用户名: 密码: 验证码:
家蚕微孢子虫孢壁蛋白SWP26及其宿主互作蛋白的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微孢子虫是一类专营细胞内寄生的单细胞真核生物,具有广泛的寄主域,包括脊椎动物和无脊椎动物。家蚕微孢子虫(Nosema bombycis)是引起家蚕微粒子病的病原体,可以通过胚胎垂直传播,被蚕业生产国列为唯一的法定检疫对象。目前,微粒子病依然给我国和印度两个蚕丝大国的蚕丝业造成巨大的经济损失。自19世纪中期首次发现家蚕微孢子虫以来,人们对微孢子虫的研究已有150多年的历史。成熟孢子是微孢子虫唯一在细胞外的生活阶段,其外被厚厚的孢子壁。孢子壁的存在可以使成熟微孢子虫抵抗外界任何不良环境,使其在恶劣环境中生存很长时间。微孢子虫的孢壁位于孢子的最外层,主要由高密度电子层的蛋白质成分的孢子外壁和低电子密度的蛋白质和几丁质成分的孢子内壁组成。坚硬的孢子壁不但可以保护孢子抵抗各种外界压力,而且在维持微孢子虫孢内渗透压的平衡中也起着重要作用。最近研究表明,位于微孢子虫孢壁结构的一些孢壁蛋白在微孢子虫的侵染机制和孢子黏附的过程中扮演着重要的角色。SWP26是一种C-端含有一个肝素结合基序的家蚕微孢子虫孢壁蛋白,肝素结合基序能识别并结合宿主细胞表面的葡聚糖,从而介导孢子粘附和宿主细胞的感染。免疫胶体金标记的方法发现,孢壁蛋白SWP26在成熟孢子与未成熟孢子中均有表达,在孢壁的发育过程中孢子内外壁也均有SWP26蛋白的分布。这暗示着,家蚕微孢子虫孢壁蛋白SWP26在孢子壁的形成过程以及孢子黏附和宿主细胞的侵染过程中可能扮演着重要的角色。
     本文通过家蚕微孢子虫孢壁蛋白SWP26的时相表达分析发现,家蚕中肠组织在感染微孢子虫后的24h就可以检测到SWP26的转录本,表明该孢壁蛋白可能在孢子裂殖体阶段就需要发挥作用,这与SWP26在家蚕微孢子虫不同发育阶段的亚细胞定位相一致。然而,目前对家蚕微孢子虫SWP26与其宿主蛋白之间的分子作用依然知之甚少。在此,我们希望通过实验去了解孢壁蛋白SWP26与宿主蛋白之间是否存在着直接的相互作用。
     试验中我们利用家蚕核型多角体病毒Bac-to-Bac表达系统,将家蚕微孢子虫孢壁蛋白SWP26基因和绿色荧光蛋白报告基因EGFP克隆到杆状病毒转移载体pFastBac1,并转化DHI0BmBac感受态细胞,经同源重组获得重组杆状病毒穿梭质粒vBmEGFP-SWP26,随后将其转染家蚕细胞BmN获得含有目的基因的重组杆状病毒。用SDS-PAGE和Western-blot方法在感染重组病毒的家蚕BmN细胞中检测到大小约51kDa的重组蛋白条带。结果表明,家蚕微孢子虫孢壁蛋白SWP26基因可在BmN细胞中成功表达,这为继续研究其功能以及在细胞水平通过免疫共沉淀方法筛选与之互作的宿主蛋白奠定了基础。
     随后,利用EGFP作为抗原决定簇通过免疫共沉淀技术筛选与之相互作用的宿主细胞蛋白。通过免疫共沉淀实验,我们筛选到一个与SWP26有相互作用的家蚕类海龟蛋白(Bombyx mori turtle-like protein,BmTLP)。经酵母双杂交实验结果证实,家蚕微孢子虫孢壁蛋白SWP26与家蚕类海龟蛋白BmTLP之间的确存在相互作用。完整家蚕类海龟蛋白开放式阅读框长1344bp,编码447个氨基酸的蛋白质,分子量大小约为49.6kDa,等电点为5.55,在其N-端有一段长为27个氨基酸残基的信号肽序列,27和28氨基酸位点之间为裂解位点。通过在线BLASTp比对分析发现,BmTLP蛋白与相应鳞翅目昆虫大红斑蝶(Danaus plexippus)海龟蛋白序列的同源性高达98%(基因登录号:EHJ71750),与膜翅目模式昆虫黑腹果蝇(Drosophila melanogaster)海龟蛋白序列的同源性也达到了84%(基因登录号:ACN43741)。经在线软件NetNGlyc1.0预测该cDNA所编码的氨基酸序列具有5个潜在的N-糖基化位点,推测BmTLP蛋白很可能是一种分泌型的糖蛋白。SMART软件分析结果表明,BmTLP蛋白具有免疫球蛋白超家族(Immunoglobulin Superfamily,IgSF)的一般特征,含有两个IG结构域(氨基酸位点:34–145和342–428)和两个IGc2结构域(氨基酸位点:161–226和252–321),属于典型的类免疫球蛋白家族成员。我们发现BmTLP蛋白与家蚕先天性免疫球蛋白–hemolin(编码序列:BGIBMGA008736-TA;蛋白序列:BGIBMGA008736-PA;基因登录号:DQ096295)拥有相同的蛋白功能结构域,但是他们的分布位置有很大差异。在BmTLP蛋白中两个IGc2结构域位于两个IG结构域的中间,而hemolin蛋白与之相反。
     实时荧光定量PCR结果显示,接种家蚕微孢子虫后12h,家蚕中肠组织中BmTLPmRNA表达量显著高于对照组。但是,12h以后感染中肠组织中BmTLP mRNA的表达量明显下降。推测BmTLP蛋白很可能在家蚕微孢子虫感染初期发挥着比较重要的作用。
Microsporidia are unicellular, obligate intracellular, eukaryotic parasites. Its hostranges from protists to invertebrates and vertebrates. The species Nosema bombycis, whichis the pathogen of pebrine disease in silkworms, can be transovarially transmitted to the nextgeneration. So it is defined as the only disease needed for quarantine in sericulture. Atpresent, Pebrine disease used to prevail in the countries and areas practicing sericulture, andstill causes serious financial loss to the sericulture industry in China and India today. Sincethe N. bombycis has been discovered in the middle of the nineteenth century, it has morethan150years of history about the research on the microsporidia. The microsporidian sporestage, not the vegetative stages, is the only stage that lives outside the host, which is animportant characteristic of the phylum. The spore coat is separated from the cell by a plasmamembrane and consists of an electron-dense proteinaceous exospore and an electron-lucentendospore that contains chitin and proteins. The microsporidian spore wall plays animportant role in protection against environmental stresses and permits the long-termsurvival of the parasite after its release from the host cell. Indeed, recent studies havesuggested that some spore wall proteins are involved in the complex infection mechanism,and are responsible for spore adherence, which is an integral part of activation and host cellinfection. Previous studies showed that SWP26of N. bombycis contains a C-terminalheparin-binding motif (HMB) which is known to interact with extracellularglycosaminoglycans (GAGs) and may be involved in modulating in vitro host celladherence and infection. Transmission immunoelectron microscopy revealed that theSWP26protein is expressed at high levels in the endospore and plasma membrane duringendospore development, and is sparsely distributed in the exospore of mature spores.Furthermore, a few particles were detected in the endospore and exospore of the spore wallduring the late spore-forming phase and were not detected on the plasma membranes,thereby suggesting that SWP26is involved in endospore formation, host cell adherence, andinfection in vitro.
     In the present study, analysis of expression patterns revealed that the transcripts ofSWP26can be detected at24h p.i in the infected midgut of silkworm by N. bombycis.Therefore, it has been suggested that this spore wall protein is expressed at an early stageduring the development of N. bombycis. This proposal is congruent with the results of immuno-electron microscopy. However, little is known about the molecular interactionsbetween SWP26and host proteins. So, we want to comprehend that whether SWP26couldrecognize and interact with the host cell proteins.
     In this study, we used Bac-to-Bac baculovirus expression system to express the SWP26fused enhanced green fluorecence protein (EGFP) in BmN cells. The SWP26gene andEGFP gene were inserted into the baculovirus transfer vector pFastBac1. The transfervector pFastBac1-SWP26-EGFP was transformed into Escherichia coli DHl0Bac toconstruct recombinant vBmSWP26-EGFP. The vBmSWP26-EGFPwas then used to transfect BmNceIIs to obtain the recombinant bacuIovirus. Sodium dodecyl sulfate–polyacrylamide gelelectrophoresis (SDS-PAGE) and western blotting detected a protein band of about51kDain BmN cells infected by the recombinant virus, which was correspondent to the deducedmolecuIar weight of SWP26fused EGFP. In addition, fluorescence were observed withinthe cytoplasm and within the nucleoplasm. These results indicated that the SWP26had beensuccessfully expressed in BmN ceIIs. This study laid the foundation for screening theinteractive proteins of Bombyx mori with the SWP26of N. bombycis at the cellular level.
     Then, we obtained a potential interacting protein--turtle like protein of B. mori(BmTLP) with SWP26using co-immunoprecipitation method. Yeast two-hybrid analysisalso indicated that the SWP26protein interacted, in vivo, with BmTLP protein. Thecomplete open reading frame (ORF) of BmTLP was obtained using PCR with thecorresponding primers. The ORF is1.344kb in size and encodes a polypeptide of447amino acids with a calculated molecular weight of about49.6kDa and an isoelectric pointof5.55. The deduced BmTLP protein sequence has an N-terminal signal peptide of27amino acids with a cleavage site between amino acids27and28. The NCBI BLASTpsearch revealed that BmTLP has the highest similarity (98%) with Danaus plexippus(GenBank Accession No.: EHJ71750), as well as a high similarity of84%with Drosophilamelanogaster (GenBank Accession No.: ACN43741). Five N-glycosylation sites arepredicted in BmTLP using the NetNGlyc1.0server online software. It suggested thatBmTLP may be a secreted glycoprotein. In addition,the protease domain of the BmTLPprotein was identified using the SMART program to analyze the amino acid sequence.BmTLP contains the basic features of the immunoglobulin superfamily (IgSF) such as IGdomains at the residual positions34–145and342–428, and IGc2-type domains at residues161–226and252–321. Interestingly, we found that the same4domains exist in both theBmTLP protein and the hemolin protein of silkworm (coding sequence:BGIBMGA008736-TA; protein: BGIBMGA008736-PA; GenBank Accession No.: DQ096295). However, these domains are differently distributed in the2proteins. In contrastto the hemolin protein, two IGc2-type domains are located in the middle of the two IGdomains.
     Fluorescent quantitative real-time polymerase chain reaction (qRT-PCR) analysisrevealed that the relative expression level of BmTLP was significantly higher in the infectedmidgut than that of silkworm at12h postinfection (hpi). However, the relative expressionlevel of BmTLP was notably down-regulated in the infected midgut of silkworm after12h.The results suggested that BmTLP protein may play an important role at early stage ofinfection by N. bombycis.
引文
[1] Cavalier-Smith T. A revised six-kingdom system of life[J]. Biol Rev Camb Philos Soc,1998,73:203-266.
    [2] Corradi N, Haag K L, Pombert J F, et al. Draft genome sequence of the Daphnia pathogenOctosporea bayeri: insights into the gene content of a large microsporidian genome and a modelfor host-parasite interactions[J]. Genome Biol,2009,10:R106.
    [3] Ghosh K, Weiss L M. T cell response and persistence of the microsporidia[J]. FEMS MicrobiolRev,2012,36:748-760.
    [4] Hatakeyama Y. Analyses and taxonomic inferences of small subunit ribosomal RNA sequencesof five microsporidia pathogenic to the silkworm, Bombyx mori[J]. Journal of SericulturalScience of Japan,1997,66:242-252.
    [5] Lom J, Vavra J. Some results in the study on the microstructure of spores of the fish parasite,Plistophora hyphessobryconis (Microsporidia).[J]. Wiad Parazytol,1961,7:828-832.
    [6] Lom J, Gayevskaya A V, Dykova I. Two microsporidian parasites found in marine fishes in theAtlantic Ocean[J]. Folia Parasitol (Praha),1980,27:197-202.
    [7] Bailey L. The infection of the ventriculus of the adult honeybee by Nosema apis (Zander)[J].Parasitology,1955,45:86-94.
    [8] Azevedo C, Corral L, Vivares C P. Ultrastructure of the microsporidian Inodosporus octospora(Thelohaniidae), a parasite of the shrimp Palaemon serratus (Crustacea, Decapoda)[J]. DisAquat Organ,2000,41:151-158.
    [9] Harcourt-Brown F M, Holloway H K. Encephalitozoon cuniculi in pet rabbits[J]. Vet Rec,2003,152:427-431.
    [10] Velasquez J N, Chertcoff A V, Etchart C, et al. First case report of infection caused byEncephalitozoon intestinalis in a domestic cat and a patient with AIDS[J]. Vet Parasitol,2012,190:583-586.
    [11] Malcekova B, Valencakova A, Luptakova L, et al. First detection and genotyping ofEncephalitozoon cuniculi in a new host species, gyrfalcon (Falco rusticolus)[J]. Parasitol Res,2011,108:1479-1482.
    [12] Kasickova D, Sak B, Kvac M, et al. Detection of Encephalitozoon cuniculi in a newhost--cockateel (Nymphicus hollandicus) using molecular methods[J]. Parasitol Res,2007,101:1685-1688.
    [13] Kasickova D, Sak B, Kvac M, et al. Sources of potentially infectious human microsporidia:molecular characterisation of microsporidia isolates from exotic birds in the Czech Republic,prevalence study and importance of birds in epidemiology of the human microsporidialinfections[J]. Vet Parasitol,2009,165:125-130.
    [14] Mohn S F, Nordstoga K. Electrophoretic patterns of serum proteins in blue foxes with specialreference to changes associated with nosematosis[J]. Acta Vet Scand,1975,16:297-306.
    [15] Sak B, Kasickova D, Kvac M, et al. Microsporidia in exotic birds: intermittent spore excretion ofEncephalitozoon spp. in naturally infected budgerigars (Melopsittacus undulatus)[J]. VetParasitol,2010,168:196-200.
    [16] Klee J, Besana A M, Genersch E, et al. Widespread dispersal of the microsporidian Nosemaceranae, an emergent pathogen of the western honey bee, Apis mellifera[J]. J Invertebr Pathol,2007,96:1-10.
    [17] Williams G R, Shafer A B, Rogers R E, et al. First detection of Nosema ceranae, amicrosporidian parasite of European honey bees (Apis mellifera), in Canada and central USA[J].J Invertebr Pathol,2008,97:189-192.
    [18] Invernizzi C, Abud C, Tomasco I H, et al. Presence of Nosema ceranae in honeybees (Apismellifera) in Uruguay[J]. J Invertebr Pathol,2009,101:150-153.
    [19] Fries I. Nosema ceranae in European honey bees (Apis mellifera)[J]. J Invertebr Pathol,2010,103Suppl1:S73-79.
    [20] Hong I P, Woo S O, Choi Y S, et al. Prevalence of Nosema and Virus in Honey Bee (Apismellifera L.) Colonies on Flowering Period of Acacia in Korea[J]. Mycobiology,2011,39:317-320.
    [21] Yoshiyama M, Kimura K. Distribution of Nosema ceranae in the European honeybee, Apismellifera in Japan[J]. J Invertebr Pathol,2011,106:263-267.
    [22] Martinez J, Leal G, Conget P. Nosema ceranae an emergent pathogen of Apis mellifera inChile[J]. Parasitol Res,2012,111:601-607.
    [23] Bollan K A, Hothersall J D, Moffat C, et al. The microsporidian parasites Nosema ceranae andNosema apis are widespread in honeybee (Apis mellifera) colonies across Scotland[J]. ParasitolRes,2013,112:751-759.
    [24] Valencakova A, Balent P, Huska M, et al. First report on Encephalitozoon intestinalis infectionof swine in Europe[J]. Acta Vet Hung,2006,54:407-411.
    [25] Bailey L. Effect of fumagillin upon Nosema apis (Zander)[J]. Nature,1953,171:212-213.
    [26] Wittner M, Weiss L M The microsporidia and microsporidiosis. Washington, D.C.:ASM Press,1999.xvii,553p.
    [27] Weiss L M, Zhou G C, Zhang H. Characterization of recombinant microsporidian methionineaminopeptidase type2[J]. J Eukaryot Microbiol,2003,50Suppl:597-599.
    [28] Weiss L M. The first united workshop on microsporidia from invertebrate and vertebrate hosts[J].Folia Parasitol (Praha),2005,52:1-7.
    [29] Franzen C, Muller A. Microsporidiosis: human diseases and diagnosis[J]. Microbes Infect,2001,3:389-400.
    [30] Zender H O, Arrigoni E, Eckert J, et al. A case of Encephalitozoon cuniculi peritonitis in apatient with AIDS[J]. Am J Clin Pathol,1989,92:352-356.
    [31] Moss R B, Beaudet L M, Wenig B M, et al. Microsporidium-associated sinusitis[J]. Ear NoseThroat J,1997,76:95-101.
    [32] Weber R, Deplazes P, Flepp M, et al. Cerebral microsporidiosis due to Encephalitozoon cuniculiin a patient with human immunodeficiency virus infection[J]. N Engl J Med,1997,336:474-478.
    [33] Texier C, Vidau C, Vigues B, et al. Microsporidia: a model for minimal parasite-hostinteractions[J]. Curr Opin Microbiol,2010,13:443-449.
    [34] Avery S W, Undeen A H. The isolation of microsporidia and other pathogens from concentratedditch water[J]. J Am Mosq Control Assoc,1987,3:54-58.
    [35] Sparfel J M, Sarfati C, Liguory O, et al. Detection of microsporidia and identification ofEnterocytozoon bieneusi in surface water by filtration followed by specific PCR[J]. J EukaryotMicrobiol,1997,44:78S.
    [36] Dowd S E, Gerba C P, Pepper I L. Confirmation of the human-pathogenic microsporidiaEnterocytozoon bieneusi, Encephalitozoon intestinalis, and Vittaforma corneae in water[J]. ApplEnviron Microbiol,1998,64:3332-3335.
    [37] Cotte L, Rabodonirina M, Chapuis F, et al. Waterborne outbreak of intestinal microsporidiosis inpersons with and without human immunodeficiency virus infection[J]. J Infect Dis,1999,180:2003-2008.
    [38] Izquierdo F, Castro Hermida J A, Fenoy S, et al. Detection of microsporidia in drinking water,wastewater and recreational rivers[J]. Water Res,2011,45:4837-4843.
    [39] Biderre C, Duffieux F, Peyretaillade E, et al. Mapping of repetitive and non-repetitive DNAprobes to chromosomes of the microsporidian Encephalitozoon cuniculi[J]. Gene,1997,191:39-45.
    [40] Brugere J F, Cornillot E, Metenier G, et al. Encephalitozoon cuniculi (Microspora) genome:physical map and evidence for telomere-associated rDNA units on all chromosomes[J]. NucleicAcids Res,2000,28:2026-2033.
    [41] Peyret P, Katinka M D, Duprat S, et al. Sequence and analysis of chromosome I of theamitochondriate intracellular parasite Encephalitozoon cuniculi (Microspora)[J]. Genome Res,2001,11:198-207.
    [42] Katinka M D, Duprat S, Cornillot E, et al. Genome sequence and gene compaction of theeukaryote parasite Encephalitozoon cuniculi[J]. Nature,2001,414:450-453.
    [43] Slamovits C H, Fast N M, Law J S, et al. Genome Compaction and Stability in MicrosporidianIntracellular Parasites[J]. Current Biology,2004,14:891-896.
    [44] Wu Z, Li Y, Pan G, et al. A complete Sec61complex in Nosema bombycis and Its comparativegenomics analyses[J]. The Journal of Eukaryotic Microbiology,2007,54:379-380.
