用户名: 密码: 验证码:
拟南芥F-box基因AtPP2-B11的功能分析及苹果RING finger型泛素连接酶E3的家族分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泛素/26S蛋白酶体途径是一类重要的翻译后修饰过程,它能有效地调节功能蛋白质的选择性降解,是生命过程进行精确时空调控的重要环节之一。其中,泛素连接酶E3是在底物的特异性选择降解过程中作用最为关键成员。拟南芥基因组中大约5%的基因(大约1400多个基因)编码泛素连接酶。在众多的泛素连接酶类型中,F-box型和RING finger型是家族成员最多的两大类。本文通过对F-box和RING finger型基因的功能和结构的分析,揭示了泛素连接酶E3在基因表达调控中的重要作用。结果如下:
     (1)本文首先分析了一个拟南芥F-box类型蛋白的功能。利用生物信息学的方法,在拟南芥1488个泛素连接酶E3中分离到了31个含有DRE元件的E3,通过RT-PCR的方法确定了它们在干旱处理下的表达量变化情况,并从中挑出了一个受干旱诱导较明显的F-box基因AtPP2-B11进行了进一步的研究。
     (2)qRT-PCR的实验证明,AtPP2-B11受到干旱的诱导。GUS活性实验表明,AtPP2-B11基因上游启动子区域的DRE元件对于干旱响应起到了一定作用。同时,实验证明AtPP2-B11基因还受到ABA的部分诱导,表明AtPP2-B11基因可能是通过依赖ABA和不依赖ABA两种途径参与对干旱的响应。
     (3)将AtPP2-B11基因转入野生型拟南芥中进行干旱处理实验,发现超表达AtPP2-B11基因明显的减弱了植株的干旱抗性。qRT-PCR检测LEA14,COR15a,RD29A等下游干旱响应基因时发现,在干旱处理时下游基因的RNA水平均降低,干旱处理后下游基因发生了不同程度的下调,表明AtPP2-B11基因可能通过影响这些下游基因从而改变了植株的抗旱性。
     (4)通过酵母双杂交系统,我们以AtPP2-B11蛋白为诱饵,筛选了拟南芥干旱诱导的cDNA文库,共得到约20个阳性克隆,测序后发现可以与AtPP2-B11蛋白发生相互作用的蛋白包括LEA14,HSP70等蛋白。利用酵母双杂交和双分子荧光互补技术进一步分析发现,AtPP2-B11蛋白可以与LEA14蛋白发生相互作用,暗示了AtPP2-B11基因很可能作为一个负调因子,通过调节LEA14基因的活性来影响植株的干旱抗性。
     (5)另外,我们还利用生物信息学的方法对苹果中的RING finger型蛋白进行了数量和结构的预测及鉴定。我们发现在苹果的基因组中有688个RING finger结构域分布于634个RING型蛋白中。根据其结构特征我们将苹果中的688个RING finger结构域分为9大类:367个RING-H2,208个RING-HC,10个RING-C2,35个RING-v,1个RING-D,11个RING-S/T,2个RING-G,10个RING-mH2和44个RING-mHC。其中,前7类是在拟南芥中曾经出现过的,后2类是在苹果中首次发现的。结构分析描述了每一种RING型结构域的典型特征。同时还鉴定了RING型蛋白中除了RING结构域以外的其他结构域,为将来RING finger蛋白的功能研究奠定基础。
The ubiquitin (Ub)/26S pathway is a major system for protein degradation that is conserved in all eukaryotes cells. The specificity of ubiquitination is largely determined by the many isoforms of E3 that recruits specific target protein(s). In Arabidopsis thaliana more than 1400 genes (~5%of the proteome) encode subunits of the E3 ubiquitin ligases, which confer substrate specificity to the pathway. F-box and RING finger genes are the most common family genes in Arabidopsis. The fuction and structure analysis of F-box in Arabidopsis and RING finger proteins in apple provide valuable information for understanding the classification and putative functions of the E3 gene family in higher plants. The obtained results are as follows:
     (1) First, an F-box-containing gene was analyzed. Using bioinformatics approaches, 31 E3s containing DRE (dehydration responsive element) motif were isolated from 1488 E3s in Arabidopsis, in which an F-box gene (AtPP2-B11) were extremely induced by drought treatment.
     (2) GUS activity assay showed that the DRE motif in the promoter region of AtPP2-B11 played partial roles in drought response. AtPP2-B11 also showed slightly increased expression treated by ABA, indicating that AtPP2-B11 may respons to drought both in ABA-independent and ABA-dependent pathways.
     (3) Transgenic plants overexpressing AtPP2-B11 exhibited decreased drought tolerance. Quantitative RT-PCR showed that the expression levels of a number of key ABA and drought stress marker genes such as LEA14,COR15a,RD29A in transgeneic plants were altered in drought treatment.
     (4) Interactive proteins were screened from drought-treatment cDNA library with the full-length of AtPP2-B11 as bait protein by Yeast Two-Hybrid System. More than 80 positive clones were identified by PCR colony screening and the representative clones were sequenced. Among them 20 clones were selected which interacted with full-length AtPP2-B11. Further Yeast Two-Hybrid assay and Bimolecular Fluorescenc Complementation (BiFC) assay showed that AtPP2-B11 protein interacted with LEA14 protein, indicating that AtPP2-B11 gene may fuction as a novel drought tolerance repressor by regulating the level of LEA14.
     (5) In addition, we analyzed the RING finger proteins in apple genome which were recently secquenced. In our study, 688 RING domains in 663 predicted proteins were identified in apple. Based on the characteristics of RING domains, nine RING type were identified: 367 RING-H2, 208 RING-HC, 10 RING-C2, 35 RING-v, 1 RING-D, 11 RING-S/T, 2 RING-G, 10 RING-mH2 and 44 RING-mHC, in which the first seven types were decribed previously in Arabidopsis, while the latter two types were newly identified in apple. Proteins containing RING finger motifs were further classified into 57 groups according to the different known or unknown domains outside the RING domains.
