用户名: 密码: 验证码:
堆肥对菲及三环唑污染土壤修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Investigation in Remediation of Phenanthrene-and Tricyclazole-contaminated Soil Using Compost
  • 作者:刘击
  • 论文级别:博士
  • 学科专业名称:微生物学
  • 学位年度:2007
  • 导师:闵航
  • 学科代码:071005
  • 学位授予单位:浙江大学
  • 论文提交日期:2007-11-01
摘要
作为一种废弃物资源化技术,堆肥及其产品广泛应用于农、林业生产,而且日益显示出在污染土壤的修复中具有巨大潜力。本文主要对利用堆肥进行污染环境的修复等相关问题进行了较为系统的研究。文中详细分析了城市生活垃圾堆肥化过程,对比研究了城市生活垃圾堆肥(CMSW)和蘑菇堆肥(SMC)对多环芳烃菲和三环唑污染土壤的修复效果,初步研究了堆肥修复污染土壤的动力学过程、污染物相互作用等实际问题,并应用修复样品中GST和C23O酶活性及其基因变化情况评价了修复过程的演化。主要结果如下:
     1.对好氧堆肥过程中各种物理化学参数、指标酶活性以及微生物数量和群落结构的研究表明,堆肥过程中生物酶活性和微生物群落结构、数量随堆肥温度变化而改变。进入稳定期后,堆肥中物质组成趋于稳定、总体代谢活性及各种酶活性达到极大值,微生物种类、数量显著高于土壤。此时堆肥可以用于污染土壤的生物修复。
     2.利用CMSW和SMC对不同浓度菲及三环唑污染土壤进行修复。结果表明,2种堆肥均能消除菲降解的延滞期、提高菲降解的速度,促进菲在土壤中的降解过程。
     对于极性较强的污染物三环唑(pKa=1.4),其在土壤以及土壤/CMSW混合物中没有明显降解。而土壤/SMC体系中,不同初始浓度的三环唑降解率平均提高15%,且其降解曲线均为直线。相比于其它堆肥,SMC更适合于各种有机污染物污染土壤的修复。另外,三环唑降解速率随其初始浓度提高而减小,推测高浓度的三环唑可抑制相应降解微生物的生长和活性。
     3.三环唑在较低浓度(30 mg L~(-1))时可对菲降解菌株ZX4的生长产生抑制。随着三环唑浓度上升,菲降解微生物生长延滞期增长,生长速率和生长量显著降低。当其浓度增至60 mg L~(-1)时,能显著抑制各种菲降解微生物的生长。对ZX4和M1中菲降解关键酶分析表明,三环唑能对菲降解初始关键酶(菲双加氧酶)活性产生显著的抑制,这种抑制作用极有可能是由结构类似分子之间的相互竞争所引起。因而加入60 mg kg~(-1)三环唑后,菲污染士壤中PAH降解微生物生长延滞期增加了7d,且生长速度显著降低。而土壤/SMC体系中,三环唑并未对降解微生物生长产生明显的影响。
     三环唑能显著抑制土壤中菲的降解过程。含有60 mg kg~(-1)三环唑的土壤中,菲降解延滞期增至14d,随后菲浓度呈直线下降。而对照土壤中,菲浓度在前7d内无显著改变,随后呈指数降低。
     土壤/SMC体系中,菲在对照和复合污染样品中均呈指数降解的趋势,其降解曲线基本吻合。且与培养基利土壤中不同,土壤/SMC体系中三环唑对菲降解未产生显著影响。
     三环唑对菲降解的抑制作用随环境中的微生物多样性增加而减小,同时各污染物的降解速度与微生物多样性之间表现为一定的正相关性。表明微生物多样性的增加能降低污染物之间的相互作用,提高污染物的降解速度。
     4.对比过氧化氢酶、多酚氧化酶、呼吸强度以及PAH降解微生物数量可见,SMC能显著增加土壤中各种生物活性,而对PAH降解微生物数量没有显著影响。另外,土壤及土壤/SMC体系中PAH降解微生物数量受环境中污染物种类和浓度的显著影响。过氧化氢酶、多酚氧化酶和呼吸强度随污染物不同浓度而有所差异,但并不显著。
     对菲和三环唑吸附量的研究表明,SMC仅在一定程度上增加土壤中的菲和三环唑的吸附比例,并未产生显著的影响。
     5.通过MPN-PCR对C23O基因的研究表明,菲污染样品中C23O变化趋势与PAH降解微生物数量具有显著的正相关性(R~2=0.871,p<0.01),其能很好地反映样品中菲整体的降解情况。单独添加三环唑未对样品中C23O基因数量产生显著影响。
     对细菌群落结构的DGGE分析表明,细菌种群主要受菲浓度影响。三环唑对细菌没有明显毒性,并不会对环境中的细菌群落结构、多样性产生明显的负面效应。真菌群落多样性分析表明,菲和三环唑加入后,体系中真菌群落结构未发生迅速改变。随时间的延长,真菌群落结构随污染物种类及其降解情况而有所差异。加入SMC后,土壤中具有菲降解能力的真菌种类有所增加,但真菌种群多样性并未随SMC加入而有显著改变。
     6.谷胱甘肽S转移酶(GST)广泛存在于各种真核、原核生物之中,参与细胞内各种异源物质的代谢过程。在添加菲、三环唑的土壤及土壤/SMC中,污染物种类、浓度并未对GST含量产生显著影响,样品中GST基因种类以及GST含量主要随各污染物降解过程、趋势的不同发生相应变化。结合污染物在样品中的降解过程可见,污染物的降解能刺激GST基因种类及其表达量的增加。因此,GST含量变化可以看作是对环境中污染物整体代谢状况的一个反映。
This thesis mainly focuses on the application of the produced compost to remediate the phenanthrene- and/or tricyclazole- contaminated soils as well as variations of microbial community structure, some enzyme activities during the process of remediation, and the kinetics based on the experimental data. The results obtained are shown as in follows:
     1. In this study, the process parameters, activities of characterized enzymes, shift in microbial population and community structure were investigated during composting the stimulated municipal solid waste (MSW). The results showed that the temperature was the dominant factor to lead the composting during the whole compost process, and and it showed a noticeable influenced on the enzymatic activity and microbial communities. At the stable stage of compost process, the catabolic activity, enzyme activity and microbial population and diversity was got a prominent improvement, as which was high enough to perform remediation of contaminated soil.