    [45] Williams B A P, Lee R C H, Becnel J J, et al. Genome sequence surveys of Brachiola algeraeand Edhazardia aedis reveal microsporidia with low gene densities[J]. BMC Genomics,2008,9:200.
    [46] Akiyoshi D E, Morrison H G, Lei S, et al. Genomic survey of the non-cultivatable opportunistichuman pathogen, Enterocytozoon bieneusi[J]. PLoS Pathog,2009,5:e1000261.
    [47] Cornman R S, Chen Y P, Schatz M C, et al. Genomic analyses of the microsporidian Nosemaceranae, an emergent pathogen of honey bees[J]. PLoS Pathog,2009,5:e1000466.
    [48]向恒,潘国庆,陶美林, et al.家蚕微孢子虫全基因组分析支持微孢子虫与真菌的亲缘关系[J].蚕业科学,2010,36:442-446.
    [49] Pan G, Xu J, Li T, et al. Comparative genomics of parasitic silkworm microsporidia reveal anassociation between genome expansion and host adaptation[J]. BMC Genomics,2013,14:186.
    [50] Peyretaillade E, El Alaoui H, Diogon M, et al. Extreme reduction and compaction ofmicrosporidian genomes[J]. Res Microbiol,2011,162:598-606.
    [51] Corradi N, Haag K L, Pombert J-F, et al. Draft genome sequence of the Daphnia pathogenOctosporea bayeri: insights into the gene content of a large microsporidian genome and a modelfor host-parasite interactions[J]. Genome Biology,2009,10:R106.
    [52] Xu J, Pan G, Fang L, et al. The varying microsporidian genome: existence of long-terminalrepeat retrotransposon in domesticated silkworm parasite Nosema bombycis[J]. InternationalJournal for Parasitology,2006,36:1049-1056.
    [53] Xiang H, Pan G, Zhang R, et al. Natural selection maintains the transcribed LTRretrotransposons in Nosema bombycis[J]. Journal of Genetics and Genomics,2010,37:305-314.
    [54] Texier C, Vidau C, Viguès B, et al. Microsporidia: a model for minimal parasite–hostinteractions[J]. Current Opinion in Microbiology,2010,13:443-449.
    [55] Vivares C P, Gouy M, Thomarat F, et al. Functional and evolutionary analysis of a eukaryoticparasitic genome[J]. Curr Opin Microbiol,2002,5:499-505.
    [56] Williams B A P. Unique physiology of host-parasite interactions in microsporidia infections[J].Cellular Microbiology,2009,11:1551-1560.
    [57] Peyretaillade E, Goncalves O, Terrat S, et al. Identification of transcriptional signals inEncephalitozoon cuniculi widespread among Microsporidia phylum: support for accuratestructural genome annotation[J]. BMC Genomics,2009,10:607.
    [58] Aurrecoechea C, Barreto A, Brestelli J, et al. AmoebaDB and MicrosporidiaDB: functionalgenomic resources for Amoebozoa and Microsporidia species[J]. Nucleic Acids Res,2011,39:D612-619.
    [59] Valencakova A, Halanova M. Immune response to Encephalitozoon infection review[J]. CompImmunol Microbiol Infect Dis,2012,35:1-7.
    [60] Buc M. Imunológia [M][J]. Veda, vydavate stvo SAV, Bratislava,2001,464p.
    [61] Didier E S. Reactive nitrogen intermediates implicated in the inhibition of Encephalitozooncuniculi (phylum microspora) replication in murine peritoneal macrophages[J]. ParasiteImmunol,1995,17:405-412.
    [62] Couzinet S, Cejas E, Schittny J, et al. Phagocytic uptake of Encephalitozoon cuniculi bynonprofessional phagocytes[J]. Infect Immun,2000,68:6939-6945.
    [63] Franzen C. Microsporidia: how can they invade other cells?[J]. Trends Parasitol,2004,20:275-279.
    [64] Franzen C, Muller A, Hartmann P, et al. Cell invasion and intracellular fate of Encephalitozooncuniculi (Microsporidia)[J]. Parasitology,2005,130:285-292.
    [65] Khan I A, Schwartzman J D, Kasper L H, et al. CD8+CTLs are essential for protectiveimmunity against Encephalitozoon cuniculi infection[J]. J Immunol,1999,162:6086-6091.
    [66] Khan I A, Moretto M. Role of gamma interferon in cellular immune response against murineEncephalitozoon cuniculi infection[J]. Infect Immun,1999,67:1887-1893.
    [67] Moretto M M, Lawlor E M, Khan I A. Lack of interleukin-12in p40-deficient mice leads to poorCD8+T-cell immunity against Encephalitozoon cuniculi infection[J]. Infect Immun,2010,78:2505-2511.
    [68] Moretto M, Casciotti L, Durell B, et al. Lack of CD4(+) T cells does not affect induction ofCD8(+) T-cell immunity against Encephalitozoon cuniculi infection[J]. Infect Immun,2000,68:6223-6232.
    [69] Moretto M, Durell B, Schwartzman J D, et al. Gamma delta T cell-deficient mice have adown-regulated CD8+T cell immune response against Encephalitozoon cuniculi infection[J]. JImmunol,2001,166:7389-7397.
    [70] Mellman I, Steinman R M. Dendritic cells: specialized and regulated antigen processingmachines[J]. Cell,2001,106:255-258.
    [71] Moretto M, Weiss L M, Khan I A. Induction of a rapid and strong antigen-specific intraepitheliallymphocyte response during oral Encephalitozoon cuniculi infection[J]. J Immunol,2004,172:4402-4409.
    [72] Moretto M M, Weiss L M, Combe C L, et al. IFN-gamma-producing dendritic cells areimportant for priming of gut intraepithelial lymphocyte response against intracellular parasiticinfection[J]. J Immunol,2007,179:2485-2492.
    [73] Moretto M M, Lawlor E M, Khan I A. Aging mice exhibit a functional defect in mucosaldendritic cell response against an intracellular pathogen[J]. J Immunol,2008,181:7977-7984.
    [74] Moretto M M, Lawlor E M, Xu Y, et al. Purified PTP1protein induces antigen-specificprotective immunity against Encephalitozoon cuniculi[J]. Microbes and Infection,2010,12:574-579.
    [75] Fischer J, West J, Agochukwu N, et al. Induction of host chemotactic response byEncephalitozoon spp[J]. Infect Immun,2007,75:1619-1625.
    [76] Fischer J, Suire C, Hale-Donze H. Toll-like receptor2recognition of the microsporidiaEncephalitozoon spp. induces nuclear translocation of NF-kappaB and subsequent inflammatoryresponses[J]. Infect Immun,2008,76:4737-4744.
    [77] Lanzavecchia A, Sallusto F. Regulation of T cell immunity by dendritic cells[J]. Cell,2001,106:263-266.
    [78] Lawlor E M, Moretto M M, Khan I A. Optimal CD8T-cell response against Encephalitozooncuniculi is mediated by Toll-like receptor4upregulation by dendritic cells[J]. Infect Immun,2010,78:3097-3102.
    [79] van de Veerdonk F L, Kullberg B J, van der Meer J W, et al. Host-microbe interactions: innatepattern recognition of fungal pathogens[J]. Curr Opin Microbiol,2008,11:305-312.
    [80] Xu Y, Weiss L M. The microsporidian polar tube: a highly specialised invasion organelle[J]. Int JParasitol,2005,35:941-953.
    [81] Taupin V, Garenaux E, Mazet M, et al. Major O-glycans in the spores of two microsporidianparasites are represented by unbranched manno-oligosaccharides containing alpha-1,2linkages[J]. Glycobiology,2007,17:56-67.
    [82] Mathews A, Hotard A, Hale-Donze H. Innate immune responses to Encephalitozoon speciesinfections[J]. Microbes Infect,2009,11:905-911.
    [83] Schmidt E C, Shadduck J A. Mechanisms of resistance to the intracellular protozoanEncephalitozoon cuniculi in mice[J]. J Immunol,1984,133:2712-2719.
    [84] Arnesen K, Nordstoga K. Ocular encephalitozoonosis (nosematosis) in blue foxes. Polyarteritisnodosa and cataract[J]. Acta Ophthalmol (Copenh),1977,55:641-651.
    [85] Mohn S F, Nordstoga K, Dishington I W. Experimental encephalitozoonosis in the blue fox.Clinical, serological and pathological examinations of vixens after oral and intrauterineinoculation[J]. Acta Vet Scand,1982,23:490-502.
    [86] Stewart C G, Reyers F, Snyman H. The relationship in dogs between primary renal disease andantibodies to Encephalitozoon cuniculi[J]. J S Afr Vet Assoc,1988,59:19-21.
    [87] Cox J C, Gallichio H A, Pye D, et al. Application of immunofluorescence to the establishment ofan Encephalitozoon cuniculi-free rabbit colony[J]. Lab Anim Sci,1977,27:204-209.
    [88] Shadduck J A, Greeley E. Microsporidia and human infections[J]. Clin Microbiol Rev,1989,2:158-165.
    [89] Bergquist N R, Stintzing G, Smedman L, et al. Diagnosis of encephalitozoonosis in man byserological tests[J]. Br Med J (Clin Res Ed),1984,288:902.
    [90] Hollister W S, Canning E U, Willcox A. Evidence for widespread occurrence of antibodies toEncephalitozoon cuniculi (Microspora) in man provided by ELISA and other serological tests[J].Parasitology,1991,102Pt1:33-43.
    [91] Didier E S, Didier P J, Friedberg D N, et al. Isolation and characterization of a new humanmicrosporidian, Encephalitozoon hellem (n. sp.), from three AIDS patients withkeratoconjunctivitis[J]. J Infect Dis,1991,163:617-621.
    [92] Didier E, Kotler D, Dieterich D, et al. Serological studies in human microsporidia infections.[J].AIDS,1993,7:8-11.
    [93] Khan I A, Moretto M, Weiss L M. Immune response to Encephalitozoon cuniculi infection[J].Microbes Infect,2001,3:401-405.
    [94] Leitch G J, Ceballos C. A role for antimicrobial peptides in intestinal microsporidiosis[J].Parasitology,2009,136:175-181.
    [95] Jones S R. The occurrence and mechanisms of innate immunity against parasites in fish[J]. DevComp Immunol,2001,25:841-852.
    [96] Rodriguez-Tovar L E, Speare D J, Markham R J. Fish microsporidia: immune response,immunomodulation and vaccination[J]. Fish Shellfish Immunol,2011,30:999-1006.
    [97] Speare D, Arsenault G, Buote M. Evaluation of rainbow trout as a model for use in studies onpathogenesis of the branchial microsporidian Loma salmonae[J]. Contemp Top Lab Anim Sci,1998,37:55-58.
    [98] Speare D, Beaman H, Jones S, et al. Induced resistance in rainbow trout, Oncorhynchus mykiss(Walbaum), to gill disease associated with the microsporidian gill parasite Loma salmonae[J]. JFish Dis,1998,21:93-100.
    [99] Lovy J, Speare D J, Stryhn H, et al. Effects of dexamethasone on host innate and adaptiveimmune responses and parasite development in rainbow trout Oncorhynchus mykiss infectedwith Loma salmonae[J]. Fish Shellfish Immunol,2008,24:649-658.
    [100] Reimschuessel R, Bennett R, May E, et al. Eosinophilic granular cell response to amicrosporidian infection in a sergeant major fsh, Abudefduf saxatilis (L.)[J]. J Fish Dis1987,10:319-322.
    [101] Lovy J, Becker J A, Speare D J, et al. Ultrastructural examination of the host cellular response inthe gills of Atlantic salmon, Salmo salar, with amoebic gill disease[J]. Vet Pathol,2007,44:663-671.
    [102] Lom J, Nilsen F. Fish microsporidia: fine structural diversity and phylogeny[J]. Int J Parasitol,2003,33:107-127.
    [103] Lom J, Dykova I. Microsporidian xenomas in fish seen in wider perspective[J]. Folia Parasitol(Praha),2005,52:69-81.
    [104] A S-B. Living off a fish: A trade-off between parasites and the immune system[J]. Fish&Shellfish Immunology,2008,25:358-372.
    [105] Dyková I, Lom J. Tissue reactions to microsporidian in fsh[J]. J Fish Dis,1980,3:265-283.
    [106] Rodriguez-Tovar L E, Wright G M, Wadowska D W, et al. Ultrastructural study of the late stagesof Loma salmonae development in the gills of experimentally infected rainbow trout[J]. JParasitol,2003,89:464-474.
    [107] Rodriguez-Tovar L E, Wright G M, Wadowska D W, et al. Ultrastructural study of the earlydevelopment and localization of Loma salmonae in the gills of experimentally infected rainbowtrout[J]. J Parasitol,2002,88:244-253.
    [108] Shaw R W, Kent M L, Adamson M L. Phagocytosis of Loma salmonae (Microsporidia) spores inAtlantic salmon (Salmo salar), a resistant host, and chinook salmon (Oncorhynchus tshawytscha),a susceptible host[J]. Fish Shellfish Immunol,2001,11:91-100.
    [109] Watts M, Munday B, Burke C. Immune responses of teleost fsh[J]. Aust Vet J,2001,79:570-574.
    [110] Leiro J, Ortega M, Estevez J, et al. The role of opsonization by antibody and complement in invitro phagocytosis of microsporidian parasites by turbot spleen cells[J]. Vet ImmunolImmunopathol,1996,51:201-210.
