用户名: 密码: 验证码:
类人机器人运动规划关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的不断进步,各种类型的机器人相继的研发成功,类人机器人由于其外形和动作与人类似,与其它类型的机器人相比,更容易被人类所接受。而类人机器人的运动规划是类人机器人研究的基本问题,也是非常重要的问题之一。类人机器人要在人类的复杂环境中从事各种任务,需要获取不同的环境信息,进行各种不同的复杂运动,从而能适应人类的生活环境,更好的为人类服务。
     本文在国家863计划重点项目的子项目“竞技与娱乐多机器人系统”课题的资助下,以提高类人机器人在竞技娱乐活动中的娱乐观赏性和竞技能力为目的,对类人机器人运动规划的若干关键技术进行系统深入的研究。主要包括稳定性控制、倒地动作最优控制、复杂运动规划和类人型足球竞技实验平台等方面的内容:
     第一,建立了类人机器人7连杆运动学和动力学一般模型,并根据机器人不同类型的运动分别建立了前后倒地动作和上下楼梯、上下斜坡运动模型。对于类人机器人来说,其稳定性是首先需要解决的问题。一些研究人员已经对类人机器人的稳定性控制研究提出了各种不同的稳定判定标准和控制方法,本文在比较各种稳定判断准则下,通过引入一种二阶锥控制方法,对类人机器人运动稳定性进行控制,获得了较好的效果。
     第二,在类人机器人的运动过程中,各种不确定因数可能导致其发生摔倒。当摔倒不可避免的情况下,本文研究了类人机器人倒地动作的最优控制问题,通过对倒地动作深入分析,建立了倒地运动学方程,并引入参数优化和强化技术对倒地动作进行最优控制。针对参数优化方法在求解二次规划问题(SQP)中的不足,使用一种基于改进的二次规划滤子算法对该方法的寻优过程进行了改进,并和极小值原理控制方法进行了比较。
     第三,由于类人机器人外形类人,除了能在平地上行走外,还需要进行楼梯和斜坡等各种环境地面上的复杂运动,以便能够真正适应人类的生活环境。研究人员已经对类人机器人的上下楼梯和斜坡进行了各种研究,但是由于类人机器人是一个多自由度的非线性复杂系统,单独使用传统控制方法和一些智能控制算法并不能很好的对其进行复杂运动的控制。本文分别使用神经网络和模糊控制对类人机器人的上下楼梯运动进行离线学习训练,通过嵌入式视觉系统采集环境信息进行在线控制,同时为了解决训练过程的耗时长、结果难收敛的缺点,在基本微粒群优化算法的基础上,使用一种改进的微粒群优化算法,分别对神经网络的权值和模糊控制器的规则进行优化,实验表明,该方法可以有效的减少训练时间并获得类人机器人上楼梯运动中较高的稳定控制效果。
     第四,针对类人型足球机器人的比赛特点,本文对3个对抗3个类人型机器人(3vs3)比赛系统进行研究,采用主从控制系统框架对机器人进行任务级的控制。根据比赛过程中所需的基本动作,设计了基于嵌入式视觉的在线快速曲线行走运动,并对点球子系统的射门与守门进行深入研究,类人机器人通过嵌入式视觉实时采集比赛环境信息,通过有限状态机的方式进行决策。比赛显示该系统能够获得较好的控制效果。
With the development of science, kinds of robots have been developed sucessfully. Compared with other type of robot, humanoid robot is easier to accepted by people because its shape and actions are similar with human. Motion planning for humanoid robot is the basic research and also one of the best important problems in the area of humanoid robot. If humanoid robot wants to do kinds of works in the complex environment of human, it need to acquire the different environmental information to do kinds of complex motions, so as to adapt to the human environment and better service to humanity.
     This thesis is funded by the national 863 key project "sports and entertainment multi-robot systems", and with the purpose of improving the entertainment appreciation and competitive ability of humanoid robot in the competitive entertainment activities, some key technologies of motion planning for humanoid robot are on further research, which includes the stability control, optimal control of falling action, complex motion planning, motion planning in the complex environment and experimental platform of 3 vs 3 humanoid robot soccer game.
     Firstly, a seven link model of kinematics and dynamics for humanoid robot is built and according to the different motions of robot, models of falling forward and backward actions, climbing up and down the stairs and slopes are present. For humanoid robot, the first problem required to solve is the stability. Some researchers have present kinds of different stability criterions and control methods for the stable control of humanoid robot. This theses introduced a control method based on second-order cone to control the stability of robot and good results are obtained.