     2. Composted Municipal Solid Waste (CMSW) and Spent Mushroom Compost (SMC) were taken as additives for remediating phenanthrene- and tricyclazole- polluted soil. The HPLC analysis on concentration of pollutants demonstrated that the CMSW and SMC both could improve the degradation process of phenanthrene in soil by shortening the lag phase, increasing the degrading rate, while SMC resulted in a more rapid biodegradation of phenanthrene with different initial concentrations, compared with CMSW.
     A less than 18% of the added tricyclazole was removed within 56 days in soil and soil/CMSW mixture, whereas an increased removal rate to 33% in soil/SMC was recorded, and the removal rate was proved to be negatively related with the initial concentration of tricyclazole. It might be due to the enhanced toxicity of added pollutant, which inhibited the growth and activity of corresponding degrader.
     3. As one of phenanthrene analogues, tricyclazole was found to inhibit the growth of phenanthrene-degrading strains ZX4 even in lower dose (30 mg L~(-1)) with an obviously prolonged lag phase. Further studies revealed that the influence from tricyclazole was positively related with its concentration and the growth of most of phenanthrene degraders was prominently delayed at 60 mg L" of tricyclazole. With 60 mg kg~(-1) of tricyclazole, the population of PAH degrader rose slowly following a 2 weeks lag. However, tricyclazole generated no negative effect on PAH degrader in soil/SMC mixture, where the population of degrader rose quickly in similar trend as the control, without any obvious delay.
     Based on HPLC detection, tricyclazole was proved with a prominent inhibition effect on degradation of phenanthrene in soil with a prolonged lag phase of degradation, and phenanthrene was removed linearly but exponentially without tricyclazole.
     The concentration of phenanthrene in both soil/SMC remediation systems was diminished at exponential rate. It was deduced that SMC could not only get ride of the inhibition of tricyclazole on growth of PAH degrader, but dispel the influence on degradation of phenanthrene generated by tricyclazole likewise.
     In other way, a negative influence was observed on the degradation of tricyclazole at the presence of phenanthrene. It might due to the effect of firstly utilizing phenanthrene by microbial degrader or the enhanced toxicity of total pollutants.
     4. The investigation on variation of Catalase, polyphenol Oxidase, respiration activity and population of PAH degrader revealed that SMC improved the activities of many microbes and enzymes which were not significantly affected by contaminants, but produced no impact on succession of PAH degrader. Instead, the population of PAH degraders was mainly affected by the properties and concentration of the pollutants.
     Despite the rich humus in SMC, extraction analysis of phenanthrene and tricyclazole in SMC indicated that SMC only resulted in slight adsorption rate of both pollutants.
     5. As an indicator of the degradation potential of PAHs, C23O activity, determined with MPN-PCR showed a significant correlationship with PAH degraders (R~2=0.871, p<0.01) and could reflect the variation of phenanthrene in both environments. On the other hand, no influence was observed via the added tricyclazole.
     An analysis on variation of microbial communities with DGGE implied that the microorganisms were also under control of phenanthrene, due to its enormous toxicity. In phenanthrene contaminated samples, microbial diversity was negatively correlated with the concentration of pollutants.
     On the contrary, fungal communities in contaminated samples did not response to the pollutants rapidly, but differed with each other according with the type and concentration of pollutants in the end of the remediation. In both soil/SMC mixtures, the populations and diversity of xenobiotic-degrading fungi were increased comparing to the soil samples, due to the addition of SMC containing abundant catabolic fungi.
     6. Glutathione S-transferases (GSTs) were found in most of microorganisms, with a variety of evidences about their ability on catabolism of many xenobiotics in cell. Two types of GSTs were identified by DGGE analysis, one was the related phenanthrene degradation and the other was not. Therefore, the ELISA on concentration of GST in environments might reflect the total amount of GST.
     The content of GSTs was not significantly affected by added pollutants either phenanthrene or tricyclazole contaminated samples, but varied with the degradation of each contaminants. In general, the content of GST could indicate the catabolism of pollutants, rather than the residue.