引文
董发才,宋纯鹏。植物细胞中的泛素及其生理功能。植物生理学通讯,1999,35(1):54-59
    侯学文,郭勇。泛素与植物逆境响应。植物生理学通讯,1998,34(6):474-478
    焦姣,姚祝军。泛素调节的蛋白质降解-2004年诺贝尔化学奖成果简介,科技导报,2005,23(2)
    李炎武,谭卫兵,邝雪英,张伟。知识介绍:泛素调节的蛋白质降解——2004年诺贝尔化学奖简介,化学教育,2004年第11期
    刘欣,李云。转录因子与植物抗逆性研究进展。中国农学通报,2006,22(4):61-65
    马长乐,王萍萍,曹子谊。盐地碱蓬(suaeda salsa)APX基因的克隆及盐胁迫下的表达。植物生理与分子生物学报。2002,28(4):261-266
    汤章城。植物对水分胁迫的反应和适应性Ⅱ:植物对干旱的反应和适应性。植物生理学通讯。1983,3(4):1-7
    王高鸿,黄久常。蛋白质的选择性降解。生命科学,1999,11:24-30
    王少先,彭克勤,萧浪涛。逆境下ABA的积累及触发机制。植物生理学通讯。2003,10(39):413-419
    王子宁,张劲松,郭北海。小麦Na+/H+反转运蛋白基因的克隆和特性。植物学报。2002,44(10):1203-1208
    俞嘉宁,山仑。LEA蛋白与植物的抗旱性。生物工程进展。2002,22(2):10-14
    朱永侃。泛素调节的蛋白质降解,化学教学,2004(12)
    Akie Sasaki, Hiornori Itoh, Kenji Gomi, MiyaOk Uegueh-Tanaka, Kanako Ishiyama, Masatomo Kobyaashi, Dong-Hoon Jeong, Gynheung An, Hidemi Kitano, Motoyuki Ashikari and Makoto Mastuoka. Accumulation of Phosphoyrlated Repressor for Gibbeerllin Singaling in an F-box Mutant. Science, 2003, (299): 1896-1898
    Agarwal P., Agarwal, P. K., Nair, S., Sopory, S. K., Reddy, M. K.. Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity. Mol. Genet. Genomics, 2007, 277 (2): 189-198
    Agarwal P.K., Agarwal P., Reddy, M. K., Sopory, S. K.. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep., 2006, 25 (12): 1263-1274
    Allen M.D., Yamasaki, K., Ohme-Takagi, M., Tateno, M., Suzuki, M.. A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. Embo J., 1998, 17 (18): 5484-5496
    Anna-Chiaar Mustili, Sylvain Merlot, Alain Vavasseur, Farneesca Fenzi and Jerome Giarudat.Arabidopsis OSTI protein Kinase Mediates the Regulation of Sotmatal Aperture by Abscisic Acid and Acst Upstream of Reactive Oxygen Species Production. The Plant Cell, 2002, 14: 3089-3099
    Bachmair A., Novatchkova M., Potuschak T., Eisenhaber F.. ubiquitylation in plants: a post-genomic look at a post-translational modification. Trend Plant Sci., 2001, 6: 463-470
    Baehmai A., Novatchkova M., Potuschak T., Eisenhaber F.. Ubiquitylation in Plants: a post-genomic look at a posttranslational modifieation. Trends Plant Sci., 200l, 6: 463-70
    Bai C., Sen P. and Hofmann K.. SKP1 connects cell cyele regulators to the ubiquitin proteolysis machiney through a novel motif, the F-box. Cell, 1996, 86: 263-274
    Baker S.S., Wilhelm K.S., Thomashow M.F.. The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol. Biol., 1994, 24 (5): 701-13
    Basnayake B.M., Li D., Zhang H., Li G., Virk N., Song F.. Arabidopsis DAL1 and DAL2, two RING finger proteins homologous to Drosophila DIAP1, are involved in regulation of programmed cell death. Plant Cell Rep., 2011, 30 (1): 37-48
    Borden KL.. RING domains: master builders of molecular scaffoldsfl J. Mol.Biol., 2000, 295 (5): 1103-1112
    Bray E. A.. Molecular responses to water deficit. Plant Physiol., 1993, 103: 1035-1040 Bray E., Bailey-Serres J., Weretilnyk E.. Responses to abiotic stresses. In Biochemistry and Molecular Biology of Plants. Edited by Buchanan B., Gruissem W., Jones R Rockville: Ameriean Society of Plant Biologists, 2000, 1158-1203
    Bu Q., Li H., Zhao Q., Jiang H., Zhai Q., Zhang J., Wu X., Sun J., Xie Q., Wang D., Li C.. The Arabidopsis RING Finger E3 Ligase RHA2a is a novel positive regulator of abscisic acid signaling during seed germination and early seedling development. Plant Physiol., 2009, 150: 463-481
    Callis J., Carpenter T., Sun CW., Vierstra R.D.. Structure and evolution of genes encoding polyubiquitin and ubiquitin-like proteins in Arabidopsis thaliana ecotype Columbia. Genetics, 1995, 139 (2): 921-39
    Campbell S.A., Crone D.E., Ceccardi T.L., Close T.J.. A ca. 40 kDa maize (Zea mays L.) embryo dehydrin is encoded by the dhn2 locus on chromosome 9. Plant Mol. Biolo., 1998, 38: 417-423
    Capron A., Okresz L., Genschik P.. First glance at the plant APC/C, a highly conserved ubiquitin-protein ligase. Trends Plant Sci., 2003, 8 (2): 83-9
    Cebolla A., Vinzrdell J.M., Kiss E., Olah B., Roudier F., kondorosi A., Kondorosi E.. The mitotic inhibition ccs52 is required for endoreduplication and ploidy-dependent cell enlargement in plants. EMBO J., 1999, 18: 4467-4484
    Chae HS., Fauer F., Kieber JJ.. The eto1, eto2, and eto3 mutations and cytokinin treatment Increase ethylene biosynthesis in Aarbidopsis by increasing the stability of ACS protein. The Plant Cell, 2003, 15: 545-59
    Chaves MM., Maroco JP., Pereira JS.. Understanding plant responses to drought-from genes to the whole plant. Funct. Plant Biol., 2003, 30: 239-264
    Chen D., Molitor A., Liu C., Shen W.H.. The Arabidopsis PRC1-like ring-finger proteins are necessary for repression of embryonic traits during vegetative growth. Cell Res., 2010, 20 (12): 1332-44
    Chenna R., Sugawara H., Koike T., Lopez R., Gibson TJ., Higgins DG., Thompson JD.. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res., 2003, 31: 3497-3500
    Ciechanover A.. The ubiquitin-proteasome pathway on protein death and cell life. Embo. J., 1998, 17 (24): 7151-7160
    Close T.J., Meyer N.C., Radik J.. Nucleotide sequence of a gene encoding a 58.52 kilodalton barley dehydrin that lacks a serine tract. Plant Physiol., 1995, 107 (1): 289-290
    Clough R.C., Jordan-Beebe E.T., Lohman K.N., Marita J.M., Walker J.M.. Sequences Within both the N-and C-temrinal domains of phytochrome A are required for Pfr ubiquitination and degradation. Plant J., 1999, 17: 155-67
    Dahan J., Etienne P., Petitot A.S., Houot V., Blein J.P. and Suyt L.. Cryptogein aeffcts Expression of alpha3, alpha6 and betal 20S proteasome subunits encoding genes in tobacco. J. ExpP. Bot., 2001, 52: 1947-48
    Davies W.J., Zhang J. Root signals and the regulation of growth and development of plants in drying soil. Plant Mol.Boil., 1991, 42: 55-76
    de Nettancourt D.. Incompatibility in angiosperms. 1977 (Berlin: Springer-Verlag) Deshaies RJ. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell. Dev. Biol., 1999, 15: 435-67
    Devoto A., Nieto-Rostro M., Xie DX., Ellis C., Harntston R.. COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J., 2002, 32: 457-66
    Deyholos M, Fischer R, Galbraith DW.. A genomics approach towards salt stress tolerance. Plant Physiol. Biochem., 2001, 39: 295-311
    Dieterle M., Zhou Y.C., Schafer E., Funk M. Kretsch T.. EID1, an F-Box protein involved in phytochrome A-specific light signaling. Genes Dev., 2001, 15: 939-44
    Dietrich P., Hedrich R.. Interconversion of fast and slow gating modes of GCAC1, a guard cell anion channel. Planta, 1994, 195: 301-314
    Dill A, Thomas S., Hu J., Steber CM., Sun TP.. The Arabidopsis F-box protein SLEEPYItargets gibberellin signaling repressors for gibberellin-induced degradation. The Plant Cell, 2004, 16 (6): 392-405
    Disch S., Anastasiou E., Sharma V.K., Laux T., Fletcher J.C., Lenhard M.. The E3 ubiquitin ligase BIG BROTHER controls arabidopsis organ size in a dosage-dependent manner. Curr. Biol., 2006, 16 (3): 272-9
    Dong C.H., Agarwal M., Zhang Y., Xie Q., Zhu J.K.. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc. Natl. Acad. Sci. USA, 2006, 103 (21): 8281-6
    Downes B.P., Stupar R.M., Gingerich D.J., Vierstra R.D.. The HECT ubiquitinprotein ligase (UPL) family in Arabidopsis: UPL3 has a specific role in trichome development. Plant J., 2003, 35: 729-742
    Elsasser S., GaliR R., Schwickart M.. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat. Cell Bio., 2002, 4: 725-730
    Entani T., Takayama S., Iwano M., Shiba H., Che FS., Isogai A.. Relationship between polyploidy and pollen self-incompatibility phenotype in Petunia hybrids Vilm. Biosci Biotechnol. Biochem., 1999, 63: 1882-1888
    Feng S., Ma L., Wang X., Xie D., Dinesh-Kumar SP.. The COP9 signalosome interacts physically with SCFCOII and modulates jasmonate responses. The Plant Cell, 2003, 15: 1083-94
    Fukuda A., Nakamura A., Tanaka Y.. Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza Sativa. Biochem. Biophys. Acta., 1999, 1446: 148-155
    Fu H., Doelling JH., Arendt CS., Hochstrasser M., Vierstra RD.. Molecular organization of the 20S proteasome gene family from Arabidopsis thaliana. Genetics, 1998, 149: 677-92
    Fu H., Duelling JH., Rubin DM., Vierstra RD.. Structural and functional analysis of the six regulatory particle AAATPase subunits from the Arabidopsis 26S proteasome. Plant J., 1999, 18: 529-39
    Fu H., Reis N., Lee Y., Gliclcman MH., Vierstra RD.. Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome. EMBO J., 2001, 20: 7096-107
    Gagne J.M., Downes B.P., Shiu S.H., Durski A.M., Vierstra R.D. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc. Nati. Acad. Sci. USA, 2002, 99: 11519-11524
    Gao D., Wan L., Wei W.. Phosphorylation of Rictor at Thr1135 impairs the Rictor/Cullin-1 complex to ubiquitinate SGK1. Protein Cell, 2010, 1 (10): 881-5
    Gaxiola R.A., Rao R., Sherman A.. The Arabidopsis thaliana proton transporters AtNhx1 and Avp1 can function in cation detoxifyication in yease. Proc. Natl. Acad. Sci., 1999, 96: 1480-1485
    Glickman MH., Rubin DM., Coux O., Wefes I., Pfeifer G.. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell, 1998, 94: 615-23
    Gray W.M., Kepinskl S., Rouse D. Auxin regulates SCFTIR1-dependent degradation of Aux/IAA proteins. Nature, 2001, 414: 271-276
    Guo M., Rupe M.A., Zinselmeier C., Habben J., Bowers BA., Smith O.S. Allelic variation of gene expression in maize hybrids. The Plant Cell, 2004, 16, 1707-1716
    Guo H., Ecker JR.. Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell, 2003, 115: 667-77
    Hardtke C.S., Gohda, K., Osterlund M.T., Oyama T., Okada K., Deng X.W.. HY5 stability and activity in arabidopsis is regulated by phosphorylation in its COP1 binding domain. Embo J., 2000, 19 (18): 4997-5006