     Secondly, during the process of motion for humanoid robot, it may fall due to some uncertainty factors. Since the falling is inevitable, this theses has done research on the optimal control of falling for humanoid robot. By deeply anlysis of falling action, the kinematics equation of falling is built and optimal control for falling action based on parameter optimum and enhance technology is proposed. For the lack of solving SQP(sequence of quadratic programming) in the parameter optimum method, a new method based on improved SQP filter algorithm is present to improve the optimization process. Good optimization results are obtained by comparing with control of the minimum principle
     Thirdly, since the humanoid robot's shape is similar to people, it is not only walking on the flat but also do some complex motions in environment such as stairs and slopes to adapt the people's living environment really. Researchers has done some researches on the motions for humanoid robot on stairs and slopes. However, humanoid robot is regarded as a multi-degrees and nonlinear complex system, traditional control methods and some intelligent algorithms are not good enough to control its complex motion. In this theses, two methods of nerual network and fuzzy logic control are present to learn offline and control the climbing stairs motion of robot online respectively. To solve the shortcoming of difficult to converge and long time consuming during the trainning process, an improved PSO(Particle Swarm Optimization) optimal algorithm is proposed to train the weights of nerual network and rules of fuzzy logic controller. Experiments show this methods can effectively reduce training time of stairs motion for humanoid robot and get the higher stability.
     Forthly, for the features of humanoid robot soccer game, this theses present a game control system for 3 vs 3. Master-slave control system is used to control robot based on the task-level. For the basic motions required in the game, fast curve walking based on embedded vision system is designed. Deep research on penalty kick system include shooting and goalkeeping are achieved. The information from environment are gathered by the embedded vision system online, decisions are made through the finite state machine. Experiments show the system can get achieve good control effect.
引文
[1] Gates B. A Robot in Every Home[J]. Science American, 2007, 37(2):58-65.
    [2]谢涛,徐建峰,张永学等.类人机器人的研究历史、现状及展望.机器人. 2002(24),4:367-374.
    [3] Hashimoto S, Narita S, Kasahara H, et al. Humanoid Robots in Waseda University-Hadaly-2 and WABIAN[J]. Autonomous Robots. 2004, 12(1):25-38.
    [4] Hirai K, Hirose M, Haikawa Y, Takenaka T. The Development of Honda Humanoid Robot[C]. IEEE International Conference on Robotics and Automations, Leuven, 1998:1321-1326.
    [5]包志军,马培荪,姜山等.从两足机器人到类人型机器人的研究历史及其问题[J].机器人. 1999,21(7):312-318.
    [6] Yashika S, Ryujin W. The intelligent ASIMO: System overview and integration[C]//IEEE International Conference on Intelligent Robots and Systems. 2002:2478-2483.
    [7] Masato H, Kenichi O. Honda humanoid robots development[J]. Philosophical Transactions of the Royal Society. 2007, 365(1850):11-19.
    [8] Kaneko K, Kanehiro F, Kajita S, et al. Humanoid Robot HRP-2[C]//IEEE Interrnational Conference on Robotics and Automation. 2004:1083-1090.
    [9] Kanehiro F, Kaneko K, Fujiwara K, et al. The first humanoid robot that has the same size as a human and that can lie down and get up[C]//IEEE International Conference on Robotics and Automation. 2003:1633-1639.
    [10] Fumio K, Kenji K, Kiyoshi F. The first humanoid robot that has the same size as a human and that can lie down and get up[C]//IEEE International Conference on Robotics and Automation 2003:1633-1639.
    [11] Satoshi K, Masaaki M, Yoshihiro E, et al. Measurement and comparison of humanoid H7 walking with human being[J]. Robotics and Autonomous Systems, 2003, 48(4), 177-187.
    [12] Nishiwaki K, Kuffner J, Kagami S, et al. The experimental humanoid robot H7: a research platform for autonomous behaviour. Philosophical Transactions of the Royal Society[J]. Physical and Engineering Sciences, 2007, 365(1850):79-107.
    [13] Lengagne S, Ramdani N. Safe motion planning computation for databasing balanced movement of humanoid robots[C]//IEEE International Conference on Robotics and Automation. 2009:1669-74.
    [14]李允明.国外类人机器人发展概况[J].机器人,2005,27(6):561-568.
    [15] Park I W, Kim J Y, Oh J H. Online Walking Pattern Generation and Its Application to a Biped Humanoid Robot KHR-3(HUBO)[J]. Advanced Robotics, 2008, 22:159-190.
    [16] Ill-Woo P, Jung-Yup K, Jungho L, et al. Mechanical design of humanoid robot platform KHR-3[C]//IEEE-RAS International Conference on Humanoid Robots. 2005:321-326.
    [17] Espiau B S. The Anthropomorphic Biped Robot BIP2000[C]//IEEE International Conference on Robotics and Automation, 2000:3996-4001.
    [18] Lohmeier S, Loffler K, Gienger M, et al. Computer System and Control of Biped "Johnnie"[C]//IEEE International Conference on Robotics and Automation, 2004:4222-4227.
    [19] Pfeiffer F, Loffler K, Gienger M. The Concept of Jogging JOHNNIE[C]. IEEE International Conference on Robotics and Automation, 2002:3129-3135.
    [20] Buschmann T, Lohmeier S, Ulbrich H, et al. Dynamics Simulation for a Biped Robot: Modeling and Experimental Verification[C]//IEEE International Conference on Robotics and Automation, Orlando, Florida. 2006: 2673-2678.
    [21] Zheng Y F, Modeling, Control and Simulation of three-dimensional Robotic System with Applications to Biped Locomotion[D]. Ph.D. Dissertation of The Ohio State University, 1984:168-189.