引文
Adeleye I. A., Eruba S., Ezeani C., J. Isolation and characterisation of antibiotic producing microorganisms in composted Nigerian soil. J Environ Biol. 2004 25:313-316
    Albert L. Juhasz, Ravendra Naidu.Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a ]pyrene. International Biodeterioration & Biodegradation, 2000, 45:57-88
    Allen V. Barker, Gretchen M. Bryson. Bioremediation of Heavy Metals and Organic Toxicants by Composting. The Scientific World Journal, 2002, 2:407-420
    Alvey, S., Crowley, D. E. Influence of organic amendments on biodegradation of atrazine as a nitrogen source. J. Environ. Qual., 1995, 24:1156-1162
    Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev., 1995,59: 143-169
    Ampe F, Miambi E. Cluster analysis, richness and biodiversity indexes derived from denaturing gradient gel electrophoresis fingerprints of bacterial communities demonstrate that traditional maize fermentations are driven by the transformation process. International J Food Microbiol, 2000, 60:91-97
    Andrew S. Ball, Anita M. Jackson. The recovery of lignocellulose-degrading enzymes from spent mushroom compost. Bioresource technology, 1995, 54:311-314
    Annelie Pernthaler, Jakob Pernthaler, Rudolf Amann. Fluoresence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Applied and environmental microbiology, 2002, 68:3094-3101
    Archibald F., Roy B. Production of marganic chelates by laccase from the lignin degrading fungus Trametes versicolor. Appl. Environ. Microbiol., 1992, 58:1496-1499
    Bach P. D., Shoda M., Kubota H. Composting reaction rate of sewage sludge in an autothermal packed bed reactor. Journal of fermentation technology, 1985, 63:271-278
    Balkwill D.L., Drake G.R., Reeves R.H. et al. Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov. Int. J. Syst. Bacteriol., 1997, 47, 191-201
    Banat I. M., Nigam P., Singh D. et al. Microbial decolorization of textile-dye-containing effluents: a review. Bioresour. Technol., 1996, 58:217-227
    Barr D. P., Aust S.D. Mechanisms white rot fungi use to degrade pollutants. Environ. Sci. Technol., 1994, 28:320-328
    Beffa, T., Blanc M., Lyon P. F. et al. Isolation of thermus strains from hot composts 60-80℃. Appl. Environ.Microbiol., 1996, 62:1723-1727
    Bernal M. P., Paredes C., Sanchez-Monedero M. A. Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresouce and Techonlogy, 1998, 63:91-99
    Bezalel L, Hadar Y, Cerniglia CE. Enzymatic Mechanisms Involved in Phenanthrene Degradation by the White Rot Fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 1997, 63: 2495-2501.
    Bhattacharyya P, Chakrabarti K,Chakraborty A. Microbial biomass and enzyme activities in submerged rice soil amended with municipal solid waste compost and decomposed cow manure. Chemosphere, 2005, 60:310-318
    Brent Hamilton. Soil remediation with MSW compost. BioCycle, 2003, 44:58-59
    Brian J. Reida, Terry R. Fermorb, Kirk T. Semple. Induction of PAH-catabolism in mushroom compost and its use in the biodegradation of soil-associated phenanthrene. Environmental Pollution, 2002, 118:65-73
    Buswell, J. A. Potential of spent mushroom substrate for Bioremediation purposes. Compost Science & Utilization, 1994,2:31-36 Büyüks(o|¨)nmez F., Rynk R., Hess, T. F. et al. Occurrence, degradation, and fate of pesticides during composting. I. Composting, pesticides, and pesticide degradation. Compost Sci. Util., 1999, 7:66-82
    Caetano-Anolles, Bassam G. DNA silver staining. Biotechnol Adv, 1997, 15:175
    Carl M, Hawkins R, Coulson N. et al. Detection of spores of Bacill usanthracis using the polymerase chain reaction. J infect Dis, 1995,6:1145-1148
    Chaney Rufus, Davis Allen, Vogt Antje et al. Remediation of Lead Contaminated Soil with Composts. Annual Conference of the US Composting Council January 29, 2003
    Chao W. L., Lee S. L. Decoloration of azo dyes by three white-rot fungi: influence of carbon source. World J. Microbiol. Biotechnol., 1994, 10:556-559
    Chavez-Gomez B., Quintero R., Esparza-Garcia F. et al. Removal of phenanthrene from soil by co-cultures of bacteria and fungi pregrown on sugarcane bagasse pith. Bioresource and Technology, 2003, 89: 177-183
    Chefetz Benny, Zohar Kerem, yona Chen et al. Isolation and partial characterization of laccase from a thermophilic composted municipal solid waste. Soil Biol. Biochem., 1998, 30:1091-1098
    Chen S H, Wang L. Zhang S M et al. Study on the microbial characterization of municipal solid waste compost. Shanghai Environ Sci, 1989, 8:17-21
    Chen SH, Aitken M. Salicylate Stimulates the Degradation of High-Molecular Weight Polycyclic Aromatic Hydrocarbons by Pseudomonas saccharophila P15. Environ. Sci. Technol. 1999, 33: 435-439
    Christine Picard, Cecile Ponsonnet, Eric Paget et al. Detection and Enumeration of Bacteria in Soil by Direct DNA Extraction and Polymerase Chain Reaction. Applied and environmental microbiology, 1992, 47: 2717-2722
    Claudia Schabereiter-Gurtner, Guadalupe Pinar, Werner Lubitz et al. Analysis of fungal communities on historical church window glass by denaturing gradient gel electrophoresis and phylogenetic 18S rDNA sequence analysis. Journal of Microbiological Methods, 2001, 47:345-354
    Cooney D. G. Emerson R. Thermophilic microorganisms and life at high temperatures. Thermophilic Fungi,USA, 1964,4:108-116
    Cullen D. W., Hirsch P. R. Simple and rapid method for direct extraction of microbial DNA from soil for PCR. Soil Biol. Biochem., 1998,30:983-993
    Davis M. W., Glasser J. A., Evans J. W. et al. Field evaluation of the lignin-degrading fungus Phanerochaete sordida to treat creosote-contaminated soil. Environ. Sci. Technol., 1993, 27:2572-2576
    Dimond, J. B., Owen R.B. Long-term residue of DDT compounds in forest soils in Maine. Environmental Pollution, 1996,92:227-230
    Don R. H., Cox P. T, Wainwright B. J. 'Touchdown' PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res, 1991, 19:4008
    Dunbar J., Takala S., Barns S.M. et al. Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl. Environ. Microbiol., 1999, 65:1662-1669
    Elham A. Ghabbour, Ahmed H. Khairy, Donald P. Cheney. Isolation of humic acid from the brown algaPilayella littoralis. Journal of Applied Phycology, 1994, 6:1994 459-468
    El-Fantroussi S., Verschuere L., Verstraete W. et al. Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles. Appl. Environ. Microbiol., 1999,65:982-988
    Elsas J.D., MaEntynen V., A.C. Wolters. Soil DNA extraction and assessment of the fate of Mycobacterium chlorophenolicum strain PCP-1 in different soils by 16S ribosomal RNA gene sequence based most-probable-number PCR and immunofluorescence. Biol Fertil Soils, 1997, 24:188-195
    Emmerling C., Liebner C., Haubold-Rosar M. et al. Impact of application of organic waste materials on microbial and enzyme activities of mine soils in the Lusatian coal mining region , Plant and Soil, 2000, 220:129-138
    Erb R.W., Wagnerd(o|¨)bler I. Detection of polychlorinated biphenyl degradation genes in polluted sediments by direct
    DNA extraction and polymerase chain reaction. Appl. Environ. Microbiol., 1993. 59:4065-4073
    Eva M. Top, Dirk Springael, Nico Boon. Catabolic mobile genetic elements and their potential use in bioaugmentation of polluted soils and waters. FEMS Microbiology Ecology, 2002, 42:199-208
    Felske A., Wolterink A., van Lis et al. Searching for predominant soil bacteria: 16S rDNA cloning versus strain cultivation. FEMS Microbiol. Ecol., 1999, 30:137-145
    Field J. A., Thurman E. M. Glutathione conjugation and contaminant transformation. Environmental science and technology, 1996,30:1413-1418
    Finstein M. S., Morris M. L. Microbiology of municipal solid waste composting. Advances in Applied Microbiology, 1975,19:113-151
    Frank S, Christoph C T. A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Applied and environmental microbiology, 1998, 64: 4870-4876
    Fuenmayor S. L., Wild M., Boyes A. L. et al., A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. Strain U2. Journal of Bacteriology, 1998, 180:2522-2530
    Gan J.. Yates S.R., Crowley D. et al. Acceleration of 1,3-dichloropropene degradation by organic amendments and potential application for emissions reduction. J. Environ. Qual. 1998, 27, 408-414
    Gibert Oriol, DE Pablo Joan, Cortina José Luis et al. Municipal compost-based mixture for acid mine drainage bioremediation: Metal retention mechanisms. Applied geochemistry, 2005, 20:1648-1657
    Gomez A. The evaluation of compost quality. Trends Anal Chem, 1998, 17:310-314
    Gonzalo R. Tortella, Maria Cristina Diez. Fungal diversity and use in decomposition of environmental pollutants. Critical reviews in microbiology, 2005, 31 (4): 197-212
    Gray, K.R., Sherman, K. and Biddlestone, A.J., A view of composting-part 1. Process Biochemistry, 1971, 6:32-36
    Green S. J., Frederick C. M. Jr, Yitzhak H. Similarity of bacterial communities in sawdust- and straw-amended cow manure composts. FEMS Microbiol Lett, 2004, 233:114-123
    Gu X. X., Xu Y. R. Study on inoculation of refuse compost with microbes. Chin. J. Appl. Environ. Biol, 1995, 12:274-278
    Guerra-Rodríguez E, Vazquez M, Diaz-Ravina M Dynamics of the co-composting of barley waste with liquid poultry manure. J Sci Food Agric, 2003, 83:166-172
    Guo C., Sun W., Harsh J.B. et al. Hybridization Analysis of Microbial DNA from Fuel Oil-Contaminated and Noncontaminated Soil. Microbial Ecology, 1997, 34:178-187
    Hamid Mashayekhi, Peter Veneman, Baoshan Xing. Phenanthrene sorption by compost humic acids. Biol Fertil Soils, 2006, 42: 426-431
    Hellmann B., Zelles L., Palojarvi A et al. Emission of climate-relevant trace gases and succession of microbial communities during open-window composting. Applied and environmental microbiology, 1997, 63:1011-1018
    Herrick J. B., Madsen E. L., Batt, C. A. et al. Polymerase chain reaction amplification of naphtalene-catabolic and 16S rRNA gene sequences from indigenous sediment bacteria. Appl. Environ. Microbiol., 1993, 59:687-694
    Herrmann R. F., Shann J. R. Enzyme activities as indicators of municipal solid waste compost maturity. Compost Science & Utilization, 1993, 1:54-63
    Herrmann R. F., Shann J. F. Microbial community changes during the composting of municipal solid waste. Microbial ecology, 1997, 33:78-85
    Huang Q, Gao D, Ding D et al. Remediation of chromium-polluted soil using municipal solid waste compost. Chinese Journal of Applied Ecology, 2002, 13:167-70