    Hardtke CS., Okamoto H., Stoop-Myer C., Deng XW.. Biochemical evidence for ubiquitin ligase activity of theArabidopsis COP1 interacting protein 8 (CIPB). Plant J., 2002, 30: 385-94
    Harmon F.G. and Kay S.A.. The F box protein AFR is a positive regulator of phytochrome A-mediated light signaling. Curr. Biol., 2003, 13: 2091-96
    Hartmann-Petersen R., Seeger M., Gordon C.. Transferring substrates to the 26S proteasome. Trends Biochem. Science, 2003, 28: 26-31
    Hannoufa A., Negruk V., Eisner G., Lemieux B. The CER3 gene of Arabidopsis thaliana is expressed in leaves, stems, roots, flowers and apical meristems. Plant J., 1996, 10: 459-467
    Hershko A. and Ciechauover A. The ubiquitin system. Annu. Rev. Biochem., 1998, 67: 425-479
    Hochstrasser M.. Ubiquitin-dependent protein degradation. Annu. Rev. gene, 1996, 30: 405-439
    Holm M., Ma LG., Qu, Deng XW.. Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression inArabidopsis. Genes Dev., 2002, 16: 1247-59
    Holmberg N. Improving stress tolerance in plants by gene transfer. Trends Plant Sci., 1998, (3): 1361-1366
    Kang J., Choi H., Im M., Kim S.. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. The Plant cell, 2002, 14: 343-357
    Kawasaki T., Nam J., Boyes D.C., Holt B.F., Hubert D.A., Wiig A., Dangl J.L.. A duplicated pair of Arabidopsis RING-finger E3 ligases contribute to the RPM1- and RPS2-mediated hypersensitive response. Plant J., 2005, 44 (2): 258-70
    Kazuo Shinozaki, Kazuko Yamaguchi-Shinozaki, Motoaki Seki.. Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology, 2003, 6: 410-417
    Kim H.S. and Delaney T.P. Arabidopsis SON1 is an F-box protein that regulates a novel induced defense response independent of both salicylic acid and systemic acquired resistance. The Plant Cell, 2002, 14: 1469-1482
    Kim M., Ahu JW., Jin UH., Choi D., Paek KH., Pai HS.. Activation of the programmed cell death pathway by inhibition of proteasome function in plants. J. Biol. Chem., 2003, 278: 19406-15
    Kinoshita T., Nishimura M., Shimazaki K.. Cytosolic concentration of Ca-2C regulates the plasma membrane HCATPase in guard cells of fava bean. The Plant Cell, 1995, 7: 1333
    Kitagawa M., Hatakeyama S., Shirane M., Matsunoto M., Ishida N., Hattori K., Nakamichi I., Kikuchi A., Nakayama K., Nakayama K.. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis ofβ-catenin. EMBO J., 1999, 18: 2401-2410
    Ko J., Yang S., Han K.. Upregulation of an Arabidopsis Ring-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J., 2006, 47: 343-355
    Kopito RR., Aggresomes.. Inclusion bodies and protein aggregation. Trends Cell Biol., 2000, 10: 524-30
    Kosarev P., Mayer K.F.X., Hardtke C.S.. Evaluation and classification of RING-finger domains encoded by the Arabidopsis genome. Genome Biol., 2002, 3 (4): 0016.1-0016.12
    Kostova Z., Wolf DH.. For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection. EMBO J., 2003, 22: 2309-17
    Kraft E., Bostick M., Jacobsen S.E., and Callis J.. ORTHlVIM proteins that regulate DNA methylation are functional ubiquitin E3 ligases. Plant J., 2008, 56: 704-715
    Krebs JA., Wu Y., Chang HS., Zhu T., Wang X., Harper J.. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol., 2002, 130: 2129-2141
    Kumar A., Paietta J.V.. An additional role for the F-box motif: Gene regulation within the Neurosporacrassa sulfur control network. Proc. Natl. Acad. Sci. USA, 1995, 95: 2417-2422
    Kuroda H., Takahashi N., Shimada H., Seki M., Shinozaki K., Matsui M.. Classification and expression analysis of Arabidopsis F-box-containing protein genes. Plant Cell Physiol., 2002, 43: 1073-1085
    Lai J., Chen H., Teng K., Zhao Q., Zhang Z., Li Y., Liang L., Xia R., Wu Y., Guo H., Xie Q.. RKP, a RING finger E3 ligase induced by BSCTV C4 protein, affects geminivirus infection by regulation of the plant cell cycle. Plant J., 2009, 57 (5): 905-17
    Lai Z., Ma W., Han B., Liang L., Zhang Y., Hong G. and Xue Y. An F-box gene linked to the self-incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum. Plant Mol. Biol., 2002, 50: 29-42
    Lechner A., Leech C., Abraham E., Nolan A., Habener J.. Nestin-positive progenitor cells derived from adult human pancreatic islets of Langerhans contain side population (SP) cells defined by expression of the ABCG2 (BCRP1) ATP-binding cassette transporter. Biochem. Biophysi. Res. Commu., 2002, 293: 670-674
    Lee HJ., Xiong LM., Gong ZZ., Ishitani M., Stevenson B., Zhu JK.. The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays coldregulated nucleo-cytoplasmic partitioning. Genes Dev., 2001, 15: 912-24
    Li H., Jiang H., Bu Q., Zhao Q., Sun J., Xie Q., Li C.. The Arabidopsis RING Finger E3 Ligase RHA2b Acts Additively with RHA2a in Regulating Abscisic Acid Signaling and Drought Response. Plant Physiol., 2011, 156 (2): 550-63