    [22] Zheng Y F, Shen J. Gait synthesis for the SD-2 biped robot to climb sloping surface[J]. IEEE Transactions on Robotics and Automation, 1990, 6(1):86-96.
    [23] Pratt G A. Legged Robot at MIT-What’s New Since Raibert[C]//International Conference on Climbing and Walking Robots, 1999:29-33.
    [24] Hu J J, Jerry P, Gill P. Stable adaptive control of a bipedal walking robot with CMAC neural networks[C]//IEEE International Conference on Robotics and Automation, 1999, 2:1050-1056.
    [25] Steve C, Andy R, Russ T, et al. Efficient bipedal robots based on passive dynamic walkers[J]. Science, 2005, 307:1082-1085.
    [26]马培荪,曹曦,赵群飞.两足机器人步态综合研究进展[J].西南交通大学学报,2006,41(4):407-414.
    [27] Espiau B, Sardain P. The Anthropomorphic Biped Robot BIP2000[C]//IEEE International Conference on Robotics and Automation, 2000:3996-4001.
    [28] McGeer T. Passive Dynamic Walking[J]. The International Journal of Robotics Research, 1990, 9(2):62-82.
    [29] http://www. androidworld. com/
    [30]刘志远.两足机器人的动态行走研究[D].哈尔滨:哈尔滨工业大学,1991:23-35.
    [31]纪军红. HIT-III双足步行机器人步态规划研究[D].哈尔滨:哈尔滨工业大学,2000:53-65.
    [32]马宏绪,张彭,张良起.两足步行机器人动态步行的步态控制与实时时位控制方法[J].机器人,1998,20(1):1-8.
    [33]绳涛,马宏绪,王越.类人机器人未知地面行走控制方法研究[J].华中科技大学学报,2004,32:161-163.
    [34]姜山,程君实,陈佳品,包志军.基于遗传算法的两足步行机器人步态优化[J].上海交通大学学报,1999,33(10):1280-1283.
    [35]包志军.类人型机器人运动特性研究[D].上海:上海交通大学,2000:23-34.
    [36]肖涛,黄强,杨洁,等.给定手部作业轨迹的仿人机器人推操作研究[J].机器人,2008,30(5):385-392.
    [37] Huang Q, Peng Z, Zhang W, et al. Design of Humanoid Complicated Dynamic Motion Based on Human Motion Capture[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005:3536-3541.
    [38] Huang Q, Nakamura Y. Sensory Reflex Control for Humanoid Walking[J]. IEEE Transactions on Robotics, 2005, 21(5):977-984.
    [39]刘莉,汪劲松,陈恳等. THBIP-I拟人机器人研究进展[J].机器人,2002, 24(3):262-267.
    [40] Xia Z Y, Liu L, Xiong J, et al. Design aspects and development of humanoid robot THBIP-2[J]. Robotica. 2008, 26(1):109-116.
    [41]伊强,陈恳,刘莉,付成龙.小型仿人机器人THBIP-II的研制与开发[J].机器人,2009,31(6):586-594.
    [42] Yoshihiro K. A Small Biped Entertainment Robot[C]//IEEE InternationalConference on Humanoid Robots. 2001:181-186.
    [43] Gen E, Nakanishi J, Morimoto J, Cheng G. Experimental Studies of a Neural Oscillator for Biped Locomotion with QRIO[C]//IEEE International Conference on Robotics and Automation, 2005:596-602.
    [44] David G, Vincent H, Pierre B. Mechatronic design of NAO humanoid[C]//IEEE International Conference on Robotics and Automation, Kobe, Japan, 2009:486-495.
    [45] Stefan C, S?ren K, Oliver U. Observer-based dynamic walking control for biped robots[J]. Robotics and Autonomous Systems. 2009, 57:839-845.
    [46] Hester T, Quinlan M, Stone P. Generalized model learning for Reinforcement Learning on a humanoid robot[C]//IEEE International Conference on Robotics and Automation, Anchorage, AK, 2010:2369-2374.
    [47] Zhong Q B, Hong B R, Pan Q S. Complex motion planning for humanoid robot based on embedded vision system[J]. JOURNAL OF HARBIN INSTITUTE OF TECHNOLOGY, 2010, 17(Suppl. 2), 5-9.
    [48]张彤.类人机器人步行控制及路径规划方法研究[D].广州:华南理工大学,2010:22-23.
    [49] Dong H, Zhao M G, Zhang J, et al. Hardware design and gait generation of humanoid soccer robot Stepper-3D[J]. Robotics and Autonomous Systems, 2009, 57:828-838.
    [50]杜鑫峰,熊蓉,褚健.类人足球机器人视觉系统快速识别与精确定位[J].浙江大学学报(工学版) , 2009:
    [51]康俊峰.基于嵌入式视觉的仿人机器人点球系统[D].哈尔滨:哈尔滨工业大学. 2008: 68-88.
    [52] Vukobratovic M, Stepanenko J. On the stability of anthropomorphic systems[J]. Mathematical Biosciences, 1972, 15:1-37.
