用户名: 密码: 验证码:
银/聚合物纳米复合材料的制备、结构和抗菌性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
银(Ag)纳米粒子是一种安全、持久的高效金属抗菌剂,将其与聚合物复合,不仅可改善Ag的分散性,还可赋予或增强高分子材料的抗菌性能。本文在离子液体1-丁基-3-甲基咪唑氟硼酸盐([BMIM]·BF4)中制备了稳定的Ag纳米胶体,并以[BMIM]·BF4/乙醇为混和溶剂,通过原位聚合方式制备出银/聚苯乙烯(Ag/PS)纳米核壳复合粒子。在苯乙烯聚合过程中,Ag与[BMIM]·BF4分子之间的强吸附作用,阻止了Ag粒子的团聚,而使之包覆在PS中。
     采用液相化学还原法合成出Ag/壳聚糖(CS)复合胶乳,继而制备了Ag/CS-g-甲基丙烯酸甲酯(MMA)复合物。研究结果表明,Ag纳米粒子对CS与MMA的接枝聚合起阻碍作用,导致接枝率和接枝效率比无Ag粒子存在时有所下降。通过结构表征和机理分析证明,CS分子吸附Ag而形成了Ag-O键,并且通过静电效应和位阻效应阻止了Ag纳米粒子的聚集,使其均匀分散于复合物中;MMA在CS的羟基上发生了接枝共聚反应;与Ag纳米粒子复合后的CS及CS-g-MMA的热稳定性明显高于纯CS。
     通过电纺方法制备了Ag/CS/聚氧化乙烯(PEO)复合超细纤维膜。利用扫描电镜和透射电镜观察了不同纺丝条件下电纺膜的微观形貌,结果表明,在Ag纳米粒子存在下可电纺得到形貌良好的超细纤维,Ag粒子均匀分布于纤维膜中。X-光电子能谱分析显示有约10%的Ag元素分布在了纤维膜的表面。吸水率测定结果表明,含有Ag纳米粒子的Ag/CS/PEO电纺纤维膜与CS/PEO电纺膜比较,其吸水率有所提高。拉伸试验表明Ag纳米粒子的引入提高了复合电纺膜的力学性能,其力学性能在湿态下较干态下有所下降。
     抗菌评价研究结果表明,所制备的Ag纳米粒子具有明显的抗菌性能;Ag/PS核壳复合粒子的抑菌具有长效性;Ag/CS复合抗菌剂具有比单一抗菌剂更高效的抗菌性能;探讨了Ag纳米粒子和CS的抗菌机理,指出Ag/CS基复合抗菌剂的抗菌性能是Ag纳米粒子和CS协同作用的结果。
Silver (Ag) nanoparticle is a kind of high-performance metallic antimicrobial agents with security and durability. Compounding Ag nanoparticles with polymer could not only improve their dispersability but also provide with or enhance the antimicrobial properties of polymer materials.
     In the present studys, Ag nanocolloids were synthesized in a room-temperature ionic liquid, 1-n-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]·BF4). And then Ag/polystyrene (PS) core/shell nanoparticles were prepared via in situ polymerization in the [BMIM]·BF4/ethanol mixed solvent. In the process of styrene polymerization, the strong sorption between Ag and [BMIM]·BF4 prevented Ag nanoparticles from aggregation, and made them disperse uniformly. Ag nanoparticles were finally embedded in PS.
     Ag/chitosan (CS) composite colloids were synthesized by liquid-phase chemical reduction and then Ag/CS-g-methylmethacrylate (MMA) composite was prepared by graft polymerization. The results showed that Ag nanoparticles hindered the graft polymerization of CS with MMA, which resulted in the decrease of the graft percentage and graft efficiency in comparison with those without Ag nanoparticles.
     Structural characterization and mechanism analysis verified that Ag-O bonds were formed by adsorption between CS molecules and Ag, and prevented Ag nanoparticles from aggregation through electrostatic effect and steric effect, which made Ag nanoparticles dispersed evenly in the composites. The graft copolymerization of CS with MMA was initiated on the hydroxide group of CS. After compounding with Ag nanoparticles, the thermal stability of CS and its graft product, CS-g-MMA was significantly increased in comparison with that of original CS.
     Ag/CS/poly(ethylene oxide) (PEO) composite fibrous membrane was produced by electrospinning. The morphologies of electrospun fibers under different electrospining conditions were analyzed by scanning electron microscope and transmission electron microscope. The results indicated that the ultrafine fibers with fine morphology could be obtained by electrospinning at the present of Ag nanoparticles, and the nanoparticles were dispersed uniformly in the electrospun fibers. The result of X-ray photoelectron spectroscopy revealed that approximately 10% of Ag element distributed on the surface of the fibrous membranes. The Ag/CS/PEO membrane showed a higher water uptake than that of CS/PEO electrospun membrane. The composite Ag/CS/PEO fibrous membranes showed better tensile properties than CS/PEO membrane due to the introduction of Ag nanoparticles, but the tensile properties got worse in wet state.
     Evaluation of antimicrobial activities showed that the resultant Ag nanoparticles demonstrated perfect antibacterial property, while Ag/PS core/shell nanocomposite particles displayed prolonged antibacterial effect and the Ag/CS composites existed higher antibacterial performance than Ag or CS alone. The antibacterial mechanisms of Ag nanoparticles and CS were studied. The antibacterial activities of Ag/CS based antimicrobial were displayed by the cooperation of Ag nanoparticles with CS.