    Lin S.S., Martin R., Mongrand S., Vandenabeele S., Chen K.C., Jang I.C., Chua N.H.. RING1 E3 ligase localizes to plasma membrane lipid rafts to trigger FB1-induced programmed cell death in Arabidopsis. Plant J., 2008, 56 (4): 550-61
    Liu J., Zhang Y., Qin G., Tsuge T., Xie Q., Gu H., Qu L.J.. Targeted degradation of the cyclin-dependent kinase inhibitor ICK4/KRP6 by RING-type E3 ligases is essential for mitotic cell cycle progression during Arabidopsis gametogenesis. The Plant Cell, 2008, 20 (6): 1538-54
    Liu L., Lomonossoff G.. Agroinfection as a rapid method for propagating Cowpea mosaic virus-based constructs. J. Virol. Methods, 2002, 105 (2): 343-8
    Lopez-Molina L., Mongrand S., Kinoshita N., Chua NH.. AFP is a novel negative regulator of ABA signaling that promotes ABIS protein degradation. Genes Dev., 2003, 17: 410-18
    Lowe J., Stock D., Jap B., Baumeister W., Huner R.. Crystal structure of the 20S proteasome from the archaeon T. acodphilum at 3.4 A resolution. Scirnce, 1995, 268: 533-539
    Luo H., Laluk K., Lai Z., Veronese P., Song F., Mengiste T.. The Arabidopsis Botrytis Susceptible1 Interactor defines a subclass of RING E3 ligases that regulate pathogen and stress responses. Plant Physiol., 2010, 154 (4): 1766-82
    Mas P., Kim W.Y., Somers D.E., Kay S.A.. Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature, 2003, 26: 567-570
    Magome H., Yamaguchi S., Hanada A., Kamiya Y., Oda K.. dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J., 2004, 37: 720-729
    Molnar G., Bancos S., Nagy F., Szekeres M.. Characterisation of BRH1, a brassinosteroid responsive RING-H2 gene from Arabidopsis thaliana. Planta, 2002, 215 (1): 127-33
    Moon J., Parry G., Estelle M.. The ubiquitin-proteasome pathway and plant development. ThePlant cell, 2004, 16: 3181-3195
    Nambara E., Keith K., Mccourt P., Naito S.. Isolation of an internal deletion mutant of the Arabidopsis thaliana ABI3 gene. Plant Cell Physiol., 1994, 35: 509-513
    Nambara E., Hayama R., Tsuchiya Y., Nishimura M., Kawaide H., Kamiyab Y., Naitoa S.. The Role of ABI3 and FUS3 Loci in Arabidopsis thaliana on Phase Transition from Late Embryo Development to Germination. Development Biol., 2000, 220: 412-423
    Narusaka Y., Nakashima K., Shinwari ZK., Sakuma Y., Furihata T., Abe H., Nanisaka M., Shinozaki K., Yamaguchi-Shinozaki K.. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J., 2003, 34: 137-148
    Nelson D.C., Lasswell J., Rogg L.E., Cohen M.A. Bartel B.. FICFI, a clockcontrolled gene that regulates the transition to flowering in Arabidopsis. Cell, 2000, 101: 331-40
    Nihal Dharmasiril, Sunethra Dharmasiril and Mark Estellel. The F-box protein TIR1 is an auxin receptor. Nature, 2005, 435: 441-445
    Nodzon L.A., Xu W.H., Wang Y., Pi L.Y., Chakrabarty P.K., Song W.Y.. The ubiquitin ligase XBAT32 regulates lateral root development in Arabidopsis. Plant J., 2004, 40 (6): 996-1006
    Ohno R., Takumi S., Nakamura C.. Kinetics of transcript and protein accumulation of a low-molecular-weight where LEAD-11 dehydrin in response to low temperature. J. Plant Physiol., 2003, 160: 193-200
    Osterlund MT., Hardtke CS., Wei N., Deng XW.. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature, 2000, 405: 462-66
    Pintard L., Willems A., Peter, M.. Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family. Embo J., 2004, 23 (8): 1681-7
    Patton E.E., Willems A.R., Tyers M.. Combinatorial control ubiquitin-dependent proteolysis: don't Skp the F-box hypothesis. Trends Genet., 1998, 14: 236-243
    Peart JR., Lu R., Sadanandom A., Malcuit I., Moffett P.. Ubiquitin ligase-associated protein SGTl is required for host and nonhost disease resistance in plants. Proc. Natl. Acad. Sci. USA, 2002, 99: 10865-69
    Pickart C.M.. Mechanisms underlying ubiquitination. Annu. Rev. Biochem., 2001, 70: 503-33 Pla M., Gomez J., Goday A.. Regulation of the abscisic acid responsive gene rap28 in maize viviparous mutants. Mol. Gen. Genet., 1991, 230:394-300
    Qiao H., Wang H., Zhao L., Zhou J., Huang J., Zhang Y., Xue Y.. The F-box protein AhSLF-S2 physically interacts with S-RNases that may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum. The Plant Cell, 2004a, 16: 582-595
    Qiao H., Wang F., Zhao L., Zhou J., Lai,Zhang Y., Robbies T.P. and Xue Y.. The F-Box protein AhSLF-S2 controls the pollen function of S-RNase-based self-incompatibility. The Plant Cell, 2004b, 16: 2307-2332
    Qin F., Sakuma Y., Tran L.S., Maruyama K., Shinozaki K., Yamaguchi-Shinozaki K.. Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. The Plant Cell, 2008, 20 (6): 1693-707
    Ray A., Bressan, Paul M., Hasegawa, Jian-Kang Zhu. Repression of stress-responsive genes by FIERY2, a novel transcriptional regulator in Arabidopsis. PNAS, 2002, 16, 10: 99-10904
    Risseeuw E., Daskalchuk T., Banks T., Liu E., Cotelesage J., Hellmann H., Estelle M., Somers D., Crosby W.. Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis. Plant J., 2003, 34: 753-767