    Imamura Y., Ikeda M., Yoshida S. et al. Janibacter brevis sp. nov., a new trichloroethylene degrading bacterium isolated from polluted environments. Int. J. Syst. Evol. Microbiol., 2000, 50, 1899-1903
    Ishii Fukui K., Takii M. Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis. J Appl Microbiol, 2000, 89:768-777 Jan Dirk van Elsas, Gabriela Frois Duarte, Anneke Keijzer-Wolters et al. Analysis of the dynamics of fungal communities in soil via fungal-specific PCR of soil DNA followed by denaturing gradient gel electrophoresis. Journal of Microbiological Methods, 2000, 43:133-151
    Jerome B. Weber. lonization and Adsorption-Desorption of Tricyclazole by Soil Organic Matter, Montmorillonite Clay, and Cape Fear Sandy Loam Soil. J. Agric. Food Chem., 1982, 30:584-588
    Joyce Jerome F., Sato Chikashi, Cardenas Raul et al. Composting of polycyclic aromatic hydrocarbons in simulated municipal solid waste. Water Environment Research, 1998, 70:356-361
    Kastner M., Streibich S., Beyrer M. et al. Formation of bound residues during microbial degradation of [~(14)C]anthracene in soil. Applied and environmental microbiology, 1999, 65:1834-1842
    Kenji Sakai, Akira Yokota, Hajime Kurokawa et al. Purification and Characterization of Three Thermostable Endochitinases of a Noble Bacillus Strain, MH-1, Isolated from Chitin-Containing Compost. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1998, 64 3397-3402
    Kirby N. Bioremediation of textile industry wastewater by white rot fungi. DPhil Thesis, University of Ulster, Coleraine, UK, 1999
    Kirk T Semple, Ngaire U Watts, Terry R Fermor. Factors affecting the mineralization of [U-~(14)C]benzene in spent mushroom substrate. FEMS Microbiology Letters, 1998, 164: 317-321
    Knapp J. S., Newby P. S. The microbiological decolorization of an industrial effluent containing a diazo-linked chromophore. Water Res., 1995, 7:1807-1809
    Krsek M., Wellington E. M. H. Comparison of different methods for the isolation and purification of total community DNA from soil. J. Microbiol. Methods, 1999, 39:1-16
    Kristin Steger, Asa Jarvis, Sven Smars et al. Comparison of signature lipid methods to determine microbial community structure in compost. Journal of Microbiological Methods, 2003, 55:371-382
    Kudlich K., Keck M. A., Klein J. et al. Localization of the enzyme system involved in anaerobic reduction of azo dyes by Sphingomonas sp. strain BN6 and effect of artificial redox mediators on the rate of azo dye reduction. Appl. Environ. Microbiol., 1997, 63:3691-3694
    Kulla M.G. Aerobic bacterial degradation of azo dyes. Microbial degradation of xerobiotics and recalcitrant compounds. In: Leisinger, T., Cook, A.M., Flutter, R., Nuesch, J. (Eds.), FEMS Symposium, 12. Academic Press, London, 1981
    Kuske C. R., Banton K. L., Adorada D.L. et al. Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil. Appl. Environ. Microbiol., 1998, 64, 2463-2472
    Kurt T. Preston, Roy Wade, Kyoung S. Ro et al. Bench-Scale Investigation of Composting for Remediation of Explosives- Contaminated Soils from Iowa Army Ammunition Plant, Middletown, Iowa, 1998, 51
    Lane D. J. 16S/23SrRNA sequencing. In: Stackebrandt, E., Goodfellow , M.(Eds.) , Nucleic Acid Techniques in Bacterial Systematics. Wiley, West Sussex, UK, 1991
    Lang E., Kroppenstedt R.M., Swiderski J., Schumann P. et al. Emended description of Janibacter terrae, including ten dibenzofuran-degrading strains and Janibacter brevis as its later heterotypic synonym. Int. J. Syst. Evol. Microbiol., 2003,53, 1999-2005
    Lau K. L., Tsang Y.Y., Chiu S.W. et al. Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere. 2003, 52:1539-1546
    Lee S.Y., Bollinger J., Bezdiek D. et al. Estimation of the abundance of an uncultured soil bacterial strain by a comparative PCR method. Appl. Environ. Microbiol., 1996, 62:3787-3793
    Lemmon, C. R. and Pylypiw, H. M. Degradation of diazinon, chloropyrifos, isofenphos, and pendamethalin in grass and compost. Bull. Environ. Contam. Toxicol. 1992, 48, 409^115
    Li F. D., Yu Z. N., He S. J. Experimental techniques in agricultural microbiology. Agriculture press of china, Beijing, China, 1996
    Li G. X., Li Y. C., Li Y. F. Advance on composting of solid waste and utilization additives. J Agro-Environ Sci. 2003. 22:252-256
    Liu C. S. Effects of external copper on enzyme activity in soil and apple tree system. Acta pedologica sinica, 2002. 39:37-44
    Liu Z, Yang H, Huang Z. Degradation of aniline by newly isolated, extremely aniline-tolerant Delftia sp. AN3. Appl Microbiol Biotechnol. 2002. 58:679-82
    Lloyd-Jones G, Lau PC. Glutathione S-transferase-encoding gene as a potential probe for environmental bacteria isolates capable of degrading polycyclic aromatic hydrocarbons. Appl Environ Microbiol, 1997, 63:3286-3290
    Lloyd-Jones G, Laurie A D, Hunter D W F, et al. Analysis catabolic genes for phenanthrene and naphthalene degradation in contaminated New Zealand soils. FEMS Microbiol Ecol, 1999, 29:69-79
    Lloyd-Jones G., Hunter D. W. F. Comparison of rapid DNA extraction methods applied to contrasting New Zealand soils. Soil Biol Biochem, 2001, 33:2053-2059
