用户名: 密码: 验证码:
暗—光耦联两步法生物制氢及相关技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物制氢技术以其常温、常压、能耗低、环保等特性,已经引起各国科学家的高度重视。在目前备受关注的几种生物制氢方法中,以废弃生物质为底物的发酵法生物制氢,是更接近实用技术的方法。近年来的研究结果表明,暗发酵与光发酵产H_2在底物利用方面具有很好的互补性,暗-光发酵耦联制氢技术不仅可以提高底物向产氢的转化效率,还可以达到发酵液上清直接排放的清洁标准,为生物质向氢能的转化提供了一种理想的清洁生产途径。本论文以进一步提高暗、光发酵法制氢的效率为研究目标,在混合菌群暗发酵过程中微生物组成与产H_2效率关系的解析、高效产H_2菌株的筛选与产H_2条件的优化以及利用自然光的光发酵制氢等方面展开了研究。具体研究内容包括以下五个部分:
     1.利用不同底物进行暗-光耦联两步法生物制氢的研究。针对寻找合适原料这一开发生物能源面临的重要问题,选择能源作物木薯(Manihot esculenta Crantz)和废弃物厨余垃圾为底物,进行暗-光耦联两步法生物制氢的可行性研究。通过暗发酵产H_2,木薯、厨余垃圾及对照蔗糖三种底物产H_2量分别为212,226和223 mL/g-底物。再通过类球红细菌(Rhodobacter sphaeroides)ZX-5利用三组暗发酵液厌氧光照产H_2,产H_2量分别达到611±11 mL/g、451±20 mL/g和565±13 mL/g。通过暗-光耦联两步法产H_2,产H_2量比仅暗发酵高出2-3倍,并且发酵液COD去除率达80%以上。结果表明,木薯粉和厨余垃圾是暗-光耦联两步法生物制氢理想的生物质资源,所建立的暗光耦联两步法产H_2体系,不仅可以把包括废弃物在内的生物质等更加彻底地转化成清洁能源氢气,同时也避免了暗发酵产生的有机酸所带来的环境污染。
     2.解析10L连续搅拌式罐式反应器(CSTR)暗发酵产H_2过程中优势微生物的演替规律。通过变性梯度凝胶电泳(DGGE)分析16S-rRNA组成的多态并测序分析相关DGGE条带,以及采用实时定量PCR(qrt-PCR)和基于铁氢酶hydA的DNA及cDNA克隆建库等技术解析系统菌群结构与产H_2效率之间的关系。分析结果表明:从接种到产H_2结束的不同时期,系统中优势菌群存在明显的演替,产H_2前期为好氧的芽胞杆菌(Bacillus),产H_2初期开始出现拜氏梭菌(Clostridium beijerinckii),而产H_2旺期以拜氏梭菌和产气荚膜梭菌(Clostridium perfringens)为优势菌,产H_2末期又逐渐出现了另一些能够利用蛋白的梭菌,而且反应器中氧化还原电位(ORP)的变化与优势菌群的演替及产H_2速率一致。基于hydA基因构建的DNA和cDNA文库,得到一个反映不同时期产H_2菌种类和丰度的动态变化图。通过qrt-PCR研究不同时段hydA基因的表达,发现系统中总hydA的表达水平在稳定期达到峰值,而单位产H_2菌的相对hydAmRNA表达水平却在指数期达到峰值。上述结果表明采用分子生态学技术能有效地监测产H_2系统中混合菌群的优势种群及其动态演替规律。
     3.从暗发酵产H_2系统中分离产H_2功能菌。在解析暗发酵产H_2系统中微生物演替规律的基础上,针对不同产H_2阶段的优势菌设计分离方案。从运行8h的10LCSTR所采集的样品中分离纯化出08-2优势菌株,经16S rRNA基因序列鉴定,为蜡质芽孢杆菌(Bacillus cereus)。从运行16 h的10 L CSTR所采集的样品中分离纯化出14株产H_2菌菌株。并通过基于ERIC(肠杆菌基因间共有多重序列)-PCR技术将14株菌快速鉴别为3种不同的菌株。其中08-1菌株通过形态特征和分子生物学鉴定,初步鉴定为Clostridiumbeijerinckii。对该菌株的产H_2性能进行研究,发现同葡萄糖相比,该菌株更适宜利用蔗糖、生物质木薯粉以及成分更为复杂的厨余垃圾生长及产H_2。在间歇发酵中,实现最大产H_2速率为245 mL H_2/(L·h),产H_2量达到3.09 mol-H_2/(mol-蔗糖)。而08-11菌株是能够产H_2的兼性厌氧菌,与亲缘关系最近的地衣芽孢杆菌菌株(Bacillus lichenformisAnBa7)相似度为95%,因此,该菌株可初步判断为杆菌中的一个新种。对10L CSTR运行24 h阶段采集的样品用选择性培养基分离出能够快速生长并产H_2的产气荚膜梭菌(Clostridium perfringens)08-31。另外,从其他产H_2系统中分离获得产H_2菌株128株,通过ERIC-PCR及16S rRNA基因序列分析,获得丁酸梭菌5株,肠细菌属(Enterobacter)3株,产气荚膜梭菌,拜氏梭菌,地衣芽孢杆菌和凝结芽孢杆菌各1株。结果表明,从10 L CSTR反应器中成功分离出多株菌株,进一步证实了基于分子标记的监测系统预测菌群结构的有效性;另外,首次将ERIC-PCR技术成功地用于暗发酵产H_2菌株的快速鉴别。
     4.分离与筛选光合产H_2菌株。从不同废水中分离纯化出13株光合细菌,以30mM苹果酸为底物进行产H_2能力研究,发现最大产H_2速率为47-103 mL/(L·h),底物转化效率为27.98-72.00%。从中挑出4株产H_2能力较好的菌株,分别以乙酸和丁酸做碳源进行光发酵产H_2试验,其中HL-1菌株能利用这两种碳源生长并产H_2;SC-6和SC-7菌株不能利用这两种碳源产H_2;HL-5菌株在乙酸培养基中能生长但不产气,在丁酸培养基中能生长并产H_2。这些菌株的获得,对于研究光合细菌乙酸和丁酸代谢途径提供了极好的材料。另外,从37株光合细菌中筛选出一株能够利用甘油为碳源进行有效产H_2的菌株。根据菌株的形态、生理生化特征、16S rDNA序列和ERIC-PCR结果分析,初步鉴定DB803菌株为Rhodobacter sphaeroides,同时也研究了DB803菌株在30℃,4000 lux光照厌氧条件下利用不同浓度的生物柴油生产废水产H_2能力,当培养基中起始COD值为11.5g/L时,其在对数生长期平均产H_2速度为38 mL/(L·h),同时,废水COD去除率达91.2%,结果表明该菌株在生物柴油生产废水的处理及利用其进行生物产H_2中具有潜在的应用价值。此外,不同的类球红细菌菌株利用甘油产H_2能力的差异显著,筛选出的DB803菌株为进一步研究光合细菌利用甘油产H_2的代谢途径提供了材料。
     5.优化光发酵产H_2条件及初步研究自然光光发酵产H_2。在光合产H_2实验中,通过设置两种条件下制成的接种物和三种装液量,发现光照厌氧种子产H_2性能优于黑暗好氧种子;反应器顶部空间小的其底物转化效率高;顶部空间填充氮气可能促进光合细菌菌体的代谢活性。另外,还研究了太阳光对6 L光发酵制氢系统的影响,在白天利用户外太阳辐射能晚上进行人工补光的产H_2实验中,光合细菌的产H_2速度与阳光光强成正比,白天和晚上的平均产H_2速率分别为12.4 mL/(L·h)和9.0 mL/(L·h),整个试验的底物转化效率达72.4%,与之对应的一次实验,即白天利用阳光晚上不补光的试验组,底物转化效率为45.02%。光反应器体积放大后,产H_2时间的延长是径高比值大的柱状反应器其比表面积小所致。
Biological hydrogen production,which is carried out at normal temperature,normal pressure and low energy-consuming as well as environmental-friendly,has been attracting the common attentions.Among the several main biological hydrogen-production pathways (photolysis of water,photo-fermentation of small molecular organic compounds,and light-independent anaerobic fermentation from relatively large molecular organic compounds),light-independent anaerobic(dark-) fermentation and photo-fermentation are currently the closest to application,owing to thier higher hydrogen production rate.Many recent investigations demonstrated that photo-fermetnation further converted the metabolites from dark-fermentation to hydrogen and the two-step process of sequential dark- and photo-fermentation could not only improve the hydrogen yield but also remove the most COD in the dark-fermentational effluent.It provides a new promising approach to produce biohydrogen from waste biomass.To further improve the hydrogen producing efficiency of the two-step process of sequential dark- and photo-fermentation,the succession of microbial composition during the hydrogen producing process of darkfermentation was investigated,the bacterial strains with high hydrogen producing efficiency were screened and the conditions for photo-fermentation were optimized in this study.The dissertation includes the following five parts:
     1.Hydrogen production from different substrates by the sequential dark- and photo-fermnetation.One of the main problems on developing bioenergy is to seek suitable feedstock.A Feasible study of sequential dark- and photo-fermentation hydrogen production from cassava and food waste was testified.In dark-fermentation,the average yield of hydrogen was approximately 212 mL H_2/g-cassava and 226 mL H_2/g-food waste. In subsequent photo-fermentation,the average yield of hydrogen from the effluent of dark-fermentation was approximately 611±11 mL H_2/g-cassava and 451±20 mL H_2/g-food waste.The process of sequential dark-fermentation and photo-fermentation could reach two-four fold hydrogen yields that dark-fermentation did.And meanwhile,the COD decreased greatly with a removal efficiency of 84.3%in cassava batch and 80.2%in food waste batch.These results demonstrate that cassava and food waste could be ideal substrates for biohydrogen production.And a two-step process of sequential dark-fermentation and photo-fermentation was highly efficient on both preventing the environmental issue and improving biohydrogen production capacity.