    [53] Wieber P B. On the Stability of Walking Systems[C]//The 3rd IARP International Workshop on Humanoid and Human Friendly Robotics, 2002:1123-1130.
    [54]杨东超,刘莉,陈恳,等.基于ZM P的拟人机器人步态规划[J].机器人,2001,23(6):504-509.
    [55]窦瑞军,马培荪.基于ZMP点的两足机器人步态优化[J].机械科学与技术, 2003,(1):77-80.
    [56] Garcia E, Estremera J, Santos G. A Classification of Stability Margins for Walking Robots[C]//The 5th International Conference on Climbing and Walking Robots, 2002:25-27.
    [57] Huang Q. Planning Walking Patterns for A Biped Robot[J]. IEEE Transaction on Robotics and Automation, 2001, 17(3):280-289.
    [58]彭朝琴,付永领,赵克,唐志勇.基于不稳定度的类人型机器人步态规划方法[J].北京航空航天大学学报,2007,33(18):949-953.
    [59] Mergner T, A neurological view on reactive human stance control[J]. Annual Reviews in Control, 2010, 34(2):177-198.
    [60] Goswami A. Foot rotation indicator (FRI) point: A new gait planning tool to evaluate postural stability of biped robots[C]//IEEE International Conference on Robotics and Automation, 1999:47-52.
    [61] Goswami A. Postural stability of biped robots and the foot rotation indicator (FRI) point[J]. International Journal of Robotics Research, 1999, 18(6):523-533.
    [62] M Vukobratovic. Zero Moment Point, Thirty Five Years of Its Life[J]. International Journal of Humanoid Robotics, 2004, 1(1):157-173.
    [63]余蕾斌,曹其新,孙毅军.基于压应力中心的类人机器人离散轨迹运动控制[J].上海交通大学学报,2007,41(8):1263-1266.
    [64]肖乐,殷晨波,郑冬华.仿人机器人上下楼梯稳定性走控制策略[J].计算机工程与设计,2009,30(10):2453-2457.
    [65]殷晨波,周庆敏,徐海涵,等.基于虚拟零力矩点FZMP的拟人机器人行走稳定性仿真[J].系统仿真学报,2006,18(9):2593-2597.
    [66]刘莉,汪劲松,陈恳,等.基于六维力/力矩传感器的拟人机器人实际ZMP检测[J].机器人,2001,23(5):459-466.
    [67] Erbatur K, Obiya K. Natural ZMP Trajectories for Biped Robot Reference Generation[J]. IEEE Transactions on industrial electronics, 2009, 56(3): 835-846.
    [68]毛勇.半被动双足机器人的设计与再励学习控制[D].北京:清华大学, 2007:58-67.
    [69] Morimoto J, Cheng G, Atkeson C G, et al. A simple reinforcement learning algorithm for biped walking[C]//International Conference on Robotics and Automation, 2004:3030-3035.
    [70] Chevallereau C, Grizzle J W, Shih C L. Asymptotically Stable Walking of a Five-Link Underactuated 3-D Bipedal Robot[J]. IEEE Transactions on Robotics, 2009, 25(1):37-50.
    [71] Shkolnik A, Tedrake R. High-dimensional underactuated motion planning via task space control[C]//IEEE International Conference on Intelligent Robots and Systems, Nice, 2008:3762-3768.
    [72] Shkolnik A, Walter M, Tedrake R. Reachability-guided sampling for planning under differential constraints[C]//IEEE International Conference on Robotics and Automation, Kobe, Japan, 2009:2859-2865.
    [73] Kuffner J, Nakamura K, Kagami S, et al. Motion Planning for Humanoid Robots[C]//Proceedings of 11th International Symposium of Robotics Research, 2003:1-11.
    [74] Kajita S, Kanehiro F, Kaneko K, et al. A Realtime Pattern Generator for Biped Walking[C]//IEEE International Conference on Robotics and Automation, 2002:31-37.
    [75] Ales U, Azad P, Asfour T, et al. Stereo-based Markerless Human Motion Capture for Humanoid Robot Systems[C]//IEEE International Conference on Robotics and Automation, Roma, 2007:3951-3956.
    [76] Shinichiro N, Atsushi N, Fumio K, et al. Task Model of Lower Body Motion for a Biped Humanoid Robot to Imitate Human Dances[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005:2769-2775.
    [77] Jeffrey B C, David B G, Rajesh P N, et al. Learning Full-Body Motions from Monocular Vision: Dynamic Imitation in a Humanoid Robot[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007:240-246.
    [78]包志军.类人型机器人运动特性研究[D].上海:上海交通大学,2000:13-15.
    [79]尾田秀司(日),管贻生(译).仿人机器人[M].北京:清华大学出版社,2007: 88-94.
    [80] Janusz M M. A Simple Model of Step Control in Bipedal Locomotion[J]. IEEE Transactions on Biomedical Engineering, 1978:984-990.
    [81] Shuuj I K. A realtime pattern generator for biped walking[C]//IEEE International Conference on Robotics and Automation, Washington, 2002: 31-37.
    [82] Morisawa M., Harada K., Kajita S., et al. Experimentation of Humanoid Walking Allowing Immediate Modification of Foot Place Based on Analytical Solution[C]//IEEE International Conference on Robotics and Automation, Roma, 2007:3989-3994.
    [83] Bram V, Bj¨orn V, Ronald V H, et al. Objective locomotion parameters based inverted pendulum trajectory generator[J]. Robotics and Autonomous Systems, 2008, 56:738-750.
    [84] Hurmuzlu Y, Moskowitz. The Role of Impact in the Stability of Bipedal Locomotion[J]. Dynamics and Stability of Systems, 1986:217-234.
    [85] Yi K Y. Walking of a Biped Robot with Passive Ankle Joint[C]//Proceedings of International Conference of Control Applications, 1999:484-489.
    [86] Kiyoshi F, Shuuji K, Kensuke H, et al. An Optimal Planning of Falling Motions of a Humanoid Robot[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007:456-463.
    [87] Miura H S. Dynamic Walking of a Biped Locomotion[J]. The International Journal of Robotics Research, 1984:60-74.
    [88] Hu L Y, Zhou C J, Sun Z Q. Biped gait optimization using spline function based probability model[C]//IEEE International Conference on Robotics and Automation, Orlando, FL, 2006:830-835.
    [89] Salatian A W, Zheng Y F. Gait synthesis for a biped robot climbing sloping surfaces using neural networks. Part I. Static learning[C]//IEEE International Conference on Robotics and Automation, 1992:2601–2606.
    [90] Kun A L, Miller T W. Adaptive Dynamic Balance of a Biped Robot Using Neural Networks[C]//IEEE International Conference on Robotics and Automation, 1996:240-245.
    [91] Miller W T. Real-Time Neural Network Control of a Biped Walking Robot[J]. IEEE Control System, 1994:41-48.
    [92]王强,纪军红,强文义,等.基于自适应模糊逻辑和神经网络的双足机器人控制研究[J]. 2001, 11(7): 76-78
    [93] Juang J G. Intelligent locomotion control on sloping surfaces[J]. Information Sciences, 2002, 147(1):229-243.
    [94] Beom H K, Cho H S. A Sensor-based Navigation for a Mobile Robot Using Fuzzy Logic and Reinforcement Learning[J]. IEEE Transactions on Systems,1995, 25:464-477.
    [95] Zhou C, Meng Q. Dynamic balance of a biped robot using fuzzy reinforcement learning agents[J]. Fuzzy Sets System, 2003, 134:169-187.
    [96] Holland J H. Adaptation in Natural and Artificial Systems[M]. The University of Michigan Press. 1975:165-178.
    [97]柯显信,龚振邦,吴家麒.基于遗传算法的双足机器人上阶梯的步态规划[J].应用科学学报,2002,20(4):341-345.
    [98] Goldberg D E. Genetic Algorithm in Search Optimization and Machine Learning[M]. Addison Wesley, 1989:235-254.
    [99] Takemasa A, Toshio F. Natural Motion Generation of Biped Locomotion Robot Using Hierarchical Trajectory Generation Method Consisting of GA, EP Layers[C]//IEEE International Conference on Robotics and Automation, 1997:367-374.
    [100] Salatian A W, Yi K Y, Zheng Y F. Reinforcement learning for a biped robot to climb sloping surface[J]. Journal of Robot, 1997, 14 (4):283-296.
    [101] Shouwen F, Min S, Mingquan S. Real-time Gait Generation for Humanoid Robot Based on Fuzzy Neural Networks[C]//The Third International Conference on Natural Computation, 2007:142-150.
    [102] Pandu R V, Sahu S K, Pratihar D K. Dynamically balanced ascending and descending gaits of a two-legged robot[J]. International Journal of Humanoid Robot, 2007, 4 (4):717–751.
    [103] Pandu R V, Sahu S K, Pratihar DK. On-line dynamically balanced ascending and descending gaits of a biped robot using soft computing[J]. International Journal of Humanoid Robot, 2007, 4 (4):777-814.
    [104] Kentarou H, Tomohiro S, Yutaka N, et al. Reinforcement learning for quasi-passive dynamic walking of an unstable biped robot[J]. Robotics and Autonomous Systems, 2006, 54:982-988.
    [105] Tadayoshi A, Kosuke S, Yasuhisa H, et al. Experimental Verification of 3D Bipedal Walking based on Passive Dynamic Autonomous Control[C]//IEEE International Conference on Intelligent Robots and Systems, 2009:1134-1141.
    [106] Hirotake S, Masaki Y, Fumihiko A. Design of Convex Foot for Efficient Dynamic Bipedal Walking[C]//IEEE International Conference on Intelligent Robots and Systems, Acropolis Convention Center Nice, 2008:3433-3440.
    [107] Taga G, Yamaguch I Y. Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment[J]. Biol Cybern, 1991, 65(3):147-159.
    [108] Bay J S, Hemam I H. Modelling of a neural pattern generatorwith coup led nonlinear oscillators[J]. IEEE Transactions on Biomedical Engineering, 1987, 34(4):297-306.