引文
[1] Lu L, Kobayashi A, Tawa K, et al. Silver nanoplates with special shapes: controlled synthesis and their surface plasmon resonance and surface-enhanced Raman scattering properties. Chemistry of Materials, 2006, 18(20): 4894~4901
    [2] Kotov NA. Nanoparticles. Advanced Materials, 2005, 17(4): 495~496
    [3] Mallick K, Witcomb M, Scurrell M. Silver nanoparticle catalysed redox reaction: An electron relay effect. Materials Chemistry and Physics, 2006, 97: 283~287
    [4] Hirano S, Wakasa Y, Saka A, et al. Preparation of Bi~2223 bulk composed with silver-alloy wire. Physica C: Superconductivity and its Applications, 2003, 392-396: 458~462
    [5] Xu JZ, Zhang Y, Li GX, et al. An electrochemical biosensor constructed by nanosized silver particles doped sol-gel film. Materials Science and Engineering C, 2004, 24: 833~836
    [6] Guo SJ, Dong SJ. Biomolecule-nanoparticle hybrids for electrochemical biosensors. TrAC Trends in Analytical Chemistry, 2009, 28(1): 96~109
    [7] Alta V, Bechert T, Steinrucke P, et al. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials, 2004, 25: 4383~4391
    [8] Jiang HQ, Manolache S, Wong AC, et al. Plasma-enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. Journal of Applied Polymer Science, 2004, 93(3): 1411~1422
    [9] Mbhele ZH, Salemane MG., Sittert CG. Fabrication and characterization of silver-polyvinyl alcohol nanocomposites. Chemistry of Materials, 2003, 15, 5019~5024
    [10] Mitra A, Bhaumik A. Nanoscale silver cluster embedded in artificial heterogeneous matrix consisting of protein and sodium polyacrylate. Materials Letters, 2007, 61: 659~662
    [11] Sánchez-Valdes S, Ortega-Ortiz H, Ramos-de Valle LF, et al. Mechanical and antimicrobial properties of multilayer films with a polyethylene/silver nanocomposite layer. Journal of Applied Polymer Science, 2009, 111(2): 953~962
    [12] Shin HS, Yang HJ, Kim SB, et al. Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone inγ-irradiated silver nitrate solution. Journal of Colloid and Interface Science, 2004, 274, 89~94
    [13] Mihailovic D. Inorganic molecular wires: Physical and functional properties of transition metal chalco-halide polymers. Progress in Materials Science, 2009, 54(3): 309~350
    [14] Li X, Chen SY, Hu WL, et al. In situ synthesis of CdS nanoparticles on bacterial cellulose nanofibers. Carbohydrate Polymers, 2009, 76(4): 509~512
    [15] Crespy D, Landfester K. Synthesis of polyvinylpyrrolidone/silver nanoparticles hybrid latex in non-aqueous miniemulsion at high temperature. Polymer, 2009, 50(7): 1616~1620
    [16] Lin JH, He CY, Zhao Y, et al. One-step synthesis of silver nanoparticles/carbon nanotubes/chitosan film and its application in glucose biosensor. Sensors and Actuators B: Chemical, 2009, 137(2): 768~773
    [17] Ben-Knaz R, Avnir D. Bioactive enzyme-metal composites: The entrapment of acid phosphatase within gold and silver. Biomaterials, 2009, 30(7): 1263~1267
    [18] Troupis A, Triantis T, Hiskia A, et al. Rate-redox-controlled size-selective synthesis of silver nanoparticles using polyoxometalates. European Journal of Inorganic Chemistry, 2008, 2008(36): 5579~5586
    [19] Zhang JH, Liu HY, Zhan P, et al. Controlling the growth and assembly of silver nanoprisms. Advanced Functional Materials, 2007, 17(9): 1558~1566
    [20] Kim YW, Lee DK, Lee KJ, et al. In situ formation of silver nanoparticles within an amphiphilic graft copolymer film. Journal of Polymer Science Part B: Polymer Physics, 2007, 45(11): 1283~1290
    [21] Sato-BerrúR, Redón R, Vázquez-Olmos A, et al. Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface-enhanced Raman spectroscopy. Journal of Raman Spectroscopy, 2009, 40(4): 376~380
    [22] Lee T M, Cai H, Hsing I M. Gold Nanoparticle-Catalyzed Silver Electrodeposition on an Indium Tin Oxide Electrode and Its Application in DNA Hybridization Transduction. Electroanalysis, 2004, 16(19): 1628~1631
    [23] Irshad H, Mathias B, Adam JP, et al. Preparation of acrylate-stabilized gold and silver hydrosols and gold-polymer composite films. Langmuir, 2003, 19: 4831~4835
    [24] Kim KY, Choia YT, Seo DJ, et al. Preparation of silver colloid and enhancement of dispersion stability in organic solvent. Materials Chemistry and Physics, 2004, 88(2-3): 377~382
    [25] Ullah MH, Kim LL, Chang-Sik H. Preparation and optical properties of colloidal silver nanoparticles at a high Ag+ concentration. Materials Letters, 2006, 60(12): 1496~1501
    [26] Nersisyan HH, Lee H, Son HT, et al. A new and effective chemical reduction method for per parathion of nanosized silver powder and colloid dispersion. Materials Research Bulletin, 2003, (38): 949~956
    [27] Chen M, Wang LY, Han JT, et al. Preparation and study of polyacryamide-stabilized silver nanoparticles through a one-pot process. Journal of Physical Chemistry B, 2006, 110(23): 11224~11231
    [28] Chen M, Feng YG, Wang X, et al. Silver nanoparticles capped by oleylamine: formation, growth, and self-organization. Langmuir, 2007, 23: 5296~5304
    [29] Wang DT, Song CX, Hu ZS, et al. Synthesis of silver nanoparticles with flake-like shapes. Materials Letters, 2005, 59(14-15): 1760~1763