     2.The succession of dominant bacteria during the hydrogen producing process by dark-fermentation in a 10 L continuous stirred tank reactor was investigated.To elucidate the bacterial community structure-function relationships of 10 L continuous stirred tank reactor(CSTR) system possessing relatively high hydrogen producing potential,molecular marker of 16S-rRNA and hydA gene,denaturing gradient gel electrophoresis(DGGE), qrt-PCR and hydA gene-based DNA and cDNA clone library were applied.The results of DGGE described a general profile of bacterial population dynamics:Bacillus spp.grew in the lag phase;Clostridium perfringens and Clostridium beijerinckii became dominant when hydrogen production was initiated;other Clostridium spp.began to appear when hydrogen production stopped and hydrogen uptake was observed.Deatailed dynamic profiles about categories and abundances of hydrogen producers in different stage were acquired with respect to hydA gene-based DNA and cDNA clone library.Expression level of hydA mRNA in different stages were studied by qrt-PCR,the results were that total hydA mRNA expression level in the culture reached the peak at stationary phase and is positively related to the instant hydrogen production rate,but relative hydA mRNA expression level of one hydrogen-producer reached the peak during exponential phase.The above results demonstrated that predominant bacterial communities and specific profile of succession can be monitored by molecular ecology technologies adopted.
     3.Isolation of the dominant hydrogen producers in the dark-fermentation system.The strain 08-2 was isolated from the 8h-sample of 10L CSTR,and identified as Bacillus cereus according to16S rRNA gene sequences.14 strains of hydrogen producers were isolated from 16h-sample of 10L CSTR,and then were merged as 3 different strains quickly by ERIC-PCR.Among them,the strain 08-1 was identified as Clostridium beijerinckii based on its phenotype and 16S rRNA gene.Sucrose,biomass and wastes which components complicated were favorite carbon sources for growth and hydrogen production by the strain 08-1.The optimum temperature was 40℃and pH was 5.5 for hydrogen production of strain 08-1.Under batch fermentative hydrogen production conditions:concentration of sucrose 20 g/L,temperature 40℃,pH 5.5 controlled and stirred rate 100 rpm,the maximal hydrogen yield and volumetric hydrogen production rate for strain 08-1 were 3.09 mol H_2/(mol-sucrose) and 245 mL/L.h,respectively.The results demonstrate that the strain possesses potential application in biohydrogen production from wastes.The strain 08-11 was a facultative anaerobic hydrogen producer and was judged as a new species based on its 16S rRNA gene.Clostridium perfringens were counted and isolated from 24 h-samples of 10L CSTR by selective medium.Moreover,128 strains of hydrogen producers isolated from other hydrogen production system,and among them,5 strains of Clostridium butyricum,3 strains of Enterobacterium sp.,1 strain of Clostridium perfringens,Clostridium beijerinckii,Bacillus licheniformis and condensate bacillus. These important functional strains acquired from 10L CSTR further demonstrate validity on forecasting hydrogen production community structure by molecular marker-based monitoring system.Furthermore,ERIC-PCR method was successfully applied to quick identifying and classifying dark-fermentation hydrogen production strains for the first time.
     4.Screening photosynthetic dacteriat strains to produce hydrogen from wastewater of biodiesel manufacture.13 strains of photosynthetic bacterial isolated from different water bodies.Their maximum hydrogen production rates and substrate conversion efficiency from 30mM malate were 47-103 mL/l·h and 27.98-72.00%,respectively.Photo-hydrogen production was carried out from acetate and butyrate by 4 selected photosynthetic bacterial with higher biohydrogen efficiency from malate.The strain HL-1 can utilize both acetate and butyrate for growth and hydrogen production.Strain SC-6 and SC-7 can grow but can't produce hydrogen from acetate and butyrate.The strain HL-5 can can grow but can't produce hydrogen from acetate,and utilize butyrate for growth and hydrogen production. These strains would be excellent material for investigating different acetate and butyrate metablic pathway.A strain(designated as DB803) producing hydrogen efficiently from glycerol as the carbon source was screened from 37 photosynthetic bacterial strains.This strain was identified as a new strain of Rhodobacter sphaeroides based on its phenotype, physiological and biochemical characteristics,the sequence of its 16S rRNA gene and fingerprinting of ERIC-PCR.Its hydrogen yields from biodiesel wastewater at different dilution times were investigated under the anaerobic condition of 30℃,4000lux of illumination.The average hydrogen-producing rate of 38 mL/L·h was observed at log phase when the initial COD value of wastewater was diluted to 11.5 g/L.Meanwhile,the COD decreased greatly with a removal efficiency of 91.2%at batch test.The results demonstrate that the strain possesses potential application in hydrogen production from wastewater of biodiesel manufacture.And moreover,DB803 would be material for further studing metabolic pathway of glycerol for hydrogen production by photosynthetic bacterial.
     5.The optimal conditions for photo-fermentation and investigation on hydrogen production of photo-fermentation under sunlight.The effects of different inoculum,culture volume and gas types on photohydrogen production were investigated.Hydrogen production potential inoculated by inoculum under photo and anaerobic conditions was superior to the inoculum under dark and aerobic conditions.Substrate conversion efficiency was high with smaller headspacein bioreactor.Nitrogen gas might promote the metabolic activities of photosynthetic bacterium.Moreover,Production of hydrogen by photosynthetic bacteria under sunlight was studied.In the experiment on hydrogen production by natural sunlight during daytime and supplement with artificial light during night,the hydrogen production rate by the photosynthetic bacteria depended on the sunlight intensity;the average hydrogen production rate during daytime and night was 12.4 mL/L·h and 9.0 mL/L·h,respectively.And the substrate conversion efficiency was relatively high,72.4%.Another experiment on hydrogen production by natural sunlight during daytime and not supplement with artificial light during night was also conducted,its substrate conversion efficiency was 45.02%.The cause of time prolonged in amplified photobioreactor would be contributed to smaller specific surface area of cylindrical photobioreactor with bigger diameter height ratio.
引文
[1]Das D,Veziroglu TN.Hydrogen production by biological processes:a survey of literature.International Journal of Hydrogen Energy,2001,26(1):13-28.
    [2]Mizuno O,Dinsdale R,Hawkes FR,et al.Enhancement of hydrogen production from glucose by nitrogen gas sparging.Bioresource Technology,2000,73(1):59-65.
    [3]Hallenbeck PC,Benemann JR.Biological hydrogen production;fundamentals and limiting processes.International Journal of Hydrogen Energy,2002,27(11-12):1185-1193.
    [4]梁建光,吴永强.生物产氢研究进展.微生物学通报.2002,29(6):81-85
    [5]Hansel A,Lindblad P.Towards optimization of cyanobacteria as biotechnologically relevant producers of molecular hydrogen,a clean and renewable energy source.Applied Microbiology and Biotechnology,1998,50(2):153-160.
    [6]Jramachandran R,Menonr K.An overview of industrial uses of hydrogen[J].Int J Hydrogen Energy.1998,(23):593-598.
    [7]Ghirardi ML,King PW,Posewitz MC,et al.Approaches to developing biological H_2-photoproducing organisms and processes.Biochemical Society Transactions,2005,33:70-72.
    [8]Benemann J.Hydrogen biotechnology:Progress and prospects.Nature Biotechnology,1996,14(9):1101-1103.
    [9]Melis A,Melnicki MR.Integrated biological hydrogen production.International Journal of Hydrogen Energy,2006,31(11):1563-1573.
    [10]Lindblad P,Christensson K,Lindberg P,et al.Photoproduction of H-2 by wildtype Anabaena PCC 7120 and a hydrogen uptake deficient mutant:from laboratory experiments to outdoor culture.International Journal of Hydrogen Energy,2002,27(11-12):1271-1281.
    [11]Lindberg P,Lindblad F,Cournac L.Gas exchange in the filamentous cyanobacterium Nostoc punctiforme strain ATCC 29133 and its hydrogenase-deficient mutant strain NHM5.Applied and Environmental Microbiology,2004,70(4):2137-2145.
    [12]Liu JG;Bukatin VE,Tsygankov AA.Light energy conversion into H-2 by Anabaena variabilis mutant PK84 dense cultures exposed to nitrogen limitations.International Journal of Hydrogen Energy,2006,31(11):1591-1596.
    [13]Masukawa H,Mochimaru M,Sakurai H.Hydrogenases and photobiological hydrogen production utilizing nitrogenase system in cyanobacteria.International Journal of Hydrogen Energy, 2002,27(11-12): 1471-1474.
    [14] Yoshino F, Ikeda H, Masukawa H, et al. Photobiological production and accumulation of hydrogen by an uptake hydrogenase mutant of Nostoc sp PCC 7422. Plant and Cell Physiology, 2006, 47: S56-S56.
    [15] Kruse O, Rupprecht J, Mussgnug JR, et al. Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochemical & Photobiological Sciences, 2005,4(12): 957-970.
    [16] Sveshnikov DA, Sveshnikova NV, Rao KK, et al. Hydrogen metabolism of mutant forms of Anabaena variabilis in continuous cultures and under nutritional stress. Ferns Microbiology Letters, 1997,147(2): 297-301.
    [17] Melis A and Happe T. Hydrogen production. Green algae as a source of energy. Plant Physiol. 2001:127,740-748
    [18] Fang HHP, Liu H. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technology, 2002, 82(1): 87-93.
    [19] Liu GZ, Shen JQ. Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria. Journal of Bioscience and Bioengineering, 2004, 98(4): 251-256.
    [20] Zhang T, Liu H, Fang HH. Biohydrogen production from starch in wastewater under thermophilic condition. Journal of Environmental Management, 2003, 69(2): 149-156.
    [21] Yokoi H, Saitsu A, Uchida H, et al. Microbial hydrogen production from sweet potato starch residue. Journal of Bioscience and Bioengineering, 2001, 91(1): 58-63.
    [22] Liu H, Zhang T, Fang HPP. Thermophilic H_2 production from cellulose containing wastewater. Biotechnology Letters, 2003, 25: 365-369.
    [23] Wang CC. CCW, Chu C.P., Lee D.J., Chang B.V. ,Liao C.S., et al. Using filtrate of waste biosolids to effectively produce bio-hydrogen by anaerobic fermentation. Water Research, (2003), 37: 2789-2793.
    [24] Kapdan IK, Kargi F. Bio-hydrogen production from waste materials. Enzyme and Microbial Technology, 2006, 38(5): 569-582.
    [25] Lay JJ, Lee YJ, Noike T. Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Research, 1999, 33(11): 2579-2586.
    [26] Shin HS, Youn JH, Kim SH. Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. International Journal of Hydrogen Energy, 2004, 29(13): 1355-1363.
    [27] Kim SH, Han SK, Shin HS. Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. International Journal of Hydrogen Energy, 2004, 29(15): 1607-1616.
    [28] Steven W.Van Ginkela S-EO, Bruce E. Logan. Biohydrogen gas production from food processing anddomestic wastewaters. International Journal of Hydrogen Energy, (2005), 30: 1535-1542.
    [29] Tanisho YI. Continuous hydrogen production from molasses by bacterium Enterobacter aerogenes. Int J Hydrogen Energy, (1994) 19: 807-812.
    [30] Yu HQ, Zhu ZH, Hu WR, et al. Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. International Journal of Hydrogen Energy, 2002, 27(11-12): 1359-1365.
    [31] Yokoi H, Maki R, Hirose J, et al. Microbial production of hydrogen from starch-manufacturing wastes. Biomass & Bioenergy, 2002,22(5): 389-395.
    [32] Li CL, Fang HHP. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Critical Reviews in Environmental Science and Technology, 2007, 37(1): 1-39.
    [33] Wang MY, Tsai YL, Olson BH, et al. Monitoring dark hydrogen fermentation performance of indigenous Clostridium butyricum by hydrogenase gene expression using RT-PCR and qPCR. International Journal of Hydrogen Energy, 2008, 33(18): 4730-4738.
    [34] Wang MY, Olson BH, Chang JS. Relationship among growth parameters for Clostridium butyricum, hydA gene expression, and biohydrogen production in a sucrose-supplemented batch reactor. Appl Microbiol Biotechnol, 2008, 78(3): 525-532.
    [35] Tolvanen KES, Koskinen PEP, Ylikoski AI, et al. Quantitative monitoring of a hydrogen-producing Clostridium butyricum strain from a continuous-flow, mixed culture bioreactor employing real-time PCR. International Journal of Hydrogen Energy, 2008, 33(2): 542-549.
    [36] Chen WM, Tseng ZJ, Lee KS, et al. Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. International Journal of Hydrogen Energy, 2005, 30(10): 1063-1070.
    [37] Saint-Amans S, Girbal L, Andrade J, et al. Regulation of carbon and electron flow in Clostridium butyricum VPI 3266 grown on glucose-glycerol mixtures. Journal of Bacteriology, 2001, 183(5): 1748-1754.
    [38] Yokoi H, Tokushige T, Hirose J, et al. H-2 production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes. Biotechnology Letters, 1998, 20(2): 143-147.
    [39] Yokoi H, Mori S, Hirose J, et al. H-2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnology Letters, 1998, 20(9): 895-899.
    [40] Reimann A, Biebl H, Deckwer WD. Influence of iron, phosphate and methyl viologen on glycerol fermentation of Clostridium butyricum. Applied Microbiology and Biotechnology, 1996,45(1-2): 47-50.
    [41] Collet C, Adler N, Schwitzguebel JP, et al. Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose. International Journal of Hydrogen Energy, 2004, 29(14): 1479-1485.
    [42] Lin CY, Chen HP. Sulfate effect on fermentative hydrogen production using anaerobic mixed microflora. International Journal of Hydrogen Energy, 2006, 31(7): 953-960.
    [43] Wang C, Chang C, Chu C. Producing hydrogen from wastewater sludge by Clostridum bifermentans. Journal of Biotechnology, 2003, 102: 83-92.
    [44] Ewyernie D, Yamazaki S, Morimoto K, et al. Identification and characterization of Clostridium paraputrificum M-21, a chitinolytic, mesophilic and hydrogen-producing bacterium. Journal of Bioscience and Bioengineering, 2000, 89(6): 596-601.
    [45] Palazzi E, Perego P, Fabiano B. Mathematical modelling and optimization of hydrogen continuous production in a fixed bed bioreactor. Chemical Engineering Science, 2002, 57(18): 3819-3830.
    [46] Nakashimada Y, Rachman MA, Kakizono T, et al. Hydrogen production of Enterobacter aerogenes altered by extracellular and intracellular redox states. International Journal of Hydrogen Energy, 2002, 27(11-12): 1399-1405.
    [47] Thompson LJ, Gray VM, Kalala B, et al. Biohydrogen production by Enterobacter cloacae and Citrobacter freundii in carrier induced granules. Biotechnology Letters, 2008, 30(2): 271-274.
    [48] Podest'a J, Navarro A, Estrella C, et al. Electrochemical measurements of trace concentrations of biological hydrogen produced by Enterobacteriaceae. Inst Pasteur, 1997,148: 87-93.
    [49] Oh YK, Park MS, Seol EH, et al. Isolation of hydrogen-producing bacteria from granular sludge of an upflow anaerobic sludge blanket reactor. Biotechnology and Bioprocess Engineering, 2003, 8(1): 54-57.
    [50] Duangmanee T, Padmasiri SI, Simmons JJ, et al. Hydrogen production by anaerobic microbial communities exposed to repeated heat treatments. Water Environment Research, 2007, 79(9): 975-983.
    [51] Perez-Ibarra BM, Flores ME, Garcia-Varela M. Isolation and characterization of Bacillus thioparus sp nov., chemolithoautotrophic, thiosulfate-oxidizing bacterium. Ferns Microbiology Letters, 2007, 271(2): 289-296.
    [52] Zhang T, Liu H, Fang HHP. Biohydrogen production from starch in wastewater under thermophilic condition. Journal of Environmental Management, 2003, 69(2): 149-156.
    [53] Ueno Y, Haruta S, Ishii M, et al. Characterization of a microorganism isolated from the effluent of hydrogen fermentation by microflora. Journal of Bioscience and Bioengineering, 2001, 92(4): 397-400.
    [54] Kanai T, Imanaka H, Nakajima A, et al. Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. Journal of Biotechnology, 2005, 116(3): 271-282.
    [55] Minnan L, Jinli H, Xiaobin W, et al. Isolation and characterization of a high H_2-producing strain Klebsiella oxytoca HP1 from a hot spring. Research in Microbiology, 2005, 156(1): 76-81.
    [56] Xing DF, Ren NQ, Li QB. Isolation and characterization of new species hydrogen producing bacterium Ethanologenbacterium sp. strain X-1 and its capability of hydrogen production. Wei Sheng Wu Xue Bao, 2004, 44(6): 724-728.
    [57] Katsuda T, Oshima H, Azuma M, et al. New detection method for hydrogen gas for screening hydrogen-producing microorganisms using water-soluble Wilkinson's catalyst derivative. Journal of Bioscience and Bioengineering, 2006, 102(3): 220- 226.
    [58] Wang Y, Mu Y, Yu HQ. Comparative performance of two upflow anaerobic biohydrogen-producing reactors seeded with different sludges. International Journal of Hydrogen Energy, 2007, 32(8): 1086-1094.
    [59] Tao YZ, Chen Y, Wu YQ, et al. High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose. International Journal of Hydrogen Energy, 2007, 32(2): 200-206.
    [60] Fan YT, Zhang YH, Zhang SF, et al. Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresource Technology, 2006, 97(3): 500-505.
    [61]Fan YT,Zhang GS,Guo XY,et al.Biohydrogen-production from beer lees biomass by cow dung compost.Biomass & Bioenergy,2006,30(5):493-496.
    [62]Fan YT,Li CL,Lay JJ,et al.Optimization of initial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compost.Bioresource Technology,2004,91(2):189-193.
    [63]Niessen J,Harnisch F,Rosenbaum M,et al.Heat treated soil as convenient and versatile source of bacterial communities for microbial electricity generation.Electrochemistry Communications,2006,8(5):869-873.
    [64]Valdez-Vazquez I,Sparling R,Risbey D,et al.Hydrogen generation via anaerobic fermentation of paper mill wastes.Bioresource Technology,2005,96(17):1907-1913.
    [65]Nishio N,Nakashimada Y.Recent development of anaerobic digestion processes for energy recovery from wastes.Journal of Bioscience and Bioengineering,2007,103(2):105-112.
    [66]Nishio N,Nakashimada Y.High rate production of hydrogen/methane from various substrates and wastes.Adv Biochem Eng Biotechnol,2004,90:63-87.
    [67]Fang HHP,Zhang T,Liu H.Microbial diversity of a mesophilic hydrogen-producing sludge.Applied Microbiology and Biotechnology,2002,58(1):112-118.
    [68]Cammack R.Bioinorganic chemistry-Hydrogenase sophistication.Nature,1999,397(6716):214-215.
    [69]Gray CT,Gest H.Biological formation of molecular hydrogen.Science,1965,148:186-192.
    [70]Tanisho S.A Strategy for Improving the Yield of Hydrogen by Fermentation[C].Proceeding of 13th WHEC.2000:363-369.
    [71]Yu HQ,Fang HHP.Production of volatile fatty acids and alcohols from dairy wastewater under thermophilic conditions.Transactions of the Asae,2001,44(5):1357-1361.
    [72]Ren NQ,Wang BZ,Huang JC.Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor.Biotechnology and Bioengineering,1997,54(5):428-433.
    [73]Simon GM BS,Choo AD,et al.Hydrogen metabolism in Shewanella oneidensis MR-1.Applied and EnvironmentalMicrobiology,2007,73((4)):1153-1165.
    [74]林明.高效产氢发酵新菌种的产氢机理及生态学研究[D].哈尔滨:哈尔滨工业大学,2002.
    [75] Yoshida A, Nishimura T, Kawaguchi H, et al. Efficient induction of formate hydrogen lyase of aerobically grown Escherichia coli in a three-step biohydrogen production process. Applied Microbiology and Biotechnology, 2006.
    [76] Liu XG, Zhu Y, Yang ST. Butyric acid and hydrogen production by Clostridium tyrobutyricum ATCC 25755 and mutants. Enzyme and Microbial Technology, 2006, 38(3-4): 521-528.
    [77] Liu X, Zhu Y, Yang ST. Construction and characterization of ack deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid and hydrogen production. Biotechnology Progress, 2006, 22(5): 1265-1275.
    [78] Morimoto K, Kimura T, Sakka K, et al. Overexpression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production. Ferns Microbiology Letters, 2005, 246(2): 229-234.
    [79] Lay JJ. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnology and Bioengineering, 2000, 68(3): 269-278.
    [80] Mandal B, Nath K, Das D. Improvement of biohydrogen production under decreased partial pressure of H_2 by Enterobacter cloacae. Biotechnology Letters, 2006, 28(11): 831-835.
    [81] Zheng XJ, Yu HQ. Biological hydrogen production by enriched anaerobic cultures in the presence of copper and zinc. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2004, 39(1): 89-101.
    [82] Ueno Y, Otsuka S, Morimoto M. Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. Journal of Fermentation and Bioengi neering, 1996, 82(2): 194-197.
    [83] Ren NQ, Gong ML. Acclimation strategy of a biohydrogen producing population in a continuous-flow reactor with carbohydrate fermentation. Engineering in Life Sciences, 2006, 6(4): 403-409.
    [84] Qureshi N, Saha BC, Cotta MA. Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part II - Fed-batch fermentation. Biomass & Bioenergy, 2008, 32(2): 176-183.
    [85] Chin HL, Chen ZS, Chou CP. Fedbatch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production. Biotechnology Progress, 2003, 19(2): 383-388.
    [86] Li SL, Kuo SC, Lin JS, et al. Process performance evaluation of intermittent-continuous stirred tank reactor for anaerobic hydrogen fermentation with kitchen waste. International Journal of Hydrogen Energy, 2008, 33(5): 1522-1531.
    [87] Zuo J, Zuo Y, Zhang W, et al. Anaerobic bio-hydrogen production using pre-heated river sediments as seed sludge. Water Science and Technology, 2005, 52(10-11): 31-39.
    [88] Kim SH, Han SK, Shin HS. Performance comparison of a continuous-flow stirred-tank reactor and an anaerobic sequencing batch reactor for fermentative hydrogen production depending a substrate concentration. Water Science and Technology, 2005, 52(10-11): 23-29.
    [89] Fan KS, Chen YY. H_2 production through anaerobic mixed culture: effect of batch S-0/X-0 and shock loading in CSTR. Chemosphere, 2004, 57(9): 1059-1068.
    [90] Chen CC, Lin CY. Using sucrose as a substrate in an anaerobic hydrogen-producing reactor. Advances in Environmental Research, 2003, 7(3): 695-699.
    [91] Zhao QB, Yu HQ. Fermentative H_2 production in an upflow anaerobic sludge blanket reactor at various pH values. Bioresource Technology, 2008, 99(5): 1353-1358.