    [109] Pratt J, Chew C, Torres A, et al. Virtual model control: an intuitive app roach for bipedal locomotion[J]. The International Journal of Robotics Research, 2001, 20(2):129-143.
    [110] Kawaji S, Ogasawara K. Rhythm Based Cooperative Control of Biped Locomotion Robot[C]//The 2nd International Symposium on Humanoid Robot, 1999:148-155.
    [111] Park J H, Chung H. Hybrid Control for Biped Robots Using Impedance Control and Computed Torque Control[C]//IEEE International Conference on Robotics and Automation, 1999:1365-1370.
    [112]汤卿.类人机器人设计及步行控制方法[D].杭州:浙江大学,2009:13-19.
    [113] M.伍科布拉托维奇著.马培荪,沈乃熏译.步行机器人和动力型假肢[M].北京:科技出版社,1983:28-34.
    [114] Capi G, Yokata M, Mitobe K. A New Humanoid Robot Gait Generation based on Multi objective Optimization[C]//IEEE International Conference on Advanced Intelligent Mechatronics, 2005:450-454.
    [115]姜山,程君实,陈佳品,等.基于遗传算法的两足步行机器人步态优化[J].上海交通大学学报,1999,33(10):1280-1283.
    [116] Mu X, Wu Q. Synthesis of a complete sagittal gait cycle for a five link biped robot[J]. Robotica, 2003, 21(5):581-587.
    [117] Ryosuke T, Daisaku H, Keisuke S. Fast Running Experiments Involving a Humanoid Robot[C]//IEEE International Conference on Robotics and Automation, Kobe, Japan, 2009:1571-1577.
    [118] Pandu R V, Dilip K P. Soft computing-based gait planners for a dynamically balanced biped robot negotiating sloping surfaces[J]. Applied Soft Computing. 2009, 9:191-208.
    [119] Philipp M, Joel C, Satoshi K, et al. GPU accelerated Real-Time 3D Tracking for Humanoid Locomotion and Stair Climbing[C]//IEEE/RSJ InternationalConference on Intelligent Robots and Systems, 2007:463-470.
    [120] Fu C L, Chen K. Gait Synthesis and Sensory Control of Stair Climbing for a Humanoid Robot[J], IEEE Transaction on Industrial Electronics, 2008 :2111-2120.
    [121] Guan Y S, Neo E S, Kazuhito Y, et al. Stepping Over Obstacles With Humanoid Robots[J]. IEEE Transaction on Robotics, 2006:958-974.
    [122] S′ebastien L, Nacim R, Philippe F. Planning and Fast Re-Planning of Safe Motions for Humanoid Robots: Application to a Kicking Motion[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009:441-447.
    [123] Fumio K, Kiyoshi F, Hirohisa H, et al. Getting up Motion Planning using Mahalanobis Distance[C]//IEEE International Conference on Robotics and Automation, 2007:2540-2546.
    [124] Beno't L, Alain M, Olivier S. Transfer of Knowledge for a Climbing Virtual Human: a Reinforcement Learning Approach[C]//IEEE International Conference on Robotics and Automation, Kobe Japan, 2009:2119-2125.
    [125] Hitoshi A, Jean-Rémy C, Kazuhito Y. Whole-body motion of a Humanoid robot for passing through a door: Opening a door by impulsive force[C]//IEEE International Conference on Intelligent Robots and Systems. 2009:428-435.
    [126] Eiichi Y, Mathieu P, Jean-Paul L, et al. Whole-Body Motion Planning for Pivoting Based Manipulation by Humanoids[C]//IEEE International Conference on Robotics and Automation, Pasadena. 2008:3181-3187.
    [127] Zhao X, Huang Q, Peng Z, et al. Kinematics Mapping and Similarity Evaluation of Humanoid Motion Based on Human Motion Capture[C]//IEEE International Conference on Intelligent Robots and Systems, 2004:840-845.
    [128] Yokoyama K, Handa H, Isozumi T, et al. Cooperative Works by a Human and a Humanoid Robot[C]//IEEE International Conference on Robotics and Automation, 2003:2985-2991.
    [129] Hitoshi A, Sylvain M, Jean-Rémy C, et al. Dynamic Lifting by Whole Body Motion of Humanoid Robots[C]//IEEE International Conference on Intelligent Robots and Systems, 2008:668-676.
    [130] Teppei T, Atsushi K, Shunsuke K, et al. Analysis of Nailing Task Motion for a Humanoid Robot[C]//IEEE International Conference on Intelligent Robots and Systems, Acropolis Convention CenterNice, France, 2008:1570-1576.
    [131] Niku S B. Introduction to Robotics: Analysis, Systems, Application[M]. Prentice Hall, 2002:67-88.
    [132]董立志,孙茂相.基于实时障碍物预测的机器人运动规划[J].机器人,2000,22(1):12-16.
    [133]朱向阳,丁汉.凸多面体之间的伪最小平移距离[J].中国科学,E辑,2001,31(3):238-244.
    [134]孙增圻.机器人智能控制[M].太原:山西教育出版社,1995:433-450.