    Lloyd R. Stark, William R. Wenerick, Frederick M. Williams et al. Restoring the capacity of spent mushroom compost to treat coal mine drainage by reducing the inflow rate: A microcosm experiment. Water, Air, & Soil Pollution, 1994,75:405-420
    Lonergan G. White-rot-fungi-an environmental panacea? Environ. Biotechnol., 1992, 2:214-217
    LOser, C., Ulbricht, H., Hoffman, P. et al. Composting of wood containing polycyclic aromatic hydrocarbons (PAHs). Compost Sci. Util., 1999, 7:16-32
    Ma Y, Zhang J. Y., Wong M. H. Microbial activity during composting of anthracene-contaminated soil. Chemosphere, 2003, 52:1505-1513
    Ma Ying, Wong Ming-Hung, Zhang Jia-yao. Optimization of control parameters for petroleum waste composting. Journal of environmental sciences, 2001, 13:385-390
    Maarit Niemi R., Use Heiskanen, Kaisa Wallenius. Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia. Journal of Microbiological Methods, 2001, 45:155-165
    Macauley B.J., Stone B., Liyama K. Compost research runs 'hot' and 'cold' at La Trobe University. Compost science utilitization, 1993, 1:6-12
    Marc Vinas, Jordi Sabate, Maria Jose Espuny et al. Bacterial community dynamics and, polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Applied and environmental microbiology, 2005, 71:7008-7018
    Margesin R., Schinner F. Biodegradation and bioremediation of hydrocarbons in extreme environments. App] Microbiol Biotechnol, 2001, 56:650-663
    Martin K., Schumann P., Rainey F.A. et al. Janibacter limosus gen. nov., sp. nov., a new actinomycete with meso-diaminopimelic acid in the cell wall. Int. J. Syst. Bacteriol., 1997, 47, 529-534
    Matthew B. Mesarch, Cindy H. Nakatsu,Loring Nies. Development of Catechol 2,3-Dioxygenase-Specific Primers for Monitoring Bioremediation by Competitive Quantitative PCR. Applied and environemental microbiology, 2000, 66:678-683
    McKinley V.L., Vestal J.R. Biokinetic analyses of adaptation and succession: microbial activity in composting municipal sewage sludge. Applied environmental microbiology, 1984, 47:933-941
    Meyer Svenja, Ralf Moser, Alexander Neef, Ulf Stahl. Differential detection of key enzymes of polyaromatic-hydrocarbon-degrading bacteria using PCR and gene probes. Microbiology, 1999, 145:1731-1741
    Meyer, S., Steinhart, H. Fate of PAHs and Hetero-PAHs during Biodegradation in a Model Soil/Compost-System: Formation of Extractable Metabolites. Water Air Soil Poll. 2001, 132, 215-231
    Michel F. C., Reddy C. A., Forney L.J. Fate of carbon-14 diazinon during the composting of yard trimmings. J. Environ. Qual., 1997, 26:200-205
    Miller D. N., Bryant J.E., Madsen, E.L. et al. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol., 1999, 65:4715-4724
    Miller F. C. Composting of municipal solid waste and its components. In Microbiology of solid waste. CRC Press, New York, 1996
    Millette D., Barker J. F., Comeau Y. et al. Substrate interaction during aerobic biodegradation of creosote-related compounds: a factorial batch experiment. Environmental Science and Technology, 1995, 29:1944-1952
    Minna M. Laine, Kirsten S. Jorgensen. Straw Compost and Bioremediated Soil as Inocula for the Bioremediation of Chlorophenol-Contaminated Soil. Applied and environmental microbiology, 1996, 62:1507-1513
    Muyzer G, DeWaal E. C., Uitterlinden A. G. Profiling of complex microbial population by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16SrRNA. Appl. Environ. Microbiol., 1993,59:695-700
    Muyzer G., Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonivan Leeuwenhoek, 1998, 73:127-141
    Myers R. M., Fisher S. G. Lerman L. S. et al. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res., 1985, 13:3131 -3145
    Nam K., Alexander M. Role of nanoporosity and hydrophobicity in sequestration and bioavailability. Environmental science and technology, 1998, 32:71-74
    Neilson J. W., Josephson K. L.. Pepper I. L. et al. Frequency of horizontal gene transfer of a large catabolic plasmid (pJP4) in soil. Applied and environmental microbiology, 1994, 60:4053-4058
    Nishino and Spain. Oxidative Pathway for the Biodegradation of Nitrobenzene by Comamonas sp. Strain JS765. Applied and Environmental Microbiology, 1995, 61:2308-2313
    Nigam P., Marchant R. Selection of the substratum for composing biofilm system of textile decolourizing bacteria Biotechnol. Lett. 1995, 17:993-996
    Nigam P., Banat I. M., Singh D. et al. Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes. Process Biochem., 1996, 31: 435-442
    Nishino SF, Spain JC. Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. Appl Environ Microbiol. 1993,59:2520-5
    Ofosu-Asiedu A., Smith R. S. Some factors affecting wood degradation by thermotolerant fungi. Mycologia., 1973, 65 :87-98
    Ogawa T., Yatome C. Biodegradation of azo dyes in multistage rotating biological contractor immobilized by assimilating bacteria. Bull. Environ. Contam. Toxicol., 1990, 44:561-566
    0vreas L., Torsvik V. Microbial diversity and community structure in two different agricultural soil communities. Microb.Ecol. 1998, 36: 303-315
    Padovani Laura, Capri Ettore, Padovani Caterina. Monitoring tricyclazole residues in rice paddy watersheds. Chemosphere, 2006, 62:303-314
    Patricia Luis, Grit Walther, Harald Kellner et al. Diversity of laccase genes from basidiomycetes in a froest soil. Soil Biol. Biochem., 2004. 36:1025-1036
    Paszczynski A., Crawford R.C. Potential for bioremediation of xenobiotic compounds by the white-rot fungus Phanerochaete chrysosporium. Biotechnol. Progr., 1995, 11:368-379
    Per Wikstrom, Anna Wiklund, Ann-Christin Andersson. DNA recovery and PCR quantification of catechol 2,3-dioxygenase genes from different soil types. Journal of Biotechnology 52 (1996) 107-120
    Peter F. Strom. Identification of Thermophilic Bacteria in Solid-Waste Composting. Applied and Environmental Microbiology. 1985 , 906 —913
    Picard C., Ponsonnet C., Paget E., X. Nesme, P. Simonet. Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction, Appl. Environ. Microbiol., 1992, 58:2717-2722
    Porteous, L.A., Seidler, R.J., Watrud, L.S. An improved method for purifying DNA from soil for polymerase chain reaction amplification and molecular ecology applications. Molecular Ecology. 1997, 6:787-791
    Quagliotto P., Viscardi G., Montoneri E. et al. Compost humic acid-like matter as surfactant. Geophysical research abstracts, 2005. 7:10555
    Ro K. S., Preston K. T., Seiden S. et al. Remediation Composting Process Principles: Focus on Soils Contaminated with Explosive Compounds. Critical Reviews in Environmental Science and Technology, 1998, 28:253-282
    Rao N., Grethlein H.E., Reddy C.A. Mineralization of atrazine during composting with untreated and pretreated lignocellulosic substrates. Compost Sci. Util., 1995, 3:38-46
    Ramesh Maheshwari, Girish Bharadwaj, Mahalingeshwara K.. B. Thermophilic Fungi: Their Physiology and Enzymes MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2000, 64: 461-488
    Reddy C.A.. The potential for white rot fungi in the treatment of pollutants. Curr. Opt. Biotechnol., 1995, 6:320-328
    Rosado A.S., Seldin L., Wolters A.C., J.D. van Elsas. Quantitative 16S rDNA-targeted polymerase chain reaction and oligonucleotide hybridization for the detection of Paenibacillus azotofixans in soil and the wheat rhizosphere. FEMS Microbiology Ecology, 1996, 19:153-164
    Ryckeboer J., Mergaert J., Coosemans J. Microbiological aspects of biowaste during composting in a monitored compost bin. J Appl Microbiol, 2003, 94:127-137
    Ryckeboer J., Mergaert J., Coosemans J. Microbiological aspects of biowaste during composting in a monitored compost bin. Journal or applied microbiology, 2003, 94:127-137
    Sabine Peters, Stefanie Koschinsky, Frank Schwieger et al. Succession of Microbial Communities during Hot Composting as Detected by PCR-Single-Strand-Conformation Polymorphism-Based Genetic Profiles of Small-Subunit rRNA Genes. Applied and Environmental Microbiology, 2000, 66:930-936
    Sanchez-Monedero M. A., Roig A., Martinez-Pardo C. A microanalysis method for determining total organic carbon in extracts of humic substances. Relationships between total organic carbon and oxidable carbon. Biores Technol, 1996, 57:291-295
    Sasek V., Bhatt M., Cajtham T. et al. Compost-Mediated Removal of Polycyclic Aromatic Hydrocarbons from Contaminated Soil. Arch. Environ. Contam. Toxicol., 2003, 44:336-342
    Schliephake K., Lonergan G. T. Laccase variation during dye decolourisation in a 200 L packed-bed bioreactor. Biotechnol. Lett., 1996, 18:881-886
    Schloss P. D., Benedita C., Walker L. P. The use of the analysis of variance to asses the influence of mixing during composting. Process Biochem, 2000, 35:675-684
    Seidler R. J., Watrud L.S., George S. E. Assessing risks from GMO to ecosystems and human health. Handbook of Environmental Risk Assessment and Management, 1997, 110-146
    Shaw L. J., Burns R. G. Biodegradation of 2,4-D in a noncontaminated grassland soil profile. J. Environ. Qual., 1998,27:1464-1471
    Shi C. Z., Pu Y. T., Zheng Z. K. Effect of nitrogen fixing bacteria on nitrogen content of compost. Chin J Appl Environ Biol, 2002, 8:419-421
    Sierra I, Valera JL, Marina ML. Study of the biodegradation process of polychlorinated biphenyls in liquid medium and soil by a new isolated aerobic bacterium (Janibacter sp.). Chemosphere, 2003 Nov; 53 (6): 609-18
    Strom P. F. Effect of temperature on bacterial species diversity in thermophilic soli-waste composting. Appl Environ Microbiol 1985 50:899-905
    Strom P. F. Identification of thermophilic bacteria in soild-waste composting. Applied and environmental microbiology, 1985,50:906-913
    Su C, Puls R. W. Removal of added nitrate in cotton burr compost, mulch compost, and peat: mechanisms and potential use for groundwater nitrate remediation. Chemosphere, 2007, 66:91-8
    Susanne Meyer, Hans Steinhart. Effects of heterocyclic PAHs (N, S, O) on the biodegradation of typical tar oil PAHs in a soil / compost mixture. Chemosphere, 2000, 40:359-367 Svenja Meyer, Ralf Moser, Alexander Neef et al. Differential detection of key enzymes of polyaromatic-hydrocarbon-degrading bacteria using PCR and gene probes. Microbiology, 1999, 145:1731-1741