    Roig-Villanova I., Bou J., Sorin C., Devlin P.F., Martinez-Garcia J.F.. Identification of primary target genes of phytochrome signaling. Early transcriptional control during shade avoidance responses in Arabidopsis. Plant Physiol., 2006, 141 (1): 85-96
    Ryu MY., Cho SK., Kim WT.. The Arabidopsis C3H2C3-type RING E3 ubiquitin ligase AtAIRP1 is a positive regulator of an abscisic acid-dependent response to drought stress. Plant Physiol., 2010, 154: 1983-1997
    Saijo Y., Sullivan JA., Wang H., Yang J., Shen Y.. The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HYS activity. Genes Dev., 2003, 17: 2642-47
    Sakuma Y., Liu Q., Dubouzet J.G., Abe H., Shinozaki K., Yamaguchi-Shinozaki K.. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun., 2002, 290 (3): 998-1009
    Sasaki A., Itoh H., Gomi K., Ueguchi-Tanaka M., Ishiyama K.. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science, 2003, 299: 1896-98
    Sato T., Maekawa S., Yasuda S., Sonoda Y., Katoh E., Ichikawa T., Nakazawa M., Seki M., Shinozaki K., Matsui M., Goto D.B., Ikeda A., Yamaguchi J.. CNI1/ATL31, a RING-type ubiquitin ligase that functions in the carbon/nitrogen response for growth phase transition in Arabidopsis seedlings. Plant J., 2009, 60 (5): 852-64
    Schroeder JI., Raschke K., Neher E.. Voltage dependence of KC channels in guard cell protoplasts. Proc. Natl. Acad. Sci., 1987, 84: 4108-12
    Schroeder JI., Hagiwara S.. Cytosolic calcium regulates ion channels in the plasma membrane of ircia faba guard cells. Nature, 1989, 338: 427-30
    Schultz E.A., Haughn G.W.. LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. The Plant Cell, 1991, 3: 771-781
    Schwechheimer C., Serino G., Callis J., Crosby W.L., Lyapina S., Deshaies R., Gray W., Estelle M., Deng X.W.. Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIR1 in mediating auxin response. Scinece, 2001, 292: 1379-1382
    Schwechheimer C., Serino G., Deng X.W.. Multiple ubiquitin ligasemediated processes require COP9 signalosome and AXR1 function. The Plant Cell, 2002, 14: 2553
    Seki M., Narusaka M., Ishida J., Naqjo T., Fujita M., Oono Y., Kamiya A., Nakajima M., Enju A., Sakurai T.. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold, and high-salinity stresses using a full-length cDNA microarray. Plant J., 2002, 31: 279-292
    Seki M., Ishida J., Narusaka M., Fujita M., Nanjo T., Umezawa T., Kamiya A., Nakajima M., Enju A., Sakurai T.. Monitoring the expression pattern of ca. 7000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integ Genom., 2002, 2: 282-291
    Seki M., Kamei A.,Yamaguchi Shinozaki K., Shinozaki K.. Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr. Opin. Biotechnol., 2003, 14: 194-199
    Seo HS., Yang JY., Ishikawa M., Bolle C., Ballesteros ML., Chua NH.. LAFl ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPAT. Nature, 2003, 423: 995-99
    Serino G., Deog X.W.. The COP9 signalsome: regulating plant development through control of proteolysis. Annu. Rev. Plant Biol., 2003, 54: 165-82
    Shi W.M., Muramoto Y., Ueda A.. Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene, 2001, 273 (1): 23-27
    Shimazaki K., Iino M., Zeiger E.. Blue light-dependent proton extrusion by guard-cell protoplasts of Vicia faba. Nature, 1986, 319: 324-26
    Shinozaki K., Yamaguchi-Shinozaki K.. Molecular responses to drought and cold stress. Curr. Opin. Biotechnol., 1996, 2 (2): 161-167
    Shinozaki K., Shinozaki K.Y.. Gene expression and signal transduction in water stress response. Plant Physiol., 1997, 115: 327-334
    Shinozaki K., Yamaguchi-Shinozaki K.. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol., 2000, 3: 217-223
    Sijacic P., Wang X., Skirpau A. L., Wang Y., Dowd, P.E., McCubbin, A.G., Huaug, S., Kao, T.H.. Identification of the pollen determinant of S-RNase-mediated self-incompatibility.Nature, 2004, 429: 302-305
    Smalle J., Vierstra R.D.. The ubiquitin 26S proteasome proteolytic pathway. Annu. Rev. Plant Biol., 2004, 55: 555-590
    Smalle J., Kurepa J., Yang P., Emborg TJ., Babyichuk E.. The pleiotropic role of the 26S proteasome subunit RPN10 in Arabidopsis thaliana growth and development supports a substratespecific function in abscisic acid signaling. The Plant Cell, 2003, 15: 965-80
    Somers D.E., Schultz T.F., Milnamow M., Kay S.A.. ZEITLUPE encode a novel clock-associated PAS protein from Arabidopsis. Cell, 2000, 101: 319-329
    Son O., Cho S.K., Kim E.Y., Kim W.T.. Characterization of three Arabidopsis homologs of human RING membrane anchor E3 ubiquitin ligase. Plant Cell Rep., 2009, 28 (4): 561-9
    Sparkes I.A., Hawes C., Baker A.. AtPEX2 and AtPEX10 are targeted to peroxisomes independently of known endoplasmic reticulum trafficking routes. Plant Physiol., 2005, 139 (2): 690-700