    [135]谢宏斌,刘国栋.动态环境中基于模糊神经网络的机器人路径规划的一种新方法[J].江南大学学报(自然科学版),2003,2(1):20-27.
    [136] Perez. Automatic planning of manipulator movements[J]. IEEE Transaction on Systems, Man and Cybernetics, 1981, 11(11):681-698.
    [137] Choset H, Nagatani K. Topological simultaneous location and mapping: toward exact localization without explicit localization[J]. IEEE Transaction on Robotics and Automation, 2001, 17(2):125-137.
    [138] Weber H. A motion planning and execution system for mobile robots driven by stepping motors[J]. Robotics and Autonomous Systems. 2000, 33(4): 207-221.
    [139]艾海舟,张拔.基于拓扑的路径规划问题的图形算法[J].机器人,1990, 12(5):20-24.
    [140] LaValle S M. Planning Algorithms[M]. University of Illinois. 2004:342-356.
    [141] Sabe K, Fukuchi M, Gutmann J S, et al. Obstacle avoidance and path planning for humanoid robots using stereo vision[C]//IEEE International Conference on Robotics and Automation, 2004:592-597.
    [142] Okada K, Ogura T, Haneda A, et al. Autonomous 3D walking system for a humanoid robot based on visual step recognition and 3D foot step planner[C]. Robotics and Automation, 2005:623-628.
    [143] Chestnutt J, Lau M, Cheung G, et al. Footstep Planning for the Honda ASIMO Humanoid[C]//IEEE International Conference on Robotics and Automation, 2005:629-634.
    [144] Ozawa R, Takaoka Y, Kida Y, et al. Using visual odometry to create 3D maps for online footstep planning[J]. Systems, Man and Cybernetics. 2005 :2643-2648.
    [145] Michel P, Chestnutt J, Kuffner J, et al. Vision-guided humanoid footstepplanning for dynamic environments[J]. Humanoid Robots, 2005:13-18.
    [146]夏泽洋,陈恳,熊璟,等.类人机器人运动规划研究进展[J].高技术通讯,2007,17(10):1092-1099.
    [147] Eiichi Y, Igor B, Claudia E, et al. Humanoid Motion Planning for Dynamic Tasks[C]//IEEE-RAS International Conference on Humanoid Robots, 2005:1-6.
    [148] Manuel M, Michael G, Sven H, et al. Task-level Imitation Learning using Variance-based Movement Optimization[C]//IEEE International Conference on Robotics and Automation, Kobe, Japan. 2009:1177-1184.
    [149] Francois K, Nicolas M, Sylvain M, et al. Optimization of Tasks Warping and Scheduling for Smooth Sequencing of Robotic Actions[C]//IEEE International Conference on Intelligent Robots and Systems, 2009:1609-1614.
    [150] Kagami S, Kanehiro F, Tamiya Y, et al. Auto Balancer: An online dynamic balance compensation scheme for humanoid robots[C]//Workshop Algorithmic Found, 2000:329-340.
    [151] Hurmuzlu Y, Moskowitz G D. Bipedal locomotion stabilized by impact and switching: Two and three dimensional, the element models[J]. Dynamics and Stability of Systems, 1987, 2:73-96.
    [152] Mousavi P N, Bagheri A. Mathematical simulation of a seven link biped robot on various surfaces and ZMP considerations[J]. Applied Mathematical Modelling, 2007:18-37.
    [153] ?rts P F, Chirstensen J, Nielsen J L, et al. Modelling and Control of a Biped Robot[R]. 2006: 23-36.
    [154] Morawski J M. A Simple Model of Step Control in Bipedal Locomotion[J]. IEEE Transactions on Biomedical Engineering, 1978:544-560.
    [155] Lobo M, Vandenberghe L, Boyed S, et al. Applications of second-order cone programming[J]. Linear Algebra Applicat, 1998, 284(1-3):193-228.
    [156] Park J Y, Haan J Y, Park F C. Convex Optimization Algorithms for Active Balancing of Humanoid Robots[J]. IEEE Transactions on Robotics, 2007, 23(4):817-822.
    [157]高会军,王常虹.不确定离散系统的鲁棒及H∞滤波新方法[J].中国科学, E辑,2003,33(8):695-706.
    [158] Lobo M S, Vandenverghe L, Boyd S, et al. Applications of second-order cone programming[J]. Linear Algebra Application, 1998:193-228.
    [159] Bai Y Q, Ghamiand M E. A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization[J]. SMA Journalon Optinization, 2004, 15(1):101-128.
    [160] Ishida T, Kuroki Y, Takahashi T. Analysis of Motion of a Small Biped Entertainment Robot[C]//International Conference on Intelligent Robots and Systems, 2004:142-147.
    [161] Mitsuharu M, Kenji K, Fumio K, et al. Motion Planning of Emergency Stop for Humanoid Robot by State Space Approach[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007:2986-2992.
    [162]胡寿松,王执铨,胡维礼.最优控制理论与系统[M].北京:科学出版社,2006:50-60.