    [111] Fujita T. Evolution of the lectin-complement pathway and its role in innate immunity[J]. Nat RevImmunol,2002,2:346-353.
    [112] Esteban M A, Mulero V, Cuesta A, et al. Effects of injecting chitin particles on the innateimmune response of gilthead seabream (Sparus aurata L.)[J]. Fish Shellfish Immunol,2000,10:543-554.
    [113] Esteban M A, Cuesta A, Ortuno J, et al. Immunomodulatory effects of dietary intake of chitin ongilthead seabream (Sparus aurata L.) innate immune system[J]. Fish Shellfish Immunol,2001,11:303-315.
    [114] etenier G, Vivares C. Molecular characteristics and physiology of microsporidia[J]. MicrobesInfect,2001,3:407-415.
    [115] Lovy J, Wright G M, Speare D J. Ultrastructural examination of the host inflammatory responsewithin gills of netpen reared chinook salmon (Oncorhynchus tshawytscha) with MicrosporidialGill Disease[J]. Fish Shellfish Immunol,2007,22:131-149.
    [116] Kim J H, Ogawa K, Wakabayashi H. Respiratory burst assay of head kidney macrophages of ayu,Plecoglossus altivelis, stimulated with Glugea plecoglossi (Protozoa: Microspora) spores[J]. JParasitol,1998,84:552-556.
    [117] Kurtz J, Kalbe M, Aeschlimann P B, et al. Major histocompatibility complex diversity influencesparasite resistance and innate immunity in sticklebacks[J]. Proc Biol Sci,2004,271:197-204.
    [118] Kim J, Yokoyama H, Ogawa K, et al. Humoral immune response of ayu, Plecoglossus altivelisto Glugea plecoglossi (Protozoa: Microspora)[J]. Fish Pathol,1996,215-220.
    [119] Leiro J, Ortega M, Estevez J, et al. The humoral immune response of turbot, Scophthalmusmaximus L., to spore-surface antigens of microsporidian parasites[J]. Vet ImmunolImmunopathol,1996,55:235-242.
    [120] Zhang J Y, Wu Y S, Wu H B, et al. Humoral immune responses of the grouper Epinephelusakaara against the microsporidium Glugea epinephelusis[J]. Dis Aquat Organ,2005,64:121-126.
    [121] Vorontsova Ia L, Tokarev Iu S, Sokolova I, et al. Microsporidiosis in the wax moth Galleriamellonella (Lepidoptera: Pyralidae) caused by Vairimorpha ephestiae (Microsporidia:Burenellidae)[J]. Parazitologiia,2004,38:239-250.
    [122] Hoch G, Solter L F, Schopf A. Hemolymph melanization and alterations in hemocyte numbers inLymantria dispar larvae following infections with different entomopathogenic microsporidia[J].Entomologia experimentalis et applicata,2004,113:77-86.
    [123] Sokolova I, Tokarev Iu S, Lozinskaia Ia L, et al. A morphofunctional analysis of the hemocytesin the cricket Gryllus bimaculatus (Orthoptera: Gryllidae) normally and in acutemicrosporidiosis due to Nosema grylli[J]. Parazitologiia,2000,34:408-419.
    [124] Tokarev Y S, Sokolova Y Y, Entzeroth R. Microsporidia-insect host interactions: teratoidsporogony at the sites of host tissue melanization[J]. J Invertebr Pathol,2007,94:70-73.
    [125] Vijendravarma R K, Kraaijeveld A R, Godfray H C. Experimental evolution shows Drosophilamelanogaster resistance to a microsporidian pathogen has fitness costs[J]. Evolution,2009,63:104-114.
    [126] Antunez K, Martin-Hernandez R, Prieto L, et al. Immune suppression in the honey bee (Apismellifera) following infection by Nosema ceranae (Microsporidia)[J]. Environ Microbiol,2009,11:2284-2290.
    [127] Roxstrom-Lindquist K, Terenius O, Faye I. Parasite-specific immune response in adultDrosophila melanogaster: a genomic study[J]. EMBO Rep,2004,5:207-212.
    [128] Biron D G, Agnew P, Marche L, et al. Proteome of Aedes aegypti larvae in response to infectionby the intracellular parasite Vavraia culicis[J]. Int J Parasitol,2005,35:1385-1397.
    [129] Xu Y, Takvorian P M, Cali A, et al. Glycosylation of the major polar tube protein ofEncephalitozoon hellem, a microsporidian parasite that infects humans[J]. Infect Immun,2004,72:6341-6350.
    [130] Xu Y, Takvorian P, Cali A, et al. Lectin binding of the major polar tube protein (PTP1) and itsrole in invasion[J]. J Eukaryot Microbiol,2003,50Suppl:600-601.
    [131] Delbac F, David D, Metenier G, et al. First complete amino acid sequence of a polar tube proteinin a microsporidian species, Encephalitozoon cuniculi[J]. J Eukaryot Microbiol,1997,44:77S.
    [132] Delbac F, Duffieux F, Peyret P, et al. Identification of sporal proteins in two microsporidianspecies: an immunoblotting and immunocytochemical study[J]. J Eukaryot Microbiol,1996,43:101S.
    [133] Keohane E M, Orr G A, Zhang H S, et al. The molecular characterization of the major polar tubeprotein gene from Encephalitozoon hellem, a microsporidian parasite of humans[J]. MolBiochem Parasitol,1998,94:227-236.
    [134] Delbac F, Peyret P, Metenier G, et al. On proteins of the microsporidian invasive apparatus:complete sequence of a polar tube protein of Encephalitozoon cuniculi[J]. Mol Microbiol,1998,29:825-834.
    [135] Haro M, Del Aguila C, Fenoy S, et al. Intraspecies genotype variability of the microsporidianparasite Encephalitozoon hellem[J]. J Clin Microbiol,2003,41:4166-4171.
    [136] Peuvel I, Delbac F, Metenier G, et al. Polymorphism of the gene encoding a major polar tubeprotein PTP1in two microsporidia of the genus Encephalitozoon[J]. Parasitology,2000,121Pt6:581-587.
    [137] Weiss L M. Microsporidia: emerging pathogenic protists[J]. Acta Trop,2001,78:89-102.
    [138] Xiao L, Li L, Moura H, et al. Genotyping Encephalitozoon hellem isolates by analysis of thepolar tube protein gene[J]. J Clin Microbiol,2001,39:2191-2196.
    [139]高永珍,黄可威,常智杰.家蚕病原性微孢子虫极丝蛋白的研究[J].蚕业拶学,2001,27:128-130.
    [140] Peuvel I, Peyret P, Metenier G, et al. The microsporidian polar tube: evidence for a third polartube protein (PTP3) in Encephalitozoon cuniculi[J]. Mol Biochem Parasitol,2002,122:69-80.