    Stary S., Yin X.J., Potuschak T., Schlogelhofer P., Nizhynska V., Bachmair A.. PRT1 of Arabidopsis is a ubiquitin protein ligase of the plant N-end rule pathway with specificity for aromatic amino-terminal residues. Plant Physiol., 2003, 133 (3): 1360-6
    Stone S.L., Anderson E.M., Mullen R.T., Goring D.R.. ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. The Plant Cell, 2003, 15: 885-898
    Stone S.L., Hauksdottir H., Troy A., Herschleb J., Kraft, and Callis J.. Functional analysis of the RING-type ubiquitin ligase family Arabidopsis. Plant Physiol., 2005, 137: 13-30
    Stone S., Williams L., Farmer L., Vierstra R., Callis J.. KEEP ON GOING, a RING E3 ligase Essential for Arabidopsis growth and development, is involved in abscisic acid signaling. The Plant Cell, 2006, 34: 3415-3428
    Suzuki G., Yanagawa Y., Kwok SF., Matsui M., Deng XW.. Arabidopsis COP10 is a ubiquitin-conjugating enzyme variant that acts together with COP1 and the COP9 signalosome in repressing photomorphogenesis. Genes Dev., 2002, 16: 554-59
    Takai R., Matsuda N., Nakano A., Hasegawa K., Akimoto C.. ELS, a rice N-acetylchitooligosaccharide elicitor-responsive RING-H2 finger protein, is a ubiquitin ligase which functions in vitro in cooperation with an elicitor-responsive ubiquitin-conjugating enzyme, Os UBCSb. Plant J., 2002, 30: 447-55
    Takumi S., Koike A., Nakata M., Kume S., Ohno R., Nakamura C.. Cold-specific and light-stimulated expression of a wheat (Triticum aestivum L.) Cor gene Wcor15 encoding a chloroplast-targeted protein. J. Exp. Bot., 2003, 54 (391): 2265-74
    Uno Y., Furihata T., Abe H., Yoshida R., Shinozaki K., Yamaguchi-Shinozaki K.. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci.USA, 2000, 97: 11632-11637
    Urao T., Yamaguchi-Shinozaki K., Urao S.. An Arabidopsis MYB homolog is induced by dehydration stress and its gene-product binds to the conserved MYB recognition sequence. The Plant Cell, 1993, 5 (11): 1529-1539
    Ushijima K.,Sassa H., Dandekar A.M., Gradziel T.M., Tao R., Hirano H.. Structural and transcriptional analysis of the self-incompatibility locus of almond: identification of a pollen-expressed F-box gene with haplotype-specific polymorphism. The Plant Cell, 2003, 15: 771-81
    Velasco R., Zharkikh A., Affourtit J., Dhingra A., Cestaro A., Kalyanaraman A., Fontana P., Bhatnagar SK., Troggio M., Pruss D., Salvi S., Pindo M., Baldi P., Castelletti S., Cavaiuolo M., Coppola G., Costa F., Cova V., Dal Ri A., Goremykin V., Komjanc M., Longhi S., Magnago P., Malacarne G., Malnoy M., Micheletti D., Moretto M., Perazzolli M., Si-Ammour A., Vezzulli S., Zini E., Eldredge G., Fitzgerald LM., Gutin N., Lanchbury J., Macalma T., Mitchell JT., Reid J., Wardell B., Kodira C., Chen Z., Desany B., Niazi F., Palmer M., Koepke T., Jiwan D., Schaeffer S., Krishnan V., Wu C., Chu VT., King ST., Vick J., Tao Q., Mraz A., Stormo A.. The genome of the domesticated apple (Malus x domestica Borkh.). Nat. Genet, 2010, 42: 833-839
    Verma R., Aravind L., Oania R., McDonald WH., Yates JR.. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science, 2002, 298: 611-15
    Verma R., Chen S., Feldman R., Schieltz D., Yates J.. Proteasomal proteomics: Identification of nucleotidesensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell, 2000, 11: 3425-39
    Vierstra R.D.. Proteolysis in plants: mechanisms and functions. Plant Mol. Biol., 1996, 32: 275-302
    Vierstra R.D. The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends in Plant Sci., 2003, 8: 135-142
    Volker Haake., Daniel Coo, JoseLuis Riechmann, Omaira Pineda, Michael F., Thomashow, James Z., Zhang P. Transcription Factor CBF4 Is a Regulator of Drought Adaptation in Arabidopsis. Plant Physiol., 2002, 130: 639-648
    Wang KL., Yoshida H., Lurin C., Ecker JR.. Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature, 2004, 428: 945-950
    Wang L., Dong L., Zhang Y. E., Zhaog Y., Wu W., Deng X.W., Xue Y. Genome-wide analysis of S-locus F-box -like genes in Arabidopsis thaliana. Plant Mol. Biol., 2004, 56: 929-945 Wang Y., Wang X., Skirpan A.L., Kao T.H.. S-RNase-mediated self-incompatibility. J. Exp. Bot., 2003, 54: 115-22
    Wang S., Yang S., Yin Y., Guo X., Wang S., Hao D.. An in silico strategy identified the target gene candidates regulated by dehydration responsive element binding proteins (DREBs)in Arabidopsis genome. Plant Mol. Biol., 2009, 69: 167-178
    Wang W., Altman B.V.. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 2003, 218: 1-14
    Ward JM., Pei Z-M., Schroeder JI.. Roles of ion channels in initiation of signal transduction in higher plants. The Plant Cell, 1995, 7: 833-44
    Welin B.V., Olson A., Nylander M.. Characterization and differential expression of dhn/lea/rab2like genes during cold acclimation and drought stress in Arabidopsis thaliana. Plant Mol.Biol., 1994, 26 (1): 131-144
    Wilkinson M., Silva ED., Zachgo S., Saedler H., Schwarz-Sommer Z.. CHORIPETALA and DESPENTEADO: general regulators during plant development and potential floral targets of FIMBRIATA-mediated degradation. Development, 2000, 127: 3725-34
    Wilson C., Voronin V., Touraev A., Vicente O., Heberle-Bors E.. A Developmentally Regulated MAP Kinase Activated by Hydration in Tobacco Pollen. The Plant Cell, 1997, 19: 2093-2100
    Wing S.S.. Deubiquitinating enzymes-the importance of driving in reverse along the ubiquitin proteasome pathway. Int. J. Biochem. Cell Bio., 2003, 35: 590-605
    Woffenden BJ., Freeman TB., Beers EP.. Proteasome inhibitors prevent tracheary element differentiation in Zinnia mesophyll cell cultures. Plant Physiol., 1998, 118: 419-30
    Woo HR., Chung KM., Park JH., Oh SA., Ahn T., Hong SH., Jang SK., Nam HG.. ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. The Plant Cell, 2001, 13: 1779-1790
    Wu S.J., Ding L., Zhu J.K.. SOS1, a genetic locus essential for salt tolerance and potassium acquisition. The Plant Cell, 1996. 8: 287-293
    Xie Q., Guo HS., Dallman G., Fang S., Weissman AM., Chua N.H.. SINATS promotes ubiquitin-related degradation of NACl to attenuate auxin signals. Nature, 2002, 419: 167-170
    Xiong L., Zhu J.K.. Abiotic stress signal transduction in plants: molecular and genetic perspectives. Physiol. Plant, 2001, 112: 152-166
    Xiong L., Lee H., Ishitani M., tanaka Y., Stevenson B., Koiwa H., Bressan R., Hasegawa P.. Repression of stress-responsive genes by FIERY2, a novel transcriptional regulator in Arabidopsis. J. Plant Physiol., 2003, 160: 193-200
    Xiong L., Lee H., Ishitani M., Tanaka Y., Stevenson B., Koiwa H., Kepinskil S., Leyser O.. The Arabidopsis F-box protein T1R1 is an auxin receptor. Nature, 2005, 435: 446-451
    Xu D., Duan X., Wang B., Hong B., Ho T., Wu R.. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol., 1996, 110: 249-257
    Xu L., Liu F., Lechner E., Genschik P., Crosby WL., Ma H., Peng W., Huang D., Xie D.. The SCFCOL1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. The Plant Cell, 2002, 14: 1919-1935
    Xu R., Li Q.Q.. A RING-H2 zinc-finger protein gene RIE1 is essential for seed development in Arabidopsis. Plant Mol. Biol., 2003, 53 (1-2): 37-50
    Yaeno T., Iba K.. BAH1/NLA, a RING-type ubiquitin E3 ligase, regulates the accumulation of salicylic acid and immune responses to Pseudomonas syringae DC3000. Plant Physiol., 2008, 148 (2): 1032-41
    Yamaguchi-Shinozaki K., Shinozaki K.. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The Plant Cell, 1994, 6 (2): 251-64
    Yamane H., Ikeda K., UshUima K., Sassa H., Tao R.. A pollen-expressed gene for a novel protein with an F-box motif that is very tightly linked to a gene for S-RNase in two species of cherry, Prunus cerasus and P. avium. Plant Cell Physiol., 2003, 44: 764-779
    Yanagawa Y., Hasezawa S., Kumagai F., Oka M., Fujimuro M.. Cell cycle dependent dynamic change of 26S proteasome distribution in tobacco BY-2 cells. Plant Cell Physiol., 2002, 43: 604-13
    Yang M., Hu Y., Lodhi M. The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation. Proc. Natl. Acad. Sci. USA, 1999, 96: 11416-21
    Yan J., Wang J., Li Q., Hwang J-R., Patterson C., Zhang H.. AtCHIP, a U-box-containing E3 ubiquitin ligase, plays a critical role in temperature stress tolerance in Arabidopsis. Plant Physiol., 2003, 132:1-9
    Yan N., Doelling JH., Falbel TG.. The ubiquitin-specific protease family from Arabidopsis AtUBP1 and 2 are required for the resistance to the amino acid analog canavanine. Plant Physiol., 2000, 124: 1828-1843
    Yi C., Deng X.W.. COP1-from plant photomorphogenesis to mammalian tumorigenesis. Trends Cell Biol., 2005, 15:618-625
    Zhang H., Wang J., Nickel U.. Cloning and expression of an Arabidopsis gene encoding a putative peroxisomal ascorbate peroxidase. Plant Mol.Biol., 1997, 34 (6): 967-971
    Zhang Y., Yang C., Li Y., Zheng N., Chen H., Zhao Q., Gao T., Guo H., Xie Q.. SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis.. The Plant Cell, 2007, 19 (6): 1912-29
    Zhang X., Garreton V., Chua NH.. The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. The Plant Cell, 2005, 17: 3422-3435
    Zhao DZ., Yu QL., Chen M., Ma H.. The ASKl gene regulates B function gene expression in cooperation with UFO and LEAFY in Arabidopsis. Development, 2001, 128: 2735-46
    Zhizhong Gong, Teresa Morales-Ruiz, Rafael R Ariza, Teresa Roldan-Arjona, Lisa David, Jian-Kang Zhu. ROSl, a Repressor of Transcriptional Gene Silencing in Arabidopsis, Encodes a DNA Glycosylase/Lyase. Cell, 2002, 111: 803-814
    Zhu J.K. Salt and drought stress signal transduction in plants. Ann. Rev. Plant Biol., 2002, 53: 247-273
    Zolman B., Montoe-Augutus M., Silva I., Bartel B.. Identification and Functional Characterization of Arabidopsis PEROXIN4 and the Interacting Protein PEROXIN22. The Plant Cell, 2005, 17: 3422-3435

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700