    Takenaka S, Okugawa S, Kadowaki M, The metabolic pathway of 4-aminophenol in Burkholderia sp. strain AK-5 differs from that of aniline and aniline with C-4 substituents. AppI Environ Microbiol. 2003, 69:5410-3
    Thomas L., Peter F. D., Werner L. Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure with in an agricultural soil planted with transgenic and non-transgenenic potato plants. FEMS Microbiology Ecology, 2000, 32: 241-247
    Thurston C. F. The structure and function of fungal laccases. Microbiology, 1994, 140:19-26
    Tian L, Ma P, Zhong JJ. Kinetics and key enzyme activities of phenanthrene degradation by Pseudomonas mendocina. Process Biochem. 2002, 37: 1431-1437
    Tiquia S. M. Evolution of extracellular enzyme activities during manure composting. Journal of Applied Microbiology, 2002. 92:764-775
    Tiquia S. M., Judy H.C. Wan, Nora F.Y. Tarn. Extracellular enzyme profiles during co-composting of poultry manure and yard trimmings. Process Biochemistry, 2001, 36:813—820
    Trello Beffa, Michel Blanc, Pierre-Franc et al. solation of Thermus Strains from Hot Composts (60 to 80 ℃). Applied and environmental microbiology, 1996,62 1723-1727
    Trine Eggen, Vaclav Sasek. Use of Edible and Medicinal Oyster Mushroom [Pleurotus ostreatus (Jacq.: Fr.) Kumm.] Spent Compost in Remediation of Chemically Polluted Soils. International Journal of Medicinal Mushrooms, 2002. 3:235-241
    Von Wintzingerode F., Goebel U. B., Stackebrandt E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev., 1997, 21: 213-229
    Vuilleumier S. Bacterial glutathione s-transferases:what are they good for? J bacteriol, 1997. 179:1431-1441
    Webley D. M. Activity of thermophilic bacteria in compost of fresh green material. Nature, 1947, 35:4027
    Webley D.M. The behavior of the aerobic mesophilic bacterial flora of composts and its relation to other changes taking place during composting. Proceedings of the society of applied Bacteriology, 1947, 10:83-89
    Wei Yuan-Song, Fan Yao-Bo, Wang Min-Jian et al. Composting and compost application in China. Resources, Conservation and Recycling, 2000, 30 277-300
    Woese C.R., Bacterial evolution. Microbiological Review. 1987, 51:221-271
    Yabuuchi E., Kosako Y, Fujiwara N. et al. Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int. J. Syst. Evol. Microbiol., 2002, 52, 1485-1496
    Yael Laor, Peter F. Strom, Walter J. Farmer. The effect of sorption on phenanthrene bioavailability. Journal of biotechnology, 1996,51:227-234
    Yamazoe A., O. Yagi and H. Oyaizu. Degradation of polycyclic aromatic hydrocarbons by a newly isolated dibenzofuran-utilizing Janibacter sp. strain YY-1. Applied Microbiology and Biotechnology, 2004 65:211-218
    Ying Li, Ayfer Yediler, Ziqing Ou et al., Effects of non-ionic surfactant (Tween-80) on the mineralization, metabolism and uptake of phenanthrene in wheat-solution-lava microcosm. Chemosphere, 2001, 45:67-75
    Yong Yu, Li Huirong, Zeng Yinxin. Isolation and phylogenetic assignation of actinomycetes in the marine sediments from the Arctic Ocean. Acta of oceanologica sinica, 2005, 24:135-142
    Yoon J.H., Lee K.C., Rang S.S. et al. Janibacter terrae sp. nov., a bacterium isolated from soil around a wastewater treatment plant. Int. J. Syst. Evol. Microbiol., 2000, 50, 1821-1827.
    Yu Zhongtang, Mark Morrison. Comparisons of different hypervariable regions of rrs genes for use in fingerpringting of microbial communities by PCR-denaturing gradient gel electrophoresis. Applied and environmental microbiology, 2004, 70:4800-4806
    Zissi W., Lyberatus G., Pavlou S. Biodegradation of p-aminoazobenzene by Bacillus subtilis under aerobic conditions.J.ind.Microbiol.Biot.,1997,19:49-55
    Zylstra G.J.,Kim E.,Goyal A.K.Comparative molecular analysis of genes for polycyclic aromatic hydrocarbon degradation.Genetic Engineer,1997,19:257-269
    崔宗均,黄志勇.一组高效稳定纤维索分解菌复合系MC1的筛选及功能.环境科学,2002,23:36-39
    冯宏,李华兴.菌剂对堆肥的作用及其应用.生态环境,2004,13:439-441
    何翊,魏薇,吴海.菌剂-菌根联合修复石油污染土壤的实验研究.土壤,2004,36:675-677
    黄丹莲,曾光明,黄国和.微生物接种技术应用于堆肥化中的研究进展.微生物学杂志,2005,25:60-64
    黄得扬,陆文静,王洪涛.高效纤维素分解菌在蔬菜-花卉秸秆联合好氧堆肥中的应用.环境科学,2004,25:145-149
    李阜棣,喻子牛,何绍江,农业微生物学实验技术.中国农业出版社,北京,1996
    连宾,刘从强.嗜热真菌的生物转化功能与经济价值.地球与环境,2004,32:49-54
    梁继东,周启星.甲胺磷、乙草胺和铜单一与复合污染对蚯蚓的毒性效应研究.应用生态学报,2003,14:593-596
    刘礼祥,刘真,章北平等.人工湿地在非点源污染控制中的应用.华中科技大学学报(城市科学版),2004,21:40-43
    刘五星,骆永明,滕应等.石油污染土壤的生物修复研究进展.土壤,2006,38:634-639
    陆小成,陈露洪,徐泉等.污染土壤电动修复,环境科学,2004,25:89-91
    权春善,王军华,徐洪涛.一株抗真菌解淀粉芽孢杆菌的分离鉴定及其发酵条件的初步研究.微生物学报,2006.46:7-12
    申鸿,刘于,李晓林.丛枝菌根真菌(Glomus caledonium)对铜污染土壤生物修复机理初探.植物营养与肥料学报,2005,11:199-204
    沈定华,许昭怡,于鑫等.土壤有机污染生物修复技术影响因素的研究进展.土壤,2004,36:463-467
    石春芝,蒲一涛.垃圾堆肥接种固氮菌对堆肥含氮量的影响.应用与环境生物学报,2002,8:419-421
    石星群,殷培杰,何随成.发酵鸡类的高温蛋白分解菌的筛选.土壤通报,2005,36:946-949
    涂书新,韦朝阳.我国生物修复技术的现状与展望.地理科学进展,2004,23:20-32
    王绍文,梁富智,王纪曾.固体废弃物资源化技术与应用.冶金工业出版社(北京),2003,119-139
    韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展.生态学报.2001,21:1196-1203
    席北斗,刘鸿亮,孟伟.高效复合微生物菌群在垃圾堆肥中的应用.环境科学,2001,22(55):122-125
    席北斗,刘鸿亮,孟伟.厨余垃圾堆肥蓬松剂技术研究.安全与环境学报,2003,3(3):41-45
    夏颖,闵航,周德平等.两株菲降解菌株的特性及其系统发育地位研究.中国环境科学,2003,23:162-166
    严昶升.土壤肥力研究方法.农业出版社.1988.
    张丽莉,陈利军,刘桂芬等.污染土壤的酶学修复研究进展.应用生态学报,2003.14:2342-2346
    周启星.土壤环境污染化学与化学修复研究最新进展,环境化学,2006,25:257-265

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700