J].系统仿真学报,2009,2(11):3479-3483.
    [116]王瑞,钟诗胜,王知行.5轴新型数控铣床仿真建模的实现[J].计算机集成制造系统,2005,11(8):1076-1080.
    [117]卓桂荣,余卓平,陈辛波.原地转向电动汽车参数化模型的建立[J].计算机集成制造系统,2005,11(5):664-668.
    [118]彭禹,郝志勇.面向参数化样机的凸轮动态优化方法研究[J].中国机械工程,2007,18(24):2981-2985.
    [119] Ball R S. A Treatise on the Theory of Screws[M]. Cambridge: Cambridge University Press,1900.
    [120] Davidson J K, Hunt K H. Robots and Screw Theory: Applications of Kinematics and Statics toRobotics[M]. Oxford: Oxford University Press,2004.
    [121] Zhao T S, Dai J S, Huang Z. Geometric Analysis of Overconstrained Parallel Manipulators withThree and Four Degrees of Freedom[J]. JSME International Journal-Series C,2002,45(3),730-740.
    [122] Lu Y, Hu B. A Unified Method to Find Active Forces and Passive Wrench of Some ParallelManipulators With n SPS Active Legs and a Passive Leg[J]. Proceedings of the Institution ofMechanical Engineers Part C-Journal of Mechanical Engineering Science,2007,221(4),467-478.
    [123]徐晓辉,段志善. Adams中过约束问题的分析[J].中国科技信息,2008,(16):93-95.
    [124]喻涛,李文蔚. ADAMS约束问题讨论[J].机械,2007,34(12):50-51.
    [125]赵铁石,黄真.欠秩并联机器人输入选取的理论和应用[J].机械工程学报,2000,36(10):81-85.
    [126]杨廷力.空间机构的结构分析与综合-Ⅱ空间复链的结构分析[J].机械设计,1987,(3):1-11.
    [127] Bruyninckx H, Schutter J D. Unified Kinematics for Serial, Parallel and Mobile Robots[J].Proceedings of the Advances in Robotic Kinematics. Strobl, Austria,1998:343-352.
    [128] Joshi S A, Tsai L W. Jacobian Analysis of Limited-DOF Parallel Manipulators[J]. ASME JournalMechanical Design,2002,124(2):254-258.
    [129]胡波,路懿.求解3-RPS并联机构刚度的新方法[J].机械工程学报,2010,46(1):24-29.
    [130]范钦珊,殷雅俊.材料力学[M].北京:清华大学出版社,2008:241-260.
    [131] Virginia C, Laub A. The Singular Value Decomposition: Its Computation and SomeApplications[J]. IEEE Transactions on Automatic Control,1980,25(2):164-176.
    [132] Lu T R, Shiou S H. Inverses of2×2Block Matrices[J]. Applied Mathematics and Computation,2002,43:119-129.
    [133]陈永林.广义逆矩阵的理论与方法[M].南京:南京师范大学出版社,2005:20-62.
    [134] Kim H S, Tsai L W. Optimization Design of a Cartesian Parallel Manipulator[J]. Journal ofMechanical Design,2003,125:43-50.
    [135] Von M R. Motor Calculus[M]. Graz: University of Technology,1996.
    [136]丁希仑, Selig J M,戴建生.具有空间复合变形构件的机械系统分析方法[J].机械工程学报,2005,41(8):63-68.
    [137]熊有伦,丁汉,刘恩沧.机器人学[M].北京:机械工业出版社,1993:40-51.
    [138] Bonev I A, Ryu J. A New Approach to Orientation Workspace Analysis of6-DOF ParallelManipulators[J]. Mechanism and Machine Theory,2001,36:15-28.
    [139] Fisher R, Podhorodeski R P, Nokleby, S B. Reconfigurable Planar Parallel Manipulator(RPPM)[C]. Proceedings of the2001CCToMM Symposium on Mechanisms, Machines, andMechatronics. Quebec, Canada,2001:2p.
    [140]方跃法,黄真.三自由度3-RPS并联机器人机构的运动分析[J].机械科学与技术,1997,16(1):82-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700