    [30] Huang HZ, Yang XR. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydrate Research, 2004, 339: 2627~2631
    [31] Ohde H, Hunt F, Wai CM. Synthesis of silver and copper nanoparticles in a water-in-supercirtical-carbon dioxide microemulsion. Chemistry of Materials, 2001, 13: 4130~4135
    [32] Capek. Preparation of metal nanoparticles in water-in-oil (W/O) microemulsions. Advances in Colloid and Interface Science, 2004, 110(1-2): 49~74
    [33] Zhang WZ, Qiao XL, Chen JG, et al. Preparation of silver nanoparticles in water-in-oil AOT reverse micelles. Journal of Colloid and Interface Science, 2006, 302(1): 370~373
    [34] Zhang WZ, Qiao XL, Chen JG. Synthesis of silver nanoparticles—Effects of concerned parameters in water/oil microemulsion. Materials Science and Engineering B, 2007, 142, 1~15
    [35] Andersson M, Pedersen JS, Anders EC, et al. Silver nanoparticle formation in microemulsions acting both as template and reducing agent. Langmuir, 2005, 21(24): 11387~11396
    [36] Zhang WZ, Qiao XL, Chen JG., et al. Self-assembly and controlled synthesis of silver nanoparticles in SDS quaternary microemulsion. Materials Letters, 2008, 62(10-11): 1689~1692
    [37] Welton T. Room temperature ionic liquids synthesis and catalysis. Chemical Reviews, 1999, 99: 2071~2083
    [38] Olivier H. Recent developments in the use of nonaqueous ionic liquids for two-phase catalysis. Journal of Molecular Catalysis A: Chemical, 1999, 146: 285~289
    [39] Dupont J, Souza RF, Suarez PA. Ionic liquid (molten salt) phase organometallic catalysis. Chemical Reviews, 2002, 102(10): 3667~3691
    [40] Whitehead JA, Zhang J, Pereira N, et al. Application of 1-alkyl-3-methyl-imidazolium ionic liquids in the oxidative leaching of sulphidic copper, gold and silver ores. Hydrometallurgy, 2007, 88(1-4): 109~120
    [41] Kosmulski M, Gustafsson J, Rosenholm JB. Thermal stability of low temperature ionic liquids revisited. Thermochimica Acta, 2004, 412: 47~53
    [42] Antonietti M, Kuang D, Smarsly B, et al. Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angewandte Chemie International Edition, 2004, 43(38): 4988~4992
    [43] Dupont J, Fonseca GS, Umpierre AP, et al. Transition-metal nanoparticles in imidazolium ionic liquids: recycable catalysts for biphasic hydrogenation reactions. Journal of the American Chemical Society, 2002, 124(16): 4228~4229
    [44] Jia H, Xu W, An J, et al. A simple method to synthesize triangular silver nanoparticles by light irradiation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2006, 64(4): 956~960
    [45] Silva AM, Araujo CB, Santos-Silva S. Silver nanoparticle in situ growth within crosslinked poly(ester-co-styrene) induced by UV irradiation: aggregation control with exposure time. Journal of Physics and Chemistry of Solids, 2007, 68: 729~733
    [46] Plieth W, Dietz H, Anders A, et al. Electrochemical preparation of silver and gold nanoparticles: Characterization by confocal and surface enhanced Raman microscopy. Surface Science, 2005, 597(1-3): 119~126
    [47] Zhu JJ, Wang H, Shu X, et al. Sonochemical method for the preparation of monodisperse spherical and rectangular lead selenide nanoparticles. Langmuir, 2002, 18: 3306~3310
    [48] Ahmed MO, Leong WK. Colloidal silver nanoparticles stabilized by a water-soluble triosmium cluster. Journal of Organometallic Chemistry, 2006, 691: 1055~1060
    [49] Simchi A, Ahmadi R, Seyed RS, et al. Kinetics and mechanisms of nanoparticle formation and growth in vapor phase condensation process. Materials and Design, 2007, 28: 850~856
    [50] Vigneshwaran N, Nachane RP, Balasubramanya RH, et al. A novel one-pot‘green’synthesis of stable silver nanoparticles using soluble starch. Carbohydrate Research, 2006, 341(12): 2012~2018
    [51] Li TH, Park HG, Choi SH.γ-Irradiation-induced preparation of Ag and Au nanoparticles and their characterizations. Materials Chemistry and Physics, 2007, 105: 325~330
    [52] Lin XZ, Teng X, Yang H. Direct synthesis of narrowly dispersed silver nanoparticles using a single-source precursor. Langmuir, 2003, 19(24): 10081~10085
    [53] Tokareva I, Hutter E. Hybridization of oligonucleotide-modified silver and gold nanoparticles in aqueous dispersions and on gold films. Journal of the American Chemical Society, 2004, 126(48): 15784~15789
    [54] Murray BJ, Li O, Newberg JT, et al. Shape-and size-selective electrochemical synthesis of dispersed silver(I) oxide colloids. Nano Letters, 2005, 5(11): 2319~2324
    [55] Fuertes MC, Marchena M, Marchi MC, et al. Controlled deposition of silver nanoparticles in mesoporous single or multilayer thin films: from tuned pore filling to selective spatial location of nanometric objects. Small, 2009, 5(2): 272~280
    [56] Viswanadh B, Tikku S, Khilar KC. Modeling core-shell nanoparticle formation using three reactive microemulsions. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 2007, 298: 149~157
    [57] Gladitz M, Reinemann S, Radusch HJ. Preparation of silver nanoparticle dispersions via a dendritic-polymer template approach and their use for antibacterial surface treatment. Macromolecular Materials and Engineering, 2009, 294(3): 178~189
    [58] Sun XP, Dong SJ, Wang EK. One-step preparation and characterization of poly(propyleneimine) dendrimer-protected silver nanoclusters. Macromolecules, 2004, 37: 7105~7108
    [59] Chandrasekharan N, Kamat PV. Assembling Gold nanoparticles as nanostructured films using an electrophoretic approach. Nano Letters, 2001, 1(2): 67~70
    [60] D’urso L, Nicolosi V, Compagnini G, et al. The effect of polymer molecular weight on the formation and evolution of silver-polymer nanocomposite thin films. Materials Science and Engineering C, 2003, 23: 307~310
    [61] Mayer AB, Mark JE. Poly(2-hydroxyalkyl methacrylates) as stabilizers for colloidal noble metal nanoparticles. Polymer, 2000, 41: 1627~1631
    [62] Tao S, Juan M. High performance polyprolylene-clay nanocomposites by in-situ polymerization with metallocene/clay catalysts. Advanced Materials, 2002, 14(2): 128~130
    [63] Yeum JH, Sun QH, Deng YL. Poly(vinyl acetate)/silver nanocomposite microspheres prepared by suspension polymerization at low temperature. Macromolecular Materials and Engineering, 2005, 290(1): 78~84
    [64] Neelgund GM, Hrehorova E, Joyce M, et al. Synthesis and characterization of polyaniline derivative and silver nanoparticle composites. Polymer International, 2008, 57(10): 1083~1089
    [65] López-Martínez EI, Márquez-Lucero A, Hernández-Escobar CA, et al. Incorporation of silver/carbon nanoparticles into poly(methyl methacrylate) via in situ miniemulsion polymerization and its influence on the glass-transition temperature. Journal of Polymer Science Part B: Polymer Physics, 2007, 45(5): 511~518
    [66] Ishizu K, Hatoyama N, Makino M, et al. Encapsulation of silver nanoparticles within micropores of block copolymers constructed by emulsion-induced method. Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46(10): 3429~3432
    [67] Chen ZM, Gang T, Zhang K, et al. Ag nanoparticles-coated silica-PMMA core-shell microspheres and hollow PMMA microspheres with Ag nanoparticles. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 2006, 272: 151~156
    [68] Yakutik IM, Shevchenko GP. Self-organization of silver nanoparticles forming on chemical reduction to give monodisperse spheres. Surface Science, 2004, 566-568: 414~418
    [69] Khanna PK, Singh N, Charan S. Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction method. Materials Chemistry and Physics, 2005, 93: 117~121
    [70] Popa M, Pradell T, Crespo D, et al. Stable silver colloidal dispersions using short chain polyethylene glycol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 303: 184~190
    [71] Huang HZ, Yuan Q, Yang XR. Preparation and characterization of metal-chitosan nanocomposites. Colloids and Surfaces B: Biointerfaces, 2004, 39: 31~37
    [72] Singh N, Khanna PK. In situ synthesis of silver nano-particles in polymethylmethacrylate. Materials Chemistry and Physics, 2007, 104(2-3): 367~372
    [73] Wang LM, Chen DJ. A facile method for the preparation of hollow silver spheres. Materials Letters, 2007, 61(10): 2113~2116
    [74] Zhang ZP, Zhang LD, Wang SX, et al. A convenient route to polyacrylonitrile/silver nanoparticle composite by simultaneous polymerization-reduction approach. Polymer, 2001, 42: 8315~8318
    [75] Zhao CJ, Zhao QT, Zhao QZ, et al. Preparation and optical properties of Ag/PPy composite colloids. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 187: 146~151
    [76] Zhang K, Fu Q, Fan JH, et al. Preparation of Ag/PS composite particles by dispersion polymerization under ultrasonic irradiation. Materials Letters, 2005, 59: 3682~3686
    [77] Lei ZL, Fan YH. Preparation of silver nanocomposites stabilized by an amphiphilic block copolymer under ultrasonic irradiation. Materials Letters, 2006, 60: 2256~2260
    [78] Nath S, Ghosh SK, Kundu S, et al. A convenient approach to synthesize silver nanoshell covered functionalized polystyrene beads: A substrate for surface enhanced Raman scattering. Materials Letters 2005, 59: 3986~3989
    [79] Marcela MO, Castro EG, Canestraro CD, et al. A simple two-phase route to silver nanoparticles/polyaniline structures. Journal of. Physical Chemistry B, 2006, 110: 17063~17069
    [80] Liu WJ, Zhang ZC, He WD, et al. Novel method for the preparation of core-shell nanoparticles with movable Ag core and polystyrene loop shell. Journal of Solid State Chemistry, 2006, 179: 1253~1258
    [81] Zhang JH, Liu HY, Wang ZL, et al. A solvent-assisted route for coating polystyrene colloids with Ag and the corresponding hollow Ag spheres. Materials Letters, 2007, 61(23-24): 4579~4582
    [82] Kim JW, Lee JE , Kim SJ, et al. Synthesis of silver/polymer colloidal composites from surface-functional porous polymer microspheres. Polymer, 2004, 45: 4741~4747
    [83] Cho J, Caruso F, Investigation of the Interactions between ligand-stabilized gold nanoparticles and polyelectrolyte multilayer films. Chemistry of Materials, 2005, 17: 4547~4552
    [84] Joseph Y, Besnard I, Rosenberger M, et al. Self-assembled gold nanoparticle/alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties. Journal of Physical Chemistry B, 2003, 107(30): 7406~7413
    [85] Zheng M, Zhang YZ, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 2003, 63: 2223~2253
    [86] Li WJ, Laurencin CT, Caterson EJ, et al. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. Journal of Biomedical Materials Research Part A: Biomedical Materials, 2002, 60(4): 613~621
    [87] Khil MS, Bhattarai SR, Kim HY, et al. Novel fabricated matrix via electrospinning for tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2005, 72B: 117~124
    [88] Ong SY, WuJ, Moochhala SM, et al. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials, 2008, 29: 4323~4332
    [89] Taylor GI. Disintegration of water drops in an electric field. Proceedings of Royal Society London (A), 1964, 280: 383~397
    [90] Deitzel JM, Kleinmeyer J, Harris D, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 2001, 42: 261~72
    [91] Li D, Xia YN. Electrospinning of nanofibers: reinventing the wheel. Advanced Materials, 2004, 16:1151~1170
    [92] Desai K, Kit K, Li JJ, et al. Morphological and surface properties of electrospun chitosan nanofibers. Biomacromolecules, 2008, 9(3): 1000~1006
    [93] Geng XY, Kwon OH, Jang J. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 2005, 26: 5427~5432
    [94] Ohkawa K, Cha D, Kim H, et al. Electrospinning of chitosan. Macromolecular Rapid Communications, 2004, 25: 1600~1605
    [95] Zhou YS, Yang DZ, Chen XM, et al. Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules, 2008, 9: 349~354.
    [96] Duan B, Yuan XY, Zhu Y, et al. A nanofibrous composite membrane of PLGA-chitosan/PVA prepared by electrospinning. European Polymer Journal, 2006, 42: 2013~2022
    [97] Duan B, Dong CH, Yuan XY, et al. Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide). Journal of Biomaterials Science, Polymer Edition, 2004, 15: 797~811
    [98] Huang L, Nagapudi K, Apkarian RP, et al. Engineered collagen-PEO nanofibers and fabrics. Journal of Biomaterials Science, Polymer Edition, 2001, 12: 979~993
    [99] Ignatova M, Manolova N, Rashkov I. Novel antibacterial fibers of quaternized chitosan and poly(vinyl pyrrolidone) prepared by electrospinning. European Polymer Journal, 2007, 43: 1112~1122
    [100] Zheng XL, Guo DW, Shao YL, et al. Photochemical modification of an optical fiber tip with a silver nanoparticle film: a SERS chemical sensor. Langmuir, 2008, 24(8): 4394~439
    [101] Huang YP, Chen TK, Tang JW, et al. Effect of PET melt spinning on TiO2 nanoparticle aggregation and friction behavior of fiber surface. Industrial & Engineering Chemistry Research, 2007, 46(17): 5548~5554
    [102] Liu Y, Mills EN, Composto RJ, et al. Tuning optical properties of gold nanorods in polymer films through thermal reshaping. Journal of Materials Chemistry, 2009, DOI: 10.1039/b901782h
    [103] Radeti M, Ili V, Vodnik V, et al. Antibacterial effect of silver nanoparticles deposited on corona-treated polyester and polyamide fabrics. Polymers for Advanced Technologies, 2008, 19(12): 1816~1821
    [104] Park SW, Bae HS, Xing ZC, et al. Preparation and properties of silver-containing nylon 6 nanofibers formed by electrospinning. Journal of Applied Polymer Science, 2009, 112(4): 2320~2326
    [105] Chang SQ, Kang B, Dai YD, et al. Synthesis of antimicrobial silver nanoparticles on silk fibers viaγ-radiation. Journal of Applied Polymer Science, 2009, 112(4): 2511~2515
    [106] Kong H, Jang J. Antibacterial properties of novel poly(methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir 2008, 24: 2051~2056
    [107] Dong H, Fey E, Gandelman A, et al. Synthesis and assembly of metal nanoparticles on electrospun poly(4-vinylpyridine) fibers and poly(4-vinylpyridine) composite fibers. Chemstry of Materials, 2006, 18: 2008~2011
    [108] Son WK, Youk JH, Lee TS, et al. Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromolecular Rapid Communications, 2004, 25, 1632~1637
    [109] Hong KH, Park JL, Sul IH, et al. Preparation of antimicrobial poly(vinyl alcohol) nanofibers containing silver nanoparticles. Journal of Polymer Science: Part B: Polymer Physics, 2006, 44(17): 2468~2474
    [110] Jin WJ, Lee HK, Jeong EH, et al. Preparation of polymer nanofibers containing silver nanoparticles by using poly(N-vinylpyrrolidone). Macromolecular Rapid Communications, 2005, 26, 1903~1907
    [111] Wu DZ, Ge XW, Huang YH, et al.γ-Radiation synthesis of silver-polystyrene and cadmium sulfide-polystyrene nanocomposite microspheres. Materials Letters, 2003, 57, 3549~3553
    [112] Temgire MK, Joshi SS. Optical and structural studies of silver nanoparticles. Radiation Physics and Chemistry, 2004, 71: 1039~1044
    [113] Kim DW, Lee JM, Oh C, et al. A novel preparation route for platinum-polystyrene heterogeneous nanocomposite particles using alcohol-reduction method. Journal of Colloid and Interface Science, 2006, 297: 365~369
    [114] Mallick K, Witcomb MJ, Scurrell MS. Self-assembly of silver nanoparticles: formation of a thin silver film in a polymer matrix. Materials Science and Engineering C, 2006, 26: 87~91
    [115] Jiang ZL, Yuan WE, Pan HC. Luminescence effect of silver nanoparticle in water phase. Spectrochimica Acta Part A, 2005, 61: 2488~2494
    [116] Kim K, Lee HS, Kim HM. Thermal and photochemical characteristics of silver 4-(4-nitrophenyl)butyrate revealed by infrared and Raman spectroscopy. Vibrational Spectroscopy, 2007, 44: 308~315
    [117] Jiang HJ, Moon K, Li Y, et al. Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites. Chemistry of Materials, 2006, 18: 2969~2973
    [118] Fan H, Bentley HR, Kathan KR, et al. Self-assembled aero gel-like low dielectric constant films. Journal of Non-Crystalline Solids, 2001, 285(1-3): 79~83
    [119] Stepanov AL, Popok VN, Khaibullin IB. Optical properties of polymethylmethacrilate with implanted silver nanoparticles. Nuclear Instruments and Methods in Physics Research B, 2002, 191: 473~477
    [120] Setua P, Chakraborty A, Seth D, et al. Synthesis, optical properties, and surface enhanced raman scattering of silver nanoparticles in nonaqueous methanol reverse micelles. Journal of Physical Chemistry C, 2007, 111(10): 3901~3907
    [121] Yang Y, Matsubara S, Xiong L, et al. Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties. Journal of Physical Chemistry C, 2007, 111(26): 9095~9104
    [122] Miljanic S, Frkanec L, Biljan T, et al. Surface-enhanced raman scattering on molecular self-assembly in nanoparticle-hydrogel composite. Langmuir, 2006, 22(22): 9079~9081
    [123] Lee D, Cohen RE, Rubner MF. Antibacterial properties of Ag nanoparticle-loaded multilayers and formation of magnetically directed antibacterial microparticles, Langmuir, 2005, 21(21): 9651~9659
    [124] Gogoi SK, Gopinath P, Paul A, et al. Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir, 2006, 22: 9322~9328
    [125] Silver S, Phung LT, Silver GJ. Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. Journal of Industrial Microbiology & Biotechnology, 2006, 33: 627~634
    [126] Reda T, Collings AF, Barton C, et al. Functionalized nanoparticle films with rectifying conduction properties. Journal of Physical Chemistry B, 2003, 107(50): 13774~13781
    [127] Panigrahi S, Praharaj S, Basu S, et al. Self-assembly of silver nanoparticles: synthesis, stabilization, optical properties, and application in surface-enhanced Raman scattering. Journal of Physical Chemistry B, 2006, 110(27): 13436~13444
    [128] Bouchama F, Thathagar MB, Rothenberg G, et al. Self-assembly of a hexagonal phase of wormlike micelles containing metal nanoclusters. Langmuir, 2004, 20(2): 477~483
    [129] Dong SY, Zeng MY, Wang DF, et al. Antioxidant and biochemical properties of protein hydrolysates prepared from silver carp(Hypophthalmichthys molitrix). Food Chemistry, 2008, 107(4): 1485~1493
    [130] Petica A, Gavriliu S, Lungu M, et al. Colloidal silver solutions with antimicrobial properties. Materials Science and Engineering B, 2008, 152, (3): 22~27
    [131] Feng QL, Wu J, Chen GQ, et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 2000, 52: 662~668
    [132] Henglein A. Small-particle pesearch-physicochemical properties of extremely small colloidal metal and demiconductor particles. Chemical Reviews, 1989, 89(8): 1861~1873.
    [133] Podsiadlo P, Paternel S, Rouillard JM, et al. Layer-by-layer assembly of nacre-like nanostructured composites with antimicrobial properties. Langmuir, 2005, 21(25): 11915~11921
    [134] Sambhy V, MacBride MM, Peterson BR, et al. Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. Journal of the American Chemical Society, 2006, 128 (30): 9798~9808
    [135] Stephan TD, Panittamat K, Pranut P. Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 2006, 289: 105~109
    [136] Petica A, Gavriliu S, Lungu M. Colloidal silver solutions with antimicrobial properties. Materials Science and Engineering B, 2008, 152(1-3): 22~27
    [137] Maneerung T, Tokura S, Rujiravanit R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydrate Polymers, 2008, 72: 43~51
    [138] Mohan YM, Lee K, Premkumar T, et al. Hydrogel networks as nanoreactors: A novel approach to silver nanoparticles for antibacterial applications. Polymer, 2007, 48: 158~164
    [139] Sarasam AR, Brown P, Khajotia SS, et al. Antibacterial activity of chitosan-based matrices on oral pathogens. Journal of Materials Science: Materials in Medicine, 2008, 19: 1083~1090
    [140] Liu XF, Guan YL, Yang DZ, et al. Antibacterial action of chitosan and carboxymethylated chitosan. Jouunal of Applied Polymer Science, 2001, 79(7): 1324~1335
    [141] Zheng LY, Zhu JF. Study on antimicrobial activity of chitosan with different molecular weights. Carbohydrate Polymers, 2003, 54: 527~530
    [142] Rabea EI, Badawy MET, Stevens CV, et al. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 2003, 4: 1457~1465
    [143] Kurita K. Chemistry and application of chitin and chitosan. Polymer Degradation and Stability, 1998, 59(1-3): 117~120
    [144] Vilchez S, Jovancic P, Manich AM. Chitosan application on wool before enzymatic treatment. Journal of Applied Polymer Science, 2005, 98(5): 1938~1946
    [145] Khor E, Lim L Y. Implantable applications of chitin and chitosan. Biomaterials, 2003, 24(13): 2339~2349
    [146]湛学军,熊远珍,柳吉等,羧甲基壳聚糖银的合成及抑菌实验的研究,中国生化药物杂志,2001,22(3):142~144
    [147] Chen SP, Wu GZ, Zeng HY. Preparation of high antimicrobial activity thiourea chitosan-Ag+ complex. Carbohydrate Polymers, 2005, 60: 33~38
    [148] Twu YK, Chen YW, Shih CM. Preparation of silver nanoparticles using chitosan suspensions. Powder Technology, 2008, 185: 251~257
    [149] Zhou NL, Liu Y, Li L, et al. A new nanocomposite biomedical material of polymer/Clay-Cts-Ag nanocomposites. Current Applied Physics, 2007, 7S1: e58~e62
    [150] Sanpui P, Murugadoss A, Durga-Prasad PV, et al. The antibacterial properties of a novel chitosan-Ag-nanoparticle composite. International Journal of Food Microbiology, 2008, 124(2): 142~146
    [151] Xu J, Han X, Liu HL, et, al. Synthesis and optical properties of silver nanoparticles stabilized by gemini surfactant. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 2006, 273: 179~183
    [152] Park JT, Koh JH, Lee KJ, et al. Formation of silver nanoparticles created in situ in an amphiphilic block copolymer film. Journal of Applied Polymer Science, 2008, 110(4): 2352~2357
    [153] Yu YY, Chien WC, Chen ST. Preparation and morphology of amphiphilic polystyrene-poly(2-vinylpyridine) heteroarm star copolymers prepared by ATRP. Polymer International, 2008, 57(12): 1369~1376
    [154] Lu JM, Yan F, Texter J. Advanced applications of ionic liquids in polymer science. Progress in Polymer Science, 2009, 34(5): 431~448
    [155] Wu YZ, Hao XP, Yang JX, et al. Ultrasound-assisted synthesis of nanocrystalline ZnS in the ionic liquid [BMIM]·BF4. Materials Letters, 2006, 60: 2764~2766
    [156] Scheeren CW, Machado G, Teixeira SR. Synthesis and characterization of Pt(0) nanoparticles in imidazolium ionic liquids. Journal of Physical Chemistry B, 2006, 110: 13011~13020
    [157]张晟卯,张春丽,张经纬等,室温离子液体中银纳米微粒的制备与结构表征,物理化学学报,2004,20(5):554~55
    [158] Bonote P, Dias AP, Papageorgiou N, et al. Hydrophobic, highly conductive ambient-temperature molten salts. Inorganic Chemistry, 1996, 35: 1168~1178
    [159]沈钟,赵振国,王国庭,胶体与表面化学,北京:化学上业出版社,2004, 5~19
    [160]阮艳莉,韩恩山,杨春,非水溶胶的研究进展,化学世界,2003,44(1):41~44
    [161]郭立俊,于娟娟,李蕴才等,PNBA分子在银纳米粒子表面的吸附取向,科学通报,2000,45(6):571~574
    [162] Hsu SL, Wu RT. Synthesis of contamination-free silver nanoparticle suspensions for micro-interconnects. Materials Letters, 2007, 61: 3719~3722
    [163] Tsuji M, Nishizawa Y, Matsumoto K. Rapid synthesis of silver nanostructures by using microwave-polyol method with the assistance of Pt seeds and polyvinylpyrrolidone. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 293: 185~194
    [164]吴刚,材料结构表征及应用,北京:化学工业出版社,2002,308
    [165] Torres FJ, Civalleri B, Pisani C, et al. Normal vibrational analysis of a trans-planar syndiotactic polystyrene chain. Journal Physical Chemistry B, 2007, 111(23): 6327~6335
    [166] He P, Liu HT, Li ZY, et al. Electrochemical deposition of silver in room-temperature ionic liquids and its surface-enhanced Raman scattering effect. Langmuir, 2004, 20: 10260~10267
    [167] Zhang ZQ, Patel RC, Kothari R, et al. Stable silver clusters and nanoparticles prepared in polyacrylate and inverse micellar solutions. Journal of Physical Chemistry B, 2000, 104(6): 1176~1182
    [168] Zhang J, Liu K, Dai Z, et al. Formation of novel assembled silver nanostructures from polyglycol solution. Materials Chemistry and Physics 2006, 100:106~112
    [169]姜兆华,孙德智,邵光杰等,应用表面化学与技术,哈尔滨:哈尔滨工业大学出版社,2000,31~34
    [170] Jou CH, Lin SM, Yun L, et al. Biofunctional properties of polyester fibers grafted with chitosan and collagen. Polymers for Advanced Technologies, 2007, 18(3): 235~239
    [171] Mia FL, Wu YB, Shyu SS, et al. Asymmetric chitosan membranes prepared by dry/wet phase separation: a new type of wound dressing for controlled antibacterial release. Journal of Membrane Science, 2003, 212: 237~254
    [172] Donia AM, Atia AA, Elwakeel KZ. Recovery of gold(III) and silver(I) on a chemically modified chitosan with magnetic properties. Hydrometallurgy, 2007, 87: 197~206
    [173] Yoksan R, Chirachanchai S. Silver nanoparticles dispersing in chitosan solution: Preparation byγ-ray irradiation and their antimicrobial activities. Materials Chemistry and Physics, 2009, 115(1): 296~302
    [174] Li BB, Xu ZL, Qusay FA, et al. Chitosan-poly(vinyl alcohol)/poly (acrylonitrile)(CS-PVA/PAN) composite pervaporation membranes for the separation of ethanol-water solutions. Desalination, 2006, 193: 171~181
    [175] Gabrovska K, Georgieva A, Godjevargova T, et al. Poly(acrylonitrile) chitosan composite membranes for urease immobilization. Journal of Biotechnology, 2007, 129: 674~680
    [176] Mainardes RM, Silva LP. Drug delivery systems: past, present, and future. Current Drug Targets, 2004, 5(5): 449~455
    [177] Qian F, Cui FY, Ding JY. Chitosan graft copolymer nanoparticles for oral protein drug delivery: preparation and characterization. Biomacromolecules, 2006, 7(10): 2722~2727
    [178] Bajpai UD, Rai S. Grafting of acrylamide onto guar gum using KMnO4/Oxalic acid redox system. Journal of Applied Polymer Science, 1988, 35: 1169~1182.
    [179] Hamal DB, Klabunde KJ. Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2. Journal of Colloid and Interface Science, 2007, 311: 514~522
    [180] Sun Y, Wiley B, Li ZY, et al. Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys. Journal of American Chemical Society, 2004, 126, 9399~9406
    [181] Simchi A, Ahmadi R, Seyed-Reihani SM, et al. Kinetics and mechanisms of nanoparticle formation and growth in vapor phase condensation process. Materials and Design, 2007, 28: 850~856
    [182] Lamer VK, Dingar RH. Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. Journal of American Chemical Society, 1950, 72(11): 4847-4854
    [183] Sambhy V, MacBride MM., Peterson BR, et al. Silver bromide nanoparticle/polymer composites: Dual Action Tunable Antimicrobial Materials, 2007, 56: 52~57
    [184] Prashanth KV, Tharanathan RN. Studies on graft copolymerization of chitosan with synthetic monomers, Carbohydrate Polymers, 2003, 54: 343~351
    [185] Zhang JP, Wang L, Wang AQ. Preparation and properties of chitosan-g-poly(acrylic acid)/montmorillonite superabsorbent nanocomposite via in situ intercalative polymerization. Industrial & Engineering Chemistry Research, 2007, 46(8): 2497~2502
    [186] Tangkuaram T, Ponchio C, Kangkasomboon T, et al. Design and development of a highly stable hydrogen peroxide biosensor on screen printed carbon electrode based on horseradish peroxidase bound with gold nanoparticles in the matrix of chitosan, Biosensors and Bioelectronics, 2007, 22: 2071~2078
    [187] Don TM, King CF, Chiu WY. Synthesis and properties of chitosan-modified poly(vinyl acetate), Journal of Applied Polymer Science, 2002, 86, 3057~3063
    [188] Zhao Y, Jiang YJ, Fang Y. Spectroscopy property of Ag nanoparticles, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2006, 65, 1003~1006
    [189] Yu HJ, Chen XS, Lu TC, et al. Poly(l-lysine)-graft-chitosan copolymers: synthesis, characterization, and gene transfection effect. Biomacromolecules, 2007, 8 (5): 1425~1435
    [190] Fernandez-Megia E, Novoa-Carballal R, Qui?oáE, et al. Conjugation of bioactive ligands to PEG-grafted chitosan at the distal end of PEG. Biomacromolecules, 2007, 8(3): 833~842
    [191] Dalton PD, Klinkhammer K, Salber J, et al. Direct in Vitro Electrospinning with Polymer Melts. Biomacromolecules, 2006, 7(3): 686~690
    [192] Azad AK, Sermsintham N, Chandrkrachang S, et al. Chitosan membrane as a wound-healing dressing: characterization and clinical application. Journal of Biomedical Material Research Part B: Appllied Biomaterials, 2004, 69B: 216~222
    [193] Fan LH, Du YM, Zhang BZ, et al. Preparation and properties of alginate/carboxymethyl chitosan blend fibers. Carbohydrate Polymers, 2006, 65: 447~452
    [194] Ding B, Kimura E, Sato T, et al. Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning. Polymer, 2004, 45: 1895~1902
    [195] Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 1995, 35(2-3): 151~160
    [196] Desai K, Kit K, Li JJ, et al. Morphological and surface properties of electrospun chitosan nanofibers. Biomacromolecules, 2008, 9(3): 1000?1006
    [197] Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Poymer, 1999, 40: 4585?4592
    [198] Son WK, Youk JH, Lee TS, et al. The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer, 2004, 45: 2959~2966
    [199] Duan B, Wu LL, Yuan XY, et al. Hybrid nanofibrous membranes of PLGA/chitosan fabricated via an electrospinning array. Journal of Biomedical Materials Research: Part A, 2007, 83A: 868?878
    [200] Kim JS, Kuk E, Yu KN, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2007, 3(1): 95~101
    [201] Zhang YW, Peng HS, Huang W, et al. Hyperbranched poly(amidoamine) as the stabilizer and reductant to prepare colloid silver nanoparticles in situ and their antibacterial activity, Journal of Physical Chemistry C, 2008, 112: 2330~2336
    [202] Hu ZG, Chan WL, Szeto YS. Nanocomposite of chitosan and silver oxide and its antibacterial property. Journal of Applied Polymer Science, 2008, 108(1): 52~56
    [203] Fu JH, Ji J, Fