用户名: 密码: 验证码:
固定化微生物对原油污染土壤的生物修复
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在石油勘探与开采、储运与炼制过程中,不可避免地会有大量原油和原油制品抛洒或泄漏于地面,造成大面积土壤的石油污染,对生态环境造成严重危害。由于石油烃类物质具有较高的生物学毒性、在环境中的残留时间较长且危害大,如何对受其污染的环境进行有效修复日益受到关注。微生物修复具有费用低、可现场处理污染土壤或水体、能够最大限度地降低污染物浓度和环境负面影响等特点,有关这方面的研究也越来越多。特别是在如何提高降解菌功效方面的研究已经成为国际上的研究热点。因此,提高石油烃降解菌在土壤中的繁殖效率以及便于菌剂的扩大化生产与保存、运输,采取将微生物进行固定化处理的办法具有重要意义。
     本文从黄河三角洲长期受石油污染的土壤中驯化富集得到对原油具有较好降解效果的土著的石油烃降解混合菌系,在含有高浓度原油的液体介质中检验了该菌系对原油的耐受能力与降解能力,通过分离纯化培养,得到三株优势菌种,经鉴定分别为:棒状杆菌(Microbacterium foliorum)、食烷烃戈登氏菌(Gordonia alkanivorans)和中慢生根瘤菌(Mesorhizobium)
     采用四种天然多糖性载体材料将石油烃降解混合菌系制备成固定化颗粒,通过对固定化颗粒的制备难易、机械强度、传质性等性能的测试,最终选取操作简便且机械强度与传质性较高的海藻酸钠作为载体,并在海藻酸钠中添加硅藻土以提高固定化颗粒的机械强度和传质性,通过测定固定化反应时间对固定化颗粒中的微生物活性的影响,最终确定固定化颗粒的制备条件,即采用6%海藻酸钠-2%硅藻土溶液(w/v)作载体,与等体积的降解菌生理盐水悬浮液混合均匀,用酸式滴定管逐滴滴入0.1M的CaCl2溶液中,固定化反应12h,并测得该方法具有较高的固定化效率,为92.25%.
     用扫描电镜对固定化颗粒的微观结构进行观察,颗粒内部呈蜂窝网状结构,大部分的降解菌被包埋在孔隙内附着生长,颗粒孔隙度较为丰富,利于氧气、水分和底物的传输,且能够为固定化细菌提供充分的生长空间,为其在载体内的生长繁殖提供有利条件。
     将海藻酸钠固定化颗粒和海藻酸钠+硅藻土的固定化颗粒以三种接种量添加到原油污染土壤中进行原油降解实验,调节土壤的水分和N、P含量至理想水平,分别以同等接种量的游离菌作对照。结果表明,固定化降解菌产生了较同等菌量的游离菌明显高的降解优势,特别是在实验初期,接种固定化菌的各组土壤的TPH降解率在实验20天时就已分别达到27.29%,29.83%和27.56%,分别比同等接种量的游离菌高出12.43%,10.10%和6.43%,添加固定化菌的土壤中降解菌的数量比添加游离菌的土壤高出1.20~1.53个数量级。并且低接种量的固定化菌(IL组)体现了比高接种量的游离菌(FH组)更强的降解优势,20天时,前者的降解率已比后者高出6.1%;30天后,各实验组降解菌的数量和微生物活性趋于稳定,相应的原油降解率也趋于缓慢。另外,所用载体不会破坏土壤结构,适用于长期大面积石油污染土壤的现场修复。通过对固定化颗粒的保存条件进行初步试验,将固定化降解菌于4℃下分别保存在无菌水及三种保护剂20%脱脂乳、20%甘油与液体石蜡中,结果表明,无菌水是最好的保存介质,降解菌在至少3周内都可保持较好的生物活性和颗粒性状。本实验的结果为固定化微生物在大规模土壤的实际修复中的应用提供了新的理论依据。
In oil exploration and exploitation,during the storage and transportation and refining processes,inevitably there will be a lot of crude oil and oil products spilled or leaked onto the ground, causing a large area of oil contaminated soil,soil and ecological environment on a range of hazards.As petroleum hydrocarbons have high biological toxicity,residue in the environment for long periods and cause great harm,how to rehabilitate the contaminated environment becomes increasingly concerned by the community. Bioremediation, be able to be used for in-situ treatment with low-cost, and minimize the negative effects of pollutant concentrations and environmental and other advantages, is very suitable for our present practical needs.To enhance the breeding efficiency of hydrocarbon degrading bacteria in the soil and to facilitate the enlargement of production, preservation, and transportation of the cultures, it will make great sense to make them into immobilized form.
     Efficient biodegrading microorganism consortium of crude oil of the Yellow River Delta were acclimated and enriched from oil contaminated soil.Their tolerance and biodegradability was tested by liquid culture medium which contains high concentrations of crude oil.Three dominant species were obtained through isolation and purifying culture, and were identified as Microbacterium foliorum, Gordonia alkanivorans and Mesorhizobium.
     Four kinds of natural polysaccharide were chosen for carrier materials to make the consortium into immobilized beads.The handling difficulty, mechanical strength, and mass transfer abilities of bead were examined, and sodium alginate was selected as carrier, for its simple handling, strong mechanical strength and mass transfer ability.And then diatomite particles were added to sodium alginate to enhance the mechanical strength and mass transfer of the immobilized beads,and the impact of immobilization time on microorganism's activity was tested as well. Finally the preparation conditions of the immobilized beads were set as follows: carrier solution consists of 6% sodium alginate-2% diatomite (w/v),mixed with an equal volume of degrading bacteria saline suspension, and then be dropped into 0.1M CaCl2 solution with acid buret and incubated for 12h. The immobilization efficiency of this method is 92.25%.
     Scanning electron microscopy microstructures of the immobilized beads were observed,showing a cellular network structure within the particles.Most of the bacteria were embedded in the pores or adhered on the walls of the pores.Particle porosity inside bead is abundant, which is beneficial for oxygen, water and substrate transfer, and can provide sufficient space for the embedded cells'growth. There for, favorable conditions were provided for microorganism cells'growth and multiplication inside the carrier.
     The immobilized hydrocarbon degrading bacteria in three inoculums were added to the crude oil contaminated soil for biodegradation experiment, and soil moisture and N, P levels were controlled to the desired level.the same amount of free bacteria were inoculated respectively as control.The immobilized consortium achieved much higher reproductive rate TPH degradation efficiency in soil, especially in the initial period of the experiment. After inoculated for 20 days,the immobilized consortium inoculated groups achieved high TPH degradation rate of 27.29%,29.83% and 27.56%, respectively, higher than that of free bacteria at 12.43%,10.10% and 6.43% respectively. And the populations of biodegrading bacteria in soils inoculated immobilized consortium were higher than that of free consortium at 1.20~1.53 magnitude.
     Finally the storage conditions for the immobilized beads were tested.When the beads are kept in sterilized water at 4℃, they can maintain better biological activity for at least there weeks. The results of this study provides new theoretical basis for the application of immobilized microorganisms in bioremediation of large areas of contaminated soil.
引文
[1]Kao CM,ProsserJ.Evaluation of natural attenuation rate at a gasoline spill site.Journal of Hazardous Material,2001.82(3):275~289
    [2]贾建朋.石油污染土壤微生物学特性与生物修复效应研究:[博士学位论文].北京:清华大学,2005
    [3]蔺昕,李培军,台培东等.石油污染土壤植物-微生物修复研究进展.生态学杂志,2006.25(1):93-100
    [4]王丽娟.黄土地区石油污染土壤的微生物修复技术试验研究:[硕士学位论文].西安:长安大学,2009
    [5]丁克强,孙铁珩,李培军.石油污染土壤的生物修复技术.生态学杂志,2000,19(2):50~55.