    [92] Zhao QB, Mu Y, Wang Y, et al. Response of a biohydrogen-producing reactor to the substrate shift from sucrose to lactose. Bioresource Technology, 2008, 99(17): 8344-8347.
    [93] Zhao BH, Yue ZB, Zhao QB, et al. Optimization of hydrogen production in a granule-based UASB reactor. International Journal of Hydrogen Energy, 2008, 33(10): 2454-2461.
    [94] Zhang ZP, Show KY, Tay JH, et al. Enhanced continuous biohydrogen production by immobilized anaerobic microflora. Energy & Fuels, 2008, 22(1): 87-92.
    [95] Yu HQ, Mu Y Biological hydrogen production in a UASB reactor with granules. II: Reactor performance in 3-year operation. Biotechnology and Bioengineering, 2006, 94(5): 988-995.
    [96] Mu Y, Yu HQ. Biological hydrogen production in a UASB reactor with granules. I: Physicochemical characteristics of hydrogen-producing granules. Biotechnology and Bioengineering, 2006, 94(5): 980-987.
    [97] Angenent LT, Karim K, Al-Dahhan MH, et al. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends in Biotechnology, 2004,22(9): 477-485.
    [98] Oh SE, Lyer P, Bruns MA, et al. Biological hydrogen production using a membrane bioreactor. Biotechnology and Bioengineering, 2004, 87(1): 119-127.
    [99] Lee KS, Lo YS, Lo YC, et al. Operation strategies for biohydrogen production with a high-rate anaerobic granular sludge bed bioreactor. Enzyme and Microbial Technology, 2004, 35(6-7): 605-612.
    [100] Lee KS, Wu JF, Lo YS, et al. Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor. Biotechnology and Bioengineering, 2004, 87(5): 648-657.
    [101] Arooj MF, Han SK, Kim SH, et al. Sludge characteristics in anaerobic SBR system producing hydrogen gas. Water Research, 2007, 41(6): 1177-1184.
    [102] Mohan SV, Babu VL, Sarma PN. Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (AnSBR): Effect of organic loading rate. Enzyme and Microbial Technology, 2007,41(4): 506-515.
    [103] Yokoi H, Tokushige T, Hirose J, et al. Hydrogen production by immobilized cells of aciduric Enterobacter aerogenes strain HO-39. Journal of Fermentation and Bioengineering, 1997, 83(5): 481-484.
    [104] Oh YK, Kim SH, Kim MS, et al. Thermophilic biohydrogen production from glucose with trickling biofilter. Biotechnology and Bioengineering, 2004, 88(6): 690-698.
    [105] Fang HHP, Liu H, Zhang T. Characterization of a hydrogen-producing granular sludge. Biotechnology and Bioengineering, 2002, 78(1): 44-52.
    [106] Nandi R, Sengupta S. Microbial production of hydrogen: An overview. Crit Rev Microbiol, 1998, 24(1): 61-84.
    [107] Fang HHP, Liu H, Zhang T. Phototrophic hydrogen production from acetate and butyrate in wastewater. International Journal of Hydrogen Energy, 2005, 30(7): 785-793.
    [108] Oh YK, Seol EH, Kim MS, et al. Photoproduction of hydrogen from acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris P4. International Journal of Hydrogen Energy, 2004, 29(11): 1115-1121.
    [109] Tao YZ, He YL, Wu YQ, et al. Characteristics of a new photosynthetic bacterial strain for hydrogen production and its application in wastewater treatment. International Journal of Hydrogen Energy, 2008, 33(3): 963-973.
    [110] Shi XY, Yu HQ. Hydrogen production from propionate by Rhodopseudomonas capsulata. Applied Biochemistry and Biotechnology, 2004, 117(3): 143-154.
    [111] Fascetti E, Todini O. Rhodobacter sphaeroides RV cultivation and hydrogen production in a one- and two-stage chemostat. Applied Microbiology and Biotechnology,1995,44(3-4):300-305.
    [112]He DL,Bultel Y,Magnin JP,et al.Kinetic analysis of photosynthetic growth and photohydrogen production of two strains of Rhodobacter capsulatus.Enzyme and Microbial Technology,2006,38(1-2):253-259.
    [113]Eroglu I,Aslan K,Gunduz U,et al.Substrate consumption rates for hydrogen production by Rhodobacter sphaeroides in a column photobioreactor.Journal of Biotechnology,1999,70(1-3):103-113.
    [114]Gadhamshetty V,Sukumaran A,Nirmalakhandan N,et al.Photofermentation of malate for biohydrogen production - A modeling approach.International Journal of Hydrogen Energy,2008,33(9):2138-2146.
    [115]Eroglu E,Gunduz U,Yucel M,et al.Photobiological hydrogen production by using olive mill wastewater as a sole substrate source.International Journal of Hydrogen Energy,2004,29(2):163-171.
    [116]Eroglu E,Eroglu I,Gunduz U,et al.Effect of clay pretreatment on photofermentative hydrogen production from olive mill wastewater.Bioresource Technology,2008,99(15):6799-6808.
    [117]Zhu HG,Ueda S,Asada Y,et al.Hydrogen production as a novel process of wastewater treatment-studies on tofu wastewater with entrapped R sphaeroides and mutagenesis.International Journal of Hydrogen Energy,2002,27(11-12):1349-1357.
    [118]Najafpour G,Younesi H,Mohamed AR.A survey on various carbon sources for biological hydrogen production via the water-gas reaction using a photosynthetic bacterium(Rhodospirillum rubrum).Energy Sources Part a-Recovery Utilization and Environmental Effects,2006,28(11):1013-1026.
    [119]Chen CY,Chang JS.Enhancing phototropic hydrogen production by solid-cartier assisted fermentation and internal optical-fiber illumination.Process Biochemistry,2006,41(9):2041-2049.
    [120]刘双江,杨惠芳,周培瑾.固定化光合细菌处理豆制品废水产氢研究[J].环境科学,1995,16(1):42-44.
    [121]Seon YH,Lee CG,Park DH,et al.Hydrogen production by immobilized cells in the nozzle loop bioreactor[J].Biotechnol Lett,1993,15,1275
    [122]Kim EJ,Lee MK,Kim MS,et al.Molecular hydrogen production by nitrogenase of Rhodobacter sphaeroides and by Fe-only hydrogenase of Rhodospirillum rubrum.International Journal of Hydrogen Energy,2008,33(5):1516-1521.
    [123] Do YS, Smeenk J, Broer KM, et al. Growth of Rhodospirillum rubrum on synthesis gas: Conversion of CO to H_2 and poly-beta-hydroxyalkanoate. Biotechnology and Bioengineering, 2007, 97(2): 279-286.
    [124] Zhu RY, Wang D, Zhang YP, et al. Hydrogen production by draTGB hupL double mutant of Rhodospirillum rubrum under different light conditions. Chinese Science Bulletin, 2006, 51(21): 2611-2618.
    [125] Gest H, Ormerod JG, Ormerod KS. Photometabolism of Rhodospirillum rubrum: light-dependent dissimilation of organic compounds to carbon dioxide and molecular hydrogen by an anaerobic citric acid cycle. Archives of Biochemistry and Biophysics, 1962, 97: 21-33.
    [126] Stiffler HJ, Gest H. Effects of light intensity and nitrogen growth source on hydrogen metabolism in Rhodospirillum rubrum. Science (New York, N Y), 1954, 120(3129): 1024-1026.
    [127] Chen CY, Lu WB, Wu JF, et al. Enhancing phototrophic hydrogen production of Rhodopseudomonas palustris via statistical experimental design. International Journal of Hydrogen Energy, 2007, 32(8): 940-949.
    [128] Carlozzi P, Pushparaj B, Degl'Innocenti A, et al. Growth characteristics of Rhodopseudomonas palustris cultured outdoors, in an underwater tubular photobioreactor, and investigation on photosynthetic efficiency. Applied Microbiology and Biotechnology, 2006, 73(4): 789-795.
    [129] Oh YK, Kim YJ, Park JY, et al. Biohydrogen production from carbon monoxide and water by Rhodopseudomonas palustris P4. Biotechnology and Bioprocess Engineering, 2005,10(3): 270-274.
    [130] Zheng GH, Kang ZH, Qian YF, et al. Biohydrogen production from tofu wastewater with glutamine auxotrophic mutant of Rhodobacter sphaeroides. Water Dynamics, 2008,987:143-148,185.
    [131] Kars G, Gunduz U, Rakhely G, et al. Improved hydrogen production by uptake hydrogenase deficient mutant strain of Rhodobacter sphaeroides OU001. International Journal of Hydrogen Energy, 2008, 33(12): 3056-3060.
    [132] Gabrielyan L, Trchounian A. The F0F1-ATPase activity and molecular hydrogen production by Rhodobacter sphaeroides. Biochimica Et Biophysica Acta- Bioener- getics, 2008, 1777: S16-S16.
    [133] Eroglu I, Tabanoglu A, Gunduz U, et al. Hydrogen production by Rhodobacter sphaeroides OU001 in a flat plate solar bioreactor. International Journal of Hydrogen Energy,2008,33(2):531-541.
    [134]Ozturk Y,Yucel M,Daldal F,et aI.Hydrogen production by using Rhodobacter capsulatus mutants with genetically modified electron transfer chains.International Journal of Hydrogen Energy,2006,31(11):1545-1552.
    [135]Hoekema S,Douma RD,Janssen M,et al.Controlling light-use by Rhodobacter capsulatus continuous cultures in a fiat-panel photobioreactor.Biotechnology and Bioengineering,2006,95(4):613-626.
    [136]Katsuda T,Azuma M,Kato J,et al.Effects of ethanolamine as a nitrogen source on hydrogen production by Rhodobacter capsulatus.Bioscience Biotechnology and Biochemistry,2000,64(2):248-253.
    [137]Azad S,Vikineswary S,Chong V.Rhodovulum sulfidophilum in the treatment and utilization of sardine processing wastewater.Letters in Applied Microbiology,2004,38((1)):13-18.
    [138]Willison J,Madem D,Vignais P.Increased photoproduction of hydrogen by non-autotrophic mutants of Rhodopseudomonas capsulata.Biochemical Journal,1984,219:583-588.
    [139]Hustede E,Steinbuchel A,Schlegel HG.Relationship between the photoproduction of hydrogen and the accumulation of PHB in nonsulfur purple bacteria.Applied Microbiology and Biotechnology,1993,39(1):87-93.
    [140]Jahn A,Keuntje B,Dorffler M,et al.Optimizing Photoheterotrophic H_2 production by Rhodobacter capsulatus upon interposon mutagenesis in the hupL gene.Applied Microbiology and Biotechnology,1994,40(5):687-690.
    [141]杨素萍,赵春贵,曲音波,等.光合细菌产氢研究进展.水生生物学报,2003,27(1):85-91.
    [142]Basak N,Das D.The prospect of purple non-sulfur(PNS) photosynthetic bacteria for hydrogen production:The present state of the art.World Journal of Microbiology &Biotechnology,2007,23(1):31-42.
    [143]吴永强,陈秉俭,仇哲.浑球红假单胞菌在暗处发酵生长时的固氮酶、吸氢酶以及放氢机制的研究.微生物学通报,1991,18(2):71-75.
    [144]Dilworth MJ,Fisher K,Kim CH,et al.Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase.Biochemistry,1998,37(50):17495-17505.
    [145]Kovacs KL,Fodor B,Kovacs AT,et al.Hydrogenases,accessory genes and the regulation of[NiFe]hydrogenase biosynthesis in Thiocapsa roseopersicina. International Journal of Hydrogen Energy, 2002, 27(11-12): 1463-1469.
    [146] Manes PC, Weaver PR Evidence for three distinct hydrogenase activities in Rhodospirillum rubrum. Applied Microbiology and Biotechnology, 2001, 57(5-6): 751-756.
    [147] Williso JC, Madern D, Vignais PM. Increased photoproduction of hydrogen by non-autotrophic mutants of Rhodopseudomonas capsulata. biochemical journal, 1984, 219: 593-600.
    [148] Kern M, Klipp W, Klemme JH. Increased Nitrogenase-Dependent H-2 Photoproduction by Hup Mutants of Rhodospirillum-Rubrum. Applied and Environmental Microbiology, 1994, 60(6): 1768-1774.
    [149] Kondo T, Arakawa M, Hirai T, et al. Enhancement of hydrogen production by a photosynthetic bacterium mutant with reduced pigment. Journal of Bioscience and Bioengineering, 2002, 93(2): 145-150.
    [150] Kondo T, Arakawa M, Wakayama T, et al. Hydrogen production by combining two types of photosynthetic bacteria with different characteristics. International Journal of Hydrogen Energy, 2002, 27(11-12): 1303-1308.
    [151] Kondo T, Wakayama T, Miyake J. Efficient hydrogen production using a multi-layered photobioreactor and a photosynthetic bacterium mutant with reduced pigment. International Journal of Hydrogen Energy, 2006, 31(11): 1522-1526.
    [152] Franchi E, Tosi C, Scolla G, et al. Metabolically engineered Rhodobacter sphaeroides RV strains for improved biohydrogen photoproduction combined with disposal of food wastes. Marine Biotechnology, 2004, 6(6): 552-565.
    [153] Kim DH, Han SK, Kim SH, et al. Effect of gas sparging on continuous fermentative hydrogen production. International Journal of Hydrogen Energy, 2006, 31(15): 2158-2169.
    [154] Ooshima H, Takakuwa S, Katsuda T, et al. Production of hydrogen by a hydrogenase-deficient mutant of Rhodobacter capsulatus. Journal of Fermentation and Bioengineering, 1998, 85(5): 470-475.
    [155] Kim EJ, Kim JS, Kim MS, et al. Effect of changes in the level of light harvesting complexes of Rhodobacter sphaeroides on the photoheterotrophic production of hydrogen. International Journal of Hydrogen Energy, 2006, 31(4): 531-538.
    [156] Kim EJ, Yoo SB, Kim MS, et al. Improvement of photoheterotrophic hydrogen production of Rhodobacter sphaeroides by removal of B800-850 light-harvesting complex. Journal of Microbiology and Biotechnology, 2005, 15(5): 1115-1119.
    [157]Nakada E,Asada Y,Arai T,et al.Light Penetration into Cell-Suspensions of Photosynthetic Bacteria and Relation to Hydrogen-Production.Journal of Fermentation and Bioengineering,1995,80(1):53-57.
    [158]Wakayama T,Nakada E,Asada Y,et al.Effect of light/dark cycle on bacterial hydrogen production by Rhodobacter sphaeroides RV.From hour to second range.Applied Biochemistry and Biotechnology,2000,84-86:4317.440.
    [159]Shi XY,Yu HQ.Response surface analysis on the effect of cell concentration and light intensity on hydrogen production by Rhodopseudomonas capsulata.Process Biochemistry,2005,40(7):2475-2481.
    [160]Kondo T,Arakawa M,Hirai T,et al.Enhancement of hydrogen production by a photosynthetic bacterium mutant with reduced pigment.Journal of Bioscience and Bioengineering,2002,93(2):145-150.
    [161]Matsunaga T,Hatano T,Yamada A,et al.Microaerobic hydrogen production by photosynthetic bacteria in a double-phase photobioreactor.Biotechnology and Bioengineering,2000,68(6):647-651.
    [162]Takabatake H,Suzuki K,Ko IB,et al.Characteristics of anaerobic ammonia removal by a mixed culture of hydrogen producing photosynthetic bacteria.Bioresource Technology,2004,95(2):151-158.
    [163]Koku H,Eroglu I,Gunduz U,et al.Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides OU 001.International Journal of Hydrogen Energy,2003,28(4):381-388.
    [164]Koku H,Eroglu I,Gunduz U,et al.Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides.International Journal of Hydrogen Energy,2002,27(11-12):1315-1329.
    [165]Kim MS,Back JS,Lee JK.Comparison of H-2 accumulation by Rhodobacter sphaeroides KD131 and its uptake hydrogenase and PHB synthase deficient mutant.International Journal of Hydrogen Energy,2006,31(1):121-127.
    [166]Lee CM,Chen PC,Wang CC,et al.Photohydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor effluent.International Journal of Hydrogen Energy,2002,27(11-12):1309-1313.
    [167]杨素萍,刘瑞田,曲音波,等.生物产氢研究与进展[J].生物工程学报,2002,18(4):486-491.
    [168]Katsuda T,Arimoto T,Igarashi K,et al.Light intensity distribution in the externally illuminated cylindrical photo-bioreactor and its application to hydrogen production by Rhodobacter capsulatus. Biochemical Engineering Journal, 2000, 5(2): 157-164.
    [169] Rupprecht J, Hankamer B, Mussgnug JH. Perspectives and advances of biological H_2 production in microorganisms. Appl Microbiol Biotechnol, 2006, 72: 442-449.
    [170] Akkerman I, Janssen M, Rocha J, et al. Photobiological hydrogen production: photochemical efficiency and bioreactor design. International Journal of Hydrogen Energy, 2002,27(11-12): 1195-1208.
    [171] Ike A, Murakawa T, Kawaguchi H, et al. Photoproduction of hydrogen from raw starch using a halophilic bacterial community. Journal of Bioscience and Bioengineering, 1999, 88(1): 72-77.
    [172] Kawaguchi H, Hashimoto K, Hirata K et al. H-2 production from algal biomass by a mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus. Journal of Bioscience and Bioengineering, 2001, 91(3): 277-282.
    [173] Claassen PAM, Budde MAW, Van N, GE., et al. Biological hydrogen production from agro-food by-products. Biological hydrogen product proceedings, 2004.
    [174] Tao YZ, Yang C, Wu YQ, et al. High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose International Journal of Hydrogen Energy, 2006.
    [175] Takaaki A. Useful substance production method from waste water, involves subjecting waste water ejected from kitchen to anaerobic processing, photosynthetic bacteria processing and water purification process. In.; 2001.
    [176] Yu H, Mu Y. Two-step biological hydrogen preparing process with raised hydrogen generating efficiency of organic waste water. In.: UNIV CHINA SCI & TECHNOL (UYCH-Non-standard).
    [177] YU H, Z H. Efficient process of preparing hydrogen with botanical waste. Inventor. Patent Number(s): CN1772596-A, 2006.
    [178] Matsumoto M, Nishimura Y Hydrogen production by fermentation using acetic acid and lactic acid. Journal of Bioscience and Bioengineering, 2007,103(3): 236-241.
    [179] Lin PY, Whang LM, Wu YR, et al. Biological hydrogen production of the genus Clostridium: Metabolic study and mathematical model simulation. International Journal of Hydrogen Energy, 2007, 32(12): 1728-1735.
    [180] Zabut B, EI-Kahlout K, Yucel M, et al. Hydrogen gas production by combined systems of Rhodobacter sphaeroides OU001 and Halobacterium salinarum in a photobioreactor. International Journal of Hydrogen Energy, 2006, 31(11): 1553-1562.
    [181]Masukawa H,Mochimaru M,Sakurai H.Effects of disruption of hydrogenase genes in Anabaena sp.PCC 7120 on photobiological H-2 production and nitrogenase activities.Plant and Cell Physiology,2002,43:S176-S176.
    [182]Hu ZY,Tan PQ,Pu GQ.Multi-objective optimization of cassava-based fuel ethanol used as an alternative automotive fuel in Guangxi,China.Applied Energy,2006,83(8):819-840.
    [183]Nguyen TLT,Gheewala SH,Garivait S.Full chain energy analysis of fuel ethanol from cassava in Thailand.Environmental Science & Technology,2007,41(11):4135-4142.
    [184]Zhang ML,Fan YT,Xing Y,et al.Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures.Biomass &Bioenergy,2007,31(4):250-254.
    [185]袁玉玉,曹先艳,牛冬杰.餐厨垃圾特性及处理技术.环境卫生工程,2006,14(6):46-49.
    [186]Jo JH,Jeon CO,Lee DS,et al.Process stability and microbial community structure in anaerobic hydrogen-producing microflora from food waste containing kimchi.Journal of Biotechnology,2007,131(3):300-308.
    [187]Kim SH,Han SK,Shin HS.Optimization of continuous hydrogen fermentation of food waste as a function of solids retention time independent of hydraulic retention time.Process Biochemistry,2008,43(2):213-218.
    [188]Weaver PF,Wall JD,Gest H.Characterization of Rhodopseudomonas capsulata.Archives of Microbiology,1975,105(3):207-216.
    [189]国家环保局水和废水监测分析方法编委会,《水和废水监测分析方法》[M]。北京,中国环境科学出版社,1989:27-30.
    [190]Shi XY,Yu HQ.Continuous production of hydrogen from mixed volatile fatty acids with Rhodopseudomonas capsulata.International Journal of Hydrogen Energy,2006,31(12):1641-1647.
    [191]Shi XY,Yu HQ.Conversion of individual and mixed volatile fatty acids to hydrogen by Rhodopseudomonas capsulata.International Biodeterioration & Biodegradation,2006,58(2):82-88.
    [192]Hawkes FR,Forsey H,Premier GC,et al.Fermentative production of hydrogen from a wheat flour industry co-product.Bioresource Technology,2008,99(11):5020-5029.
    [193]Cooney M,Maynard N,Cannizzaro C,et al.Two-phase anaerobic digestion for production of hydrogen-methane mixtures. Bioresource Technology, 2007, 98(14): 2641-2651.
    [194] Valdez-Vazquez I, Rios-Leal E, Esparza-Garcia F, et al. Semi-continuous solid substrate anaerobic reactors for H-2 production from organic waste: Mesophilic versus thermophilic regime. International Journal of Hydrogen Energy, 2005, 30(13-14): 1383-1391.
    [195] Taguchi F, Mizukami N, Taki TS, et al. Hydrogen-Production from Continuous Fermentation of Xylose during Growth of Clostridium Sp Strain No-2. Canadian Journal of Microbiology, 1995, 41(6): 536-540.
    [196] Hussy I, Hawkes FR, Dinsdale R, et al. Continuous fermentative hydrogen production from sucrose and sugarbeet. International Journal of Hydrogen Energy, 2005, 30(5): 471-483.
    [197] Nishio N, Nakashimada Y. High rate production of hydrogen/methane from various substrates and wastes. Recent Progress of Biochemical and Biomedical Engineering in Japan I, 2004, 90: 63-87.
    [198] Chen CC, Lin CY, Lin MC. Acid-base enrichment enhances anaerobic hydrogen production process. Applied Microbiology and Biotechnology, 2002, 58(2): 224-228.
    [199] Van Ginkel SW, Oh SE, Logan BE. Biohydrogen gas production from food processing and domestic wastewaters. International Journal of Hydrogen Energy, 2005, 30(15): 1535-1542.
    [200] Horiuchi JI, Shimizu T, Tada K, et al. Selective production of organic acids in anaerobic acid reactor by pH control. Bioresource Technology, 2002, 82(3): 209-213.
    [201] Amann RI, Ludwig W, Schleifer KH. Phylogenetic Identification and in-Situ Detection of Individual Microbial-Cells without Cultivation. Microbiological Reviews, 1995, 59(1): 143-169.
    [202] Dunbar J, Takala S, Barns SM, et al. Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Applied and Environmental Microbiology, 1999, 65(4): 1662-1669.
    [203] Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science, 2005, 308(5728): 1635-1638.
    [204] McGarvey JA, Miller WG, Sanchez S, et al. Comparison of bacterial populations and chemical composition of dairy wastewater held in circulated and stagnant lagoons. Journal of Applied Microbiology, 2005, 99(4): 867-877.
    [205] Adams MWW. The Structure and Mechanism of Iron-Hydrogenases. Biochimica Et BiophysicaActa, 1990,1020(2): 115-145.
    [206] Atta M, Meyer J. Characterization of the gene encoding the [Fe]-hydrogenase from Megasphaera elsdenii. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology, 2000,1476(2): 368-371.
    [207] Vignais PM, Billoud B, Meyer J. Classification and phylogeny of hydrogenases. Ferns Microbiology Reviews, 2001,25(4): 455-501.
    [208] Chang JJ, Chen WE, Shih SY, et al. Molecular detection of the clostridia in an anaerobic biohydrogen fermentation system by hydrogenase mRNA-targeted reverse transcription-PCR. Applied Microbiology and Biotechnology, 2006, 70(5): 598-604.
    [209] Fang HHP, Zhang T, Li CL. Characterization of Fe-hydrogenase genes diversity and hydrogen-producing population in an acidophilic sludge. Journal of Biotechnology, 2006, 126(3): 357-364.
    [210] Xing DF, Ren NQ, Rittmann BE. Genetic diversity of hydrogen-producing bacteria in an acidophilic ethanol-H-2-coproducing system, analyzed using the [Fe]-hydrogenase gene. Applied and Environmental Microbiology, 2008, 74(4): 1232-1239.
    [211] Pitcher D, Saunder N, Owen R. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Letters in Applied Microbiology, 1989, 8: 151-1561.
    [212] Muyzer G, Dewaal EC, Uitterlinden AG Profiling of complex microbial-populations by denaturing gradient gel-electrophoresis analysis of polymerase chain reaction-amplified genes-coding for 16s ribosomal-rna. Applied and Environmental Microbiology, 1993,59(3): 695-700.
    [213] Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 1998,73(1): 127-141.
    [214] Kumar N, Das D. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochemistry, 2000, 35(6): 589-593.
    [215] Rachman MA, Furutani Y, Nakashimada Y, et al. Enhanced hydrogen production in altered mixed acid fermentation of glucose by Enterobacter aerogenes. Journal of Fermentation and Bioengineering, 1997, 83(4): 358-363.
    [216]Keis S,Shaheen R,Jones DT.Emended descriptions of Clostridium acetobutylicurn and Clostridium beijerinckii,and descriptions of Clostridium saccharoperbutylacetonicum sp nov and Clostridium saccharobutylicum sp nov.International Journal of Systematic and Evolutionary Microbiology,2001,51:2095-2103.
    [217]Mechichi T,Fardeau ML,Labat M,et al.Clostridium peptidivorans sp nov.,a peptide-fermenting bacterium from an olive mill wastewater treatment digester.International Journal of Systematic and Evolutionary Microbiology,2000,50:1259-1264.
    [218]Cime DG,Delgado OD,Marichamy S,et al.Clostridium lundense sp nov.,a novel anaerobic lipolytic bacterium isolated from bovine rumen.International Journal of Systematic and Evolutionary Microbiology,2006,56:625-628.
    [219]Mountfort DO,Rainey FA,Burghardt J,et al.Clostridium vincentii sp nov,a new obligately anaerobic,saccharolytic,psychrophilic bacterium isolated from low-salinity pond sediment of the McMurdo Ice Shelf,Antarctica.Archives of Microbiology,1997,167(1):54-60.
    [220]Wang X,Hoefel D,Saint CP,et al.The isolation and microbial community analysis of hydrogen producing bacteria from activated sludge.Journal of Applied Microbiology,2007,103(5):1415-1423.
    [221]Jen CJ,Chou CH,Hsu PC,et al.Flow-FISH analysis and isolation of clostridial strains in an anaerobic semi-solid bio-hydrogen producing system by hydrogenase gene target.Applied Microbiology and Biotechnology,2007,74(5):1126-1134.
    [222]邢德峰.产氢-产乙醇细菌群落结构与功能研究.[D],2006,(哈尔滨:哈尔滨工业大学).
    [223]Mead GC.Selective and differential media for Clostridium perfringens.International Journal of Food Microbiology,1985,2(1-2):89-98.
    [224]李永峰,任南琪,陈瑛,等.发酵产氢细菌分离培养的厌氧实验操作技术.哈尔滨工业大学学报,2004,36(12):1589-1593.
    [225]Kumar S.MEGA2:molecular evolutionary genetics analysis software.Bioinformatics,2001,17(12):1244-1245.
    [226]Saitou N,Nei M.The neighbour-joining method:a new method for reconstructing phylogenetic trees.MolBiolEvol,1987,4:406-425.
    [227]Gillings M,Holley M.Repetitive element PCR fingerprinting(rep-PCR) using enterobacterial repetitive intergenic consensus(ERIC) primers is not necessarily directed at ERIC elements.Letters in Applied Microbiology,1997,25(1):17-21.
    [228]林明,任南琪,王爱杰,等.混合菌种在发酵法生物产氢中的协同作用.环境科学,2003,24(2):54-59.
    [229]Van Ginkel S,Logan BE.Inhibition of biohydrogen production by undissociated acetic and butyric acids.Environmental Science & Technology,2005,39(23):9351-9356.
    [230]Tang GL,Huang J,Sun ZJ,et al.Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia:Influence of fermentation temperature and pH.Journal of Bioscience and Bioengineering,2008,106(1):80-87.
    [231]Khanal SK,Chen WH,Li L,et al.Biological hydrogen production:effects of pH and intermediate products.International Journal of Hydrogen Energy,2004,29(11):1123-1131.
    [232]Zhang YF,Liu GZ,Shen JQ.Hydrogen production in batch culture of mixed bacteria with sucrose under different iron concentrations.International Journal of Hydrogen Energy,2005,30(8):855-860.
    [233]Yokoi H,Ohkawara T,Hirose J,et al.Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39.Journal of Fermentation and Bioengineering,1995,80(6):571-574.
    [234]Oh SE,Van Ginkel S,Logan BE.The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production.Environmental Science &Technology,2003,37(22):5186-5190.
    [235]Calli B,Schoenmaekers K,Vanbroekhoven K,et al.Dark fermentative H-2production from xylose and lactose - Effects of on-line pH control.International Journal of Hydrogen Energy,2008,33(2):522-530.
    [236]Fry N,Warwick S,Saunders N.The use 16S ribosomal RNA analyses to investigate phylogeny of the family legionel laceae.Journal of General Microbiology,1991,137:1215.
    [237]Versalovic J,Koeuth T,Lupski J.Distribution of repetitive DNA sequence in eubacteria and application to fingerprinting of bacterial genomes.Nucleic Acid Res,1991,19(24):6823-6831.
    [238]赵立平,肖虹,李艳琴.ERIC-PCR:一种快速鉴定环境细菌菌株的方法.应用与环境生物学报,1999,5(增刊):30-33.
    [239]杨素萍,赵春贵,曲音波,等.光合细菌产氢研究进展[J].水生生物学报,2003(1):85-91.
    [240]何延青,吴永强,闻建平.生物柴油生产及其副产物甘油的有效利用[J].中国油脂2007,32(5):47-51.
    [241]Ito T,Nakashimada Y,Senba K,et al.Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process.Journal of Bioscience and Bioengineering,2005,100(3):260-265.
    [242]杨运财,陆向红,俞云良,等.生物柴油副产物制备高纯度甘油的研究[J].中国粮油学报,2008,23(1):97-101.
    [243]何延青,吴永强,闻建平.生物柴油生产及其副产物甘油的有效利用[J].中国油脂2007,32(5):47-51.
    [244]Choi HP,Kang HJ,Seo HC,et al.Isolation and identification of photosynthetic bacterium useful for wastewater treatment[J].J Microbiol Biotechnol,2002,12:643-648.
    [245]李海鹏.枯草芽孢杆菌TY7210菌株的ERIC-PCR快速鉴别.山东大学学报,2006,29(1):89-92.
    [246]宋志刚,许强芝,鲁心安,等.中国东海海洋微生物种群多样性初步研究.微生物学通报,2006,33(1):63-67.
    [247]张全国,原玉丰,李鹏鹏,等.猪粪污水浓度对球形红假单胞菌光合制氢的影响[J].太阳能学报,2005,26(6):806-810.
    [248]Zhu HG,Suzuki T,Tsygankov AA,et al.Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized in agar gels.International Journal of Hydrogen Energy,1999,24(4):305-310.
    [249]张全国,王素兰,尤希凤.光合菌群产氢量影响因素的研究.农业工程学报,2006,22(10):182-185.
    [250]Oh YK,Seol EH,Lee EY,et al.Fermentative hydrogen production by a new chemoheterotrophic bacterium Rhodopseudomonas palustris P4.International Journal of Hydrogen Energy,2002,27(11-12):1373-1379.
    [251]王炳忠.太阳辐射能测量与标准[M].北京:科学技术出版社。1993
    [252]Turkarslan S,Yigit DO,Aslan K,et al.Photobiological hydrogen production by Rhodobacter sphaeroides O.U.001 by utilization of waste water from milk industry.Biohydrogen,1998:151-156,552.
    [253]Otsuki T,Uchiyama S,Fujiki K,et al.Hydrogen production by a floating-type photobioreactor.Biohydrogen,1998:369-374,552.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700