    [163] Teo K L, Goh C J, Wong K H. A Unified Computational Approach to Optimal Control Problems [M]. Longman Scientific and Technical. 1991:265-271.
    [164] Lee H W J, Teo K L, Jennings LS, et al. Control parameterization enhancing technique for time optimal control problem [J]. Dynamical System, 1977, 6:243-261.
    [165] Teo K L, Jennings L S, Lee H W, et al. The Control Parameterization Enhancing Transform for Constrained Optimal Control Problems[J]. Journal of Australia Mathethatic Society, 1999, 40:314-335.
    [166] Liu X L, Duan G R, Teo K L. Optimal soft landing control for moon lander[J]. Automatica, 2008, 44:1097-1103.
    [167]单永正,段广仁.月球探测器软着陆最优控制问题研究[J].光学精密工程,2009,6:117-125.
    [168] Teo K L, Jennings L S. Nonlinear Optimal Control Problems with Continuous State Inequality Constraints[J]. Journal of Optimization Theory and Applications, 1989, 63:1-22.
    [169] Jennings L S, Teo K L. A Computational Algorithm for Functional Inequality Constrained Optimization Problems[J]. Automatica, 1990, 26:371-375.
    [170] Teo K L, Rehbock V, Jennings L S. A New Computational Algorithm for Functional Inequality Constrained Optimization Problems[J]. Automatics, 1993, 29:789-792.
    [171]张奇.非线性约束下的SQP算法的研究[D].青岛:青岛大学,2008:22-28.
    [172] Fletcher R, Leyffer S, Toint P L. On the global convergence of a trust-regionSQP-filter algorithm[J]. SLAM Journal on Optimization, 2002:44-59.
    [173] Ulbrich M, Ulbrich S, Vicentl L N. A globally convergent primal-dual interior filter method for nonconvex nonlinear programming[J]. Mathematical Programming, 2004, 100:379-410.
    [174] Guan Y S, Yokoi K, Tanie K F. Can humanoid robots overcome given obstacles[C]//IEEE International Conference on Robotics and Automation, 2005:1054-1059.
    [175] Kennedy J, Eberhart R C. Particle swarm optimization[C]//IEEE International. Conference on Neural Networks, 1995:1942-1948.
    [176] Chau K W. Application of a PSO-based neural network in analysis of outcomes of construction claims[J]. Automation in Construction, 2007, 16:642-646.
    [177] Kennedy J, Eberhart RC. A discrete binary version of the particle swarm algorithm[C]//Proceeding of Conference on Systems, Man, and Cybernetics, 1997:4104-4109.
    [178] Shi Y, Eberhart R C. A modified particle swarm optimizer[C]//IEEE International Conference on Evolutionary Computation, 1998:69-73.
    [179] Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization[C]//Proceding of Congress on Evolutionary Computation, 1999:1951-1957.
    [180] Lovbjerg M., Rasmussen T K, Krink T. Hybrid particle swarm optimiser with breeding and subpopulations[C]//Proceedings of the third Genetic and Evolutionary Computation Conference, 2001:569-573.
    [181]高芳.智能粒子群优化算法研究[D].哈尔滨:哈尔滨工业大学,2008: 42-57.
    [182]司书宾,孙树栋,徐娅萍.求解Job-Shop调度问题的多种群双倍体免疫算法研究[J].西北工业大学学报,2007,25(1):27-31.
    [183] Alba E, Luna F, Nebro A J, et al. Parallel Heterogeneous Genetic Algorithms for Continuous Optimization[J]. Parallel Computing, 2004, 30:699-719.
    [184] Goldberg D E. Genetic Algorithm in Search Optimization and Machine Learning[J], 1989:886-872.
    [185] Roussel L, Canudas-de-Wit C, Goswami A. Generation of Energy Optimal Complete Gait Cycles for Biped Robots[C]//IEEE International Conference onRobotics and Automation, 1998:1468-1476.
    [186] Yao X, Liu Y. A new evolutionary system for evolving artificial neural networks[J]. IEEE Transaction on Neural Networks, 1998:976-980.
    [187] Leung H F, Lam H K, Ling S H, et al. Tuning of the structure and parameters of a neural network using an improved genetic algorithm[J]. IEEE Transaction on Neural Networks, 2003, 14(3):79-88.
    [188] Bergh V D, Engelbrecht A. A new locally convergent particle swarm optimizer[C]//IEEE International Conference on Systems, 2002:246-252.
    [189] Rahul K J, Balvinder S, Dilip K P. On-line stable gait generation of a two-legged robotusing a genetic–fuzzy system[J]. Robotics and Autonomous Systems, 2005, 53: 15-35.
    [190]孙多青,霍伟.基于规则灵敏度的模糊逻辑系统结构简化方法[J].北京航空航天大学学报,2002,28(2):198-201.
    [191]周煦潼,施鹏飞.快速HSL彩色空间变换方法[J].上海交通大学学报, 1998,9:102-108.
    [192] Ren H E, Zhong Q B, Kang J F. Object Recognition Algorithm Research Based on Variable Illumination[C]//IEEE International Conference on Automation and Logistics, Shenyang, China, 2009:1609-1613.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700