    [6]李美蓉,孙向东,桂召龙.胜利油田郝现联合站油罐底泥的污染物分析与评价.石油化工环境保护,2005.28(1):51-54
    [7]王干隆丹.高效原油降解真菌对原油污染土壤的修复研究.[硕士学位论文].长春:东北师范大学,2008
    [8]刘忠起,陆朱龙,孙洪.世界石油市场与中国石化工业的发展.石油化工管理干部学院学报,1994(1):67~70
    [9]刘五星,骆永明,滕应等.我国部分油田土壤及油泥的石油污染初步研究.土壤,2007,39(2):247~251
    [10]何菊,魏德洲,张维庆.士壤微生物处理石油污染的研究.环境科学进展,1999,7(3):110~115
    [11]Truaxd D,Sherrard JH. Benclracalt studies of reactor-based treatment of fuel contaminated oil Watter Management 1995.15(6):351~357
    [12]苏增建,李敏,王颖.土壤石油污染的生物修复原理及研究进展.安徽农业科学,2007,35(6):1742~1744.
    [13]詹研.中国土壤石油污染的危害及治理对策.环境污染与防治,2008,30(3):91~96.
    [14]Wilson SC, Jones KC. Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs):a review. Environment.Pollution,1993,81(3):229~249
    [15]Scherrer P, Mille G.Biodegradation of crude oil in an experimentally polluted peaty mangrove soil.Marine pollution bulletin,1989,20(9):430~432
    [16]马强,林爱军,马薇等.土壤中总石油烃污染(TPH)的微生物降解与修复研究进展.生态毒理学报,2008.3(1):1~8.
    [17]丁克强,骆永明.生物修复石油污染土壤.土壤,2001,33(4):179~184,196.
    [18]Balba MT,Al-Awadhi N,Al-Daher R.Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation.Journal of Microbiological Methods,1998,32(2):155~164.
    [19]李丽,张利平,张元亮.石油烃类化合物降解菌的研究概况.微生物学通报,2001,28(5):89~92.
    [20]Chalneau CH,Morel JL, Jean Oudot. Microbial degradation in soil microcosms of fuel oil hydrocarbons from drilling cuttings.Environmental Science Technology 1995. 29(6):1615-1621.
    [21]Bertrand JC, Rambeloarisoa E, Rontani JF, et al.Microbial degradation of crude oil in sea water in continuous culture Biotechnology Letters,1983.5(11):567~572.
    [22]Rontani JF, Bosser-Joulak F, Rambelorisoa E, et al.Analytical study of Asthart crude oil asphaltenes biodegradation.Chemosphere,1985.14(10):1413~1422.
    [23]Edward J.,Paul T. Principles and Practices for Petroleum Contaminated Soils.1993.
    [24]黄艺,姜学艳,陶澍.菌根真菌对土壤有机污染物的生物降解.土壤与环境,2002.11(3):221~226.
    [25]Atlas RM.Microbial degradation of petroleum hydrocarbons:An environmental perspective. Microbial Rev.,1981.45(1):180~189.
    [26]Rosenberg E, Legmann R, Kushmaro A,et al.Petroleum bioremediation-a multiphase problem.Biodegradation 1992,3(2-3):337~350.
    [27]Bento FM, Camargo FA,Okeke BC, et al.Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresource Technology,2005.96(9):1049-1055.
    [28]王建龙,生物固定化技术与水污染控制.北京:科学出版社,2002.
    [29]朱柱,李和平,郑泽根.固定化细胞技术中的载体材料及其在环境治理中的应用.重庆建筑大学学报,2000.22(5):7.
    [30]孙清,代廷广,王君玲.固定化细胞技术在能源与环境工程上的应用RURAL EERGY,2002(2):2.
    [31]武淑文,黄兵,孙石等.固定化细胞技术在环境工程中应用.环境科学动态,2003(4):32~34.
    [32]王青,张善锋.固定化微生物技术在废水处理中的应用.环境科学与管理,2008.33(11):81~85.
    [33]王娜,闵小波,王云燕等.固定化微生物废水处理技术及其发展.污染防治技术,2008.21(1):62~65.
    [34]Elena AP, Vladimir IL, Irena Bl et al.Hydrophobised sawdust as a carrier for immobilisation of the hydrocarbon-oxidizing bacterium Rhodococcus ruber. Bioresource Technology,2008.99(6):2001~2008.
    [35]Liang YT, Zhang X,Dai DJ,et al.Porous biocarrier-enhanced biodegradation of crude oil contaminated soil.International Biodeterioration & Biodegradation,2009.63(1):80~87.
    [36]Pattanasupong A,Nagase H,Sugimoto E, et al.Degradation of Carbendazim and 2,4-Dichlorophenoxyacetic Acid by Immobilized Consortium on Loofa Sponge.Journal of Biosience and Bioengineering,2004.98(1):28~33.
    [37]Sabate J,Vinas M,Solanas AM.Laboratory-scale bioremediation experiments on hydrocarbon-contaminated soils.International Biodeterioration & Biodegradation,2003. 54:19~25.
    [38]Taheri HE, Hatamipour MS, Emtiazi G,et al.Bioremediation of DSO contaminated soil. process safety and environment protection,2008.86(3):208~212.
    [39]Su D, Li PJ, Frank S,et al.,Biodegradation of benzo[a]pyrene in soil by Mucor s SF06 and Bacillus s SB02 co-immobilized on vermiculite.Journal of Environmental Science, 2006.18(6):1204~1209.
    [40]胡广军,梁成华,李培军等.固定化微生物对多环芳烃污染土壤的降解.生态学杂志,2008.27(5):745~750.
    [41]Cassidy MB,Leung KT, Lee H, et al.Survival of lac-lux marked Pseudomonas aeruginosa UG2Lr cells encapsulated in K-carrageenan and alginate.Journal of Microbiological Methods,1997.30(2):167~170
    [42]Alexander D, David JM.Alginate Hydrogels as Biomaterials. Macromolecular Bioscience,2006:623~633.
    [43]Junter GA,Vinet F, Compressive properties of yeast cell-loaded Ca-alginate hydrogel layers:Comparison with alginate-CaCO3 microparticle composite gel structures. Chemical Engineering,2009.145(3):514~521.
    [44]Vancov T, Rice N. Enhancing cell survival of atrazine degrading Rhodococcus erythropolis NI86/21 cells encapsulated in alginate beads. Journal of Applied Microbiology,2007.102(1):212~220.
    [45]Jezequel K, Lebeau T. Soil bioaugmentation by free and immobilized bacteria to reduce potentially phytoavailable cadmium.Bioresource Technology,2008.99(4):690~698.
    [46]Ocampo GY, Salinas ES,Tobon GAJ,et al.Removal of two organophosphate pesticides by a bacterial consortium immobilized in alginate or tezontle Journal of Hazardous Materials,2009.168(2-3):1554~1561.
    [47]Zhang K, Xu YY, Hua XF, et al.An intensified degradation of phenanthrene with macroporous alginate-lignin beads immobilized Phanerochaete chrysosporium. Biochemical Engineering Journal,2008.41(3):251~157.
    [48]王新,李培军,宋守志等.固定化引进菌降解土壤中芘和苯并(a)芘的效果比较.应用生态学报,2006.17(11):2226~2228.
    [49]Jezequel K.Soil bioaugmentation by free and immobilized bacteria to reduce potentially phytoavailable cadmium.Bioresource Technology,2008.99(4):690~698.
    [50]Cunninghama CJ, Ivshina IB,Lozinsky VI, et al.Bioremediation of diesel-contaminated soil by microorganisms immobilised in polyvinyl alcohol.International Biodeterioration & Biodegradation,2004.54(2-3):167~174.
    [51]Labana S, Pandey G, Paul D, et al. Pot and Field Studies on Bioremediation of p-Nitrophenol Contaminated Soil Using Arthrobacter protophormiae RKJ10 Environ. Sci. Technol,2005.39:3330~3337.
    [52]王建龙.固定化对微生物生理变化的影响.中国生物工程杂志,2003.23(7):5.
    [53]肖琳,杨柳燕,尹大强等.环境微生物实验技术.北京:中国环境科学出版社,2004.
    [54]Rudi K, Kleiberg GH, Heiberg R, et al.Rapid identification and classification of bacteria by 16S rDNA restriction fragment melting curve analyses (RFMCA).Food Microbiology, 2007.24(5):474~481.
    [55]Cassidy MB,Leung KT, Lee H, et al.Survival of lac-lux marked Pseudomonas aeruginosa UG2Lr cells encapsulated in K-carrageenan and alginate. Journal of Microbiological Methods 1995.23(3):281~290.
    [56]侯红萍,王家东.固定化酵母菌在白酒生产中的应用研究.中国食品学报,2005.5(2):4.
    [57]赵树欣,梁慧珍,程丽娟等.固定化丙酸菌的初步研究.研究报告,2005.31(4): 4.
    [58]肖美燕,徐尔尼,陈志文.包进法固定化细胞技术的研究进展.食品科学,2003.24(4):4.
    [59]李慧蓉,高云霞,尹艳等.卡拉胶与明胶包埋黄孢原毛平革菌的方法研究.上海环境科学,2002.21(4):6.
    [60]Gaumann A,Laudes M, Jacob B,et al.Effect of media composition on long-term in vitro stability of barium alginate and polyacrylic acid multilayer microcapsules.Biomaterials, 2000.21(18):1911~1917.
    [61]熊海燕.包埋法制备凝胶珠条件的试验研究.饲料工业,2007.28(12):12.
    [62]谷妮娜.固定化微生物技术处理含油废水的研究:[硕士学位论文].沈阳:东北大学2006.
    [63]Bazot S,Lebeau T. Effect of immobilization of a bacterial consortium on diuron dissipation and community dynamics. Bioresource Technology,2009.
    [64]Green VS, Stott DE, Diack M.Assay for fluorescein diacetate hydrolytic activity:Optimization for soil samples.Soil Biology & Biochemistry 2006.38: 693-701.
    [65]Liang YT,Zhang X,Dai DJ,et al.Porous biocarrier-enhanced biodegradation of crude oil contaminated soil.International Biodeterioration & Biodegradation,2009. 63(1):80~87.
    [66]EPA 3550B,Ultrasonic Extraction.EPA,Revision 2,14 1996.
    [67]《海洋监测规范》编委会,GB17378.5-1998,海洋监测规范(第5部分:沉积物分析)[S].北京:海洋出版社,1998.Ocean Monitoring Regulation Committee,GB 17378.5-1998,The Specification for Marine Monitoring, Part5:Sediment Analysis[S].Beijing:Ocean Press,.1998.
    [68]Diplock EE, Mardlin D, Killham KS,et al.Predicting bioremediation of hydrocarbons: Laboratory to field scale. Environmental Pollution,2009:1~10.
    [69]Kirk.J L, Klironomos J N,Lee H,et al.The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil Environmental Pollution,2005.133:455~465.
    [70]Wrenn BA,Venosa AD.Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most-probable-number procedure.Canadian Journal of Microbiology,1996.42(3):252~258.
    [71]Taylor GT, Crowder AA.Use of the DCB Technique for Extraction of Hydrous Iron Oxides from Roots of Wetland Plant. American Journal of Botany,1983. 70(8):1254~1257.
    [72]Prabu,Thatheyus AJ.Biodegradation of acrylamide employing free and immobilized cells of Pseudomonas aeruginosa. International Biodeterioration & Biodegradation,2007. 60:69~73.
    [73]Capelli SM,Busalmen JP, Sanchez SR. Hydrocarbon bioremediation of a mineral-base contaminated waste from crude oil extraction by indigenous bacteria. International Biodeterioration & Biodegradation,2001.47(4):233~238.
    [74]DevinnyJ,Chang SH.Bioaugmentation for soil bioremediation.In:Wise, D.L.,Trantolo, D.J.(Eds.),Bioremediation of Contaminated Soils. Marcel Dekker,New York,2000: 465~488.
    [75]Norman RS, Moeller P., McDonald TJ, et al.Effect of pyocyanin on a crude-oil-degrading microbial community.Applied and Environmental Microbiology, 2004,70(7):4004~4011.
    [76]Frontera-Suau R, Bost FD, McDonald TJ, et al.Aerobic biodegradation of hopanes and other biomarkers by crude oil degrading enrichment cultures. Environmental Science Technology,2002.36:4585~4592
    [77]Lindstrom J E, Barry RP, Braddock JF. Long-term effects on microbial communities after a subarctic oil spill.Soil Biology and Biochemistry,1999.31:1677~1689.
    [78]孙远军.降解石油烃优势菌的筛选、分离及性能研究[D]:[硕十学位论文].西安:西安建筑利技大学,2006.
    [79]Li JY,Ning P.Cell Immobilization Technology and Application.GMSARN International Conference on Sustainable Development:Issues and Prospects for GMS,2006.
    [80]李超敏,张良.细胞固定化技术—海藻酸钠包埋法的研究进展.安徽农业科学,2006.34(7):1281~1282,1284.
    [81]张强,马齐,徐升运等.海藻酸钠包埋乳酸菌及活性分析.陕西农业科学,2009.55(2):23~25.
    [82]王建龙.生物固定化技术与水污染控制[M].北京:科学出版社.2002.
    [83]Larsen SB,Karakashev D, Angelidaki I,et al.Ex-situ bioremediation of polycyclic aromatic hydrocarbons in sewage sludge. Journal of Hazardous Materials, 2009(164):1568~1572.
    [84]Junter GA,Vinet F. Compressive properties of yeast cell-loaded Ca-alginate hydrogel layers:Comparison with alginate-CaCO3 microparticle composite gel structures. Chemical Engineering,2009.145:514~521.
    [85]Xiong WH, Peng J.Development and characterization of ferrihydrite-modified diatomite as a phosphorus adsorbent. Water Research,2008.42(19):4869~4877.
    [86]詹树林,方明晖,钱晓倩.硅藻土在工业污水处理中的应用研究进展.工业水处理,2006.26(9):10~13.
    [87]Massalha N, Basheer S,Sabbah I.Effect of Adsorption and Bead Size of Immobilized Biomass on the Rate of Biodegradation of Phenol at High Concentration Levels.Industry & Engineering Chemistry Research,2007.46(21):6820~6824.
    [88]韩振为,言海燕.海藻酸钠-硅藻士包埋石油脱硫菌Rhodococcus sH-412化学工业与工程,2006.23(6):4.
    [89]Jezequel K, Lebeau T. Soil bioaugmentation by free and immobilized bacteria to reduce potentially phytoavailable cadmium. Bioresource Technology,2008:690-698.
    [90]Fuller ME, Manning JF. Microbiological changes during bioremediation of explosives-contaminated soils in laboratory and pilot-scale bioslurry reactors. Bioresource Technology,2004.91(2):123~133.
    [91]Leahy JG,Colwell RR. Microbial degradation of hydrocarbons in the environment. Microbiol.Rev.,1990.54(3):305~315.
    [92]Atlas RM.Petroleum biodegradation and oil spill bioremediation.Marine Pollution Bulletin,1995.31(4-12):178~182.
    [93]Veen JA,Overbeek LS,Elsas JD, et al.Fate and activity ofmicroorganisms introduced into soil.Microbiology and Molecular Biology Reviews,1997.61(2):121-135.
    [94]苏丹,李培军,鞠京丽等.非流体介质中多环芳烃污染的微生物固定化修复技术.应用生态学报,2006.17(8):1530~1534.
    [95]Ayotamuno MJ, Kogbara RB,Ogaji SOT, et al.Bioremediation of a crude-oil polluted agricultural-soil at Port Harcourt, Nigeria. Applied Energy,2006.83(11):1249~1257
    [96]Kirk JL, Klironomos JN,Lee H,et al.The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil.International Biodeterioration & Biodegradation,2004.167~174.
    [97]Singer ME, Finnerty WR.Microbial metabolism of and straight-chain and branched alkanes.In:Atlas, R.M.(Ed.),Petroleum Microbiology, Macmillan Inc.,1984.1~59.
    [98]王震宁,于晓冬,许颖等.土壤微孔对有机物吸附/解吸的影响及其表征.生态学报,2009.29(4):2087~2096.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700