    [141] Bouzahzah B, Nagajyothi F, Ghosh K, et al. Interactions of Encephalitozoon cuniculi polar tubeproteins[J]. Infect Immun,2010,78:2745-2753.
    [142]吴正理,李艳红,宋元达.微孢子虫蛋白质及其与宿主互作的研究进展[J].蚕业科学,2009,35:921-928.
    [143] Delbac F, Peuvel I, Metenier G, et al. Microsporidian invasion apparatus: identification of anovel polar tube protein and evidence for clustering of ptp1and ptp2genes in threeEncephalitozoon species[J]. Infect Immun,2001,69:1016-1024.
    [144] Frixione E, Ruiz L, Cerbon J, et al. Germination of Nosema algerae (Microspora) spores:conditional inhibition by D2O, ethanol and Hg2+suggests dependence of water influxuponmembrane hydration and specific transmembrane pathways[J]. J Eukaryot Microbiol,1997,44:109-116.
    [145] Shadduck J A, Polley M B. Some factors influencing the in vitro infectivity and replication ofEncephalitozoon cuniculi[J]. J Protozool,1978,25:491-496.
    [146] Koudela B, Kucerova S, Hudcovic T. Effect of low and high temperatures on infectivity ofEncephalitozoon cuniculi spores suspended in water[J]. Folia Parasitol (Praha),1999,46:171-174.
    [147]河原烟勇.家蚕微粒子病病原Nosema bombycis及其近缘种的免疫学鉴定[J].黄自然译.国外农学-蚕业,1986,2:19-21.
    [148]龙綮新,柯昭喜,王询.微孢子虫孢子表面蛋白电泳分析及其在种类鉴定上应用的初步研究[J].昆虫天敌,1995,17:27-32.
    [149] Bohne W, Ferguson D J, Kohler K, et al. Developmental expression of a tandemly repeated,glycine-and serine-rich spore wall protein in the microsporidian pathogen Encephalitozooncuniculi[J]. Infect Immun,2000,68:2268-2275.
    [150] Peuvel-Fanget I, Polonais V, Brosson D, et al. EnP1and EnP2, two proteins associated with theEncephalitozoon cuniculi endospore, the chitin-rich inner layer of the microsporidian sporewall[J]. Int J Parasitol,2006,36:309-318.
    [151] Brosson D, Kuhn L, Prensier G, et al. The putative chitin deacetylase of Encephalitozooncuniculi: a surface protein implicated in microsporidian spore-wall formation[J]. FEMSMicrobiol Lett,2005,247:81-90.
    [152] Hayman J R, Hayes S F, Amon J, et al. Developmental expression of two spore wall proteinsduring maturation of the microsporidian Encephalitozoon intestinalis[J]. Infect Immun,2001,69:7057-7066.
    [153] Southern T R, Jolly C E, Lester M E, et al. EnP1, a microsporidian spore wall protein thatenables spores to adhere to and infect host cells in vitro[J]. Eukaryot Cell,2007,6:1354-1362.
    [154] Polonais V, Mazet M, Wawrzyniak I, et al. The human microsporidian Encephalitozoon hellemsynthesizes two spore wall polymorphic proteins useful for epidemiological studies[J]. InfectImmun,2010,78:2221-2230.
    [155] Li Z, Pan G, Li T, et al. SWP5, a spore wall protein, interacts with polar tube proteins in theparasitic microsporidian Nosema bombycis[J]. Eukaryot Cell,2012,11:229-237.
    [156] Wu Z, Li Y, Pan G, et al. SWP25, A novel protein associated with the Nosema bombycisendospore[J]. J Eukaryot Microbiol,2009,56:113-118.
    [157] Li Y, Wu Z, Pan G, et al. Identification of a novel spore wall protein (SWP26) frommicrosporidia Nosema bombycis[J]. Int J Parasitol,2009,39:391-398.
    [158] Wu Z, Li Y, Pan G, et al. Proteomic analysis of spore wall proteins and identification of twospore wall proteins from Nosema bombycis (Microsporidia)[J]. Proteomics,2008,8:2447-2461.
    [159] Enriquez F J, Wagner G, Fragoso M, et al. Effects of an anti-exospore monoclonal antibody onmicrosporidial development in vitro[J]. Parasitology,1998,117(Pt6):515-520.
    [160]鲁兴萌,汪方炜.家蚕肠球菌对微孢子虫体外发芽的抑制作用[J].蚕业科学,2002,28:126-128.
    [161]汪方炜,鲁兴萌,黄少康.家蚕肠球菌体外抑制微孢子发芽的动力学研究[J].蚕业科学,2003,29:157-161.
    [162]刘强波.微孢子虫表面蛋白生物学功能研究[D].2005.
    [163]周成.家蚕微孢子虫表面蛋白P32.7的分离纯化及P30.4基因相关领域分析[D].2002.
    [164]崔红娟,周泽扬,万永继, et al.家蚕微孢子虫表面抗原蛋白对家蚕致病性的影响[J].蚕业科学,1999,25:261-262.
    [165] Hayman J R, Southern T R, Nash T E. Role of sulfated glycans in adherence of themicrosporidian Encephalitozoon intestinalis to host cells in vitro[J]. Infect Immun,2005,73:841-848.
    [166] Southern T R, Jolly C E, Russell Hayman J. Augmentation of microsporidia adherence and hostcell infection by divalent cations[J]. FEMS Microbiol Lett,2006,260:143-149.
    [167] Yanagawa N, Tamura G, Oizumi H, et al. MAGE expressions mediated by demethylation ofMAGE promoters induce progression of non-small cell lung cancer[J]. Anticancer Res,31:171-175.
    [168] Xu X, Shen Z, Zhu F, et al. Phylogenetic characterization of a microsporidium (Endoreticulatussp. Zhenjiang) isolated from the silkworm, Bombyx mori[J]. Parasitol Res,2012,110:815-819.
    [169] Zhu F, Shen Z, Guo X, et al. A new isolate of Nosema sp.(Microsporidia, Nosematidae) fromPhyllobrotica armata Baly (Coleoptera, Chrysomelidae) from China[J]. J Invertebr Pathol,2011,106:339-342.
    [170] Dong S, Shen Z, Xu L, et al. Sequence and phylogenetic analysis of SSU rRNA gene of fivemicrosporidia[J]. Current Microbiology,2010,60:30-37.
    [171]潘敏慧,万永继,成鲁.不同种类微孢子虫DNA制备方法的研究[J].西南农业大学学报,2001,23:111-116.
    [172]潘国庆,谭小辉,党晓群, et al.家蚕微孢子虫孢壁蛋白SWP25、SWP30、SWP32的表达谱分析[J].蚕业科学,2009,35:328-332.
    [173]钱永华,金伟.家蚕微孢子虫生殖嘲的研究进展[J].蚕业科学,1997,23:114-119.
    [174]万永继.家蚕寄生性微孢子虫及其检验技术的研究[J].四川蚕业,1988,16:7-9.
    [175] Iwano H, Shimizu N, Kawakami Y, et al. Spore dimorphism and some other biological featuresof a Nosema sp. isolated from the lawn grass cutworm, Spodoptera depravata Butler[J]. AppliedEntomology and Zoology,1994,29:219-227.
    [176] Motohashi T, Shimojima T, Fukagawa T, et al. Efficient large-scale protein production of larvaeand pupae of silkworm by Bombyx mori nuclear polyhedrosis virus bacmid system[J]. BiochemBiophys Res Commun,2005,326:564-569.
    [177] Chakrabarty S, Manna B, Saha A K, et al. Comparative Study on Effect Different Types ofNosema sp.(Microsporidia: Nosematidae) on Mulberry and Vanya Silkworms[J]. Journal ofBiological Sciences,2012,12:1-14.
    [178] Iwano H, Ishihara R. Dimorphism of spores of Nosema spp. in cultured cell[J]. Journal ofInvertebrate Pathology,1991,57:211-219.
    [179] Cali, Takvorian. Developmental morphology and life cycles of the microsporidia. In: Wittner, M.,Weiss, L.(Eds.), The Microsporidia and Microsporidiosis. American Society of Microbiology,Washington, DC, pp.85–128.[J].1999,
    [180] Dall'Acqua W, Goldman E R, Lin W, et al. A mutational analysis of binding interactions in anantigen-antibody protein-protein complex[J]. Biochemistry,1998,37:7981-7991.
    [181] Barclay A N. Membrane proteins with immunoglobulin-like domains--a master superfamily ofinteraction molecules[J]. Semin Immunol,2003,15:215-223.
    [182] Harpaz Y, Chothia C. Many of the immunoglobulin superfamily domains in cell adhesionmolecules and surface receptors belong to a new structural set which is close to that containingvariable domains[J]. J Mol Biol,1994,238:528-539.
    [183] Bateman A, Eddy S R, Chothia C. Members of the immunoglobulin superfamily in bacteria[J].Protein Sci,1996,5:1939-1941.
    [184] Beale D, Coadwell J. Unusual features of the T-cell receptor C domains are revealed bystructural comparisons with other members of the immunoglobulin superfamily[J]. CompBiochem Physiol B,1986,85:205-215.
    [185] Xu Z, Jin B. A novel interface consisting of homologous immunoglobulin superfamily memberswith multiple functions[J]. Cell Mol Immunol,2010,7:11-19.
    [186] Juliano R L. Signal transduction by cell adhesion receptors and the cytoskeleton: functions ofintegrins, cadherins, selectins, and immunoglobulin-superfamily members[J]. Annu RevPharmacol Toxicol,2002,42:283-323.
    [187] Williams A F, Barclay A N. The immunoglobulin superfamily--domains for cell surfacerecognition[J]. Annu Rev Immunol,1988,6:381-405.
    [188] Blumbach B, Diehl-Seifert B, Seack J, et al. Cloning and expression of new receptors belongingto the immunoglobulin superfamily from the marine sponge Geodia cydonium[J].Immunogenetics,1999,49:751-763.
    [189] Colombani J. The immunoglobulin superfamily[J]. Rev Fr Transfus Hemobiol,1991,34:151-165.
    [190] Bodily K D, Morrison C M, Renden R B, et al. A novel member of the Ig superfamily, turtle, is aCNS-specific protein required for coordinated motor control[J]. J Neurosci,2001,21:3113-3125.
    [191] Sulkowski M J, Iyer S C, Kurosawa M S, et al. Turtle functions downstream of Cut indifferentially regulating class specific dendrite morphogenesis in Drosophila[J]. PLoS One,2011,6:e22611.
    [192] Long H, Ou Y, Rao Y, et al. Dendrite branching and self-avoidance are controlled by Turtle, aconserved IgSF protein in Drosophila[J]. Development,2009,136:3475-3484.
    [193] Ferguson K, Long H, Cameron S, et al. The conserved Ig superfamily member Turtle mediatesaxonal tiling in Drosophila[J]. J Neurosci,2009,29:14151-14159.
    [194]何芳青,陈琳,姚慧鹏, et al.家蚕类免疫球蛋白(hemolin)基因的克隆及表达特征和抗菌活性研究[J].蚕业科学,2010,36:41-45.
    [195] Faye I, Pye A, Rasmuson T, et al. Insect immunity.11. Simultaneous induction of antibacterialactivity and selection synthesis of some hemolymph proteins in diapausing pupae of Hyalophoracecropia and Samia cynthia[J]. Infect Immun,1975,12:1426-1438.
    [196] Bao Y, Yamano Y, Morishima I. Induction of hemolin gene expression by bacterial cell wallcomponents in eri-silkworm, Samia cynthia ricini[J]. Comp Biochem Physiol B Biochem MolBiol,2007,146:147-151.
    [197] Yajima T, Yagihashi A, Kameshima H, et al. Quantitative reverse transcription-PCR assay of theRNA component of human telomerase using the TaqMan fluorogenic detection system[J].Clinical Chemistry,1998,44:2441-2445.
    [198] Ueda M, Imada K, Imura A, et al. Expression of functional interleukin‐21receptor on adult T‐cell leukaemia cells[J]. British journal of haematology,2005,128:169-176.
    [199] Kyger E M, Krevolin M D, Powell M J. Detection of the hereditary hemochromatosis genemutation by real-time fluorescence polymerase chain reaction and peptide nucleic acidclamping[J]. Analytical biochemistry,1998,260:142-148.
    [200] Tyagi S, Bratu D P, Kramer F R. Multicolor molecular beacons for allele discrimination[J].Nature biotechnology,1998,16:49-53.
    [201] Gabert J, Beillard E, Van Der Velden V, et al. Standardization and quality control studies of‘real-time’quantitative reverse transcriptase polymerase chain reaction of fusion gene transcriptsfor residual disease detection in leukemia–a Europe Against Cancer program[J]. Leukemia,2003,17:2318-2357.
    [202] Hirayama Y, Sakamaki S, Matsunaga T, et al. Concentrations of thrombopoietin in bone marrowin normal subjects and in patients with idiopathic thrombocytopenic purpura, aplastic anemia,and essential thrombocythemia correlate with its mRNA expression of bone marrow stromalcells[J]. Blood,1998,92:46-52.
    [203] Liang P, Pardee A B. Differential display of eukaryotic messenger RNA by means of thepolymerase chain reaction[J]. Science,1992,257:967-971.
    [204] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities ofprotein utilizing the principle of protein-dye binding[J]. Anal Biochem,1976,72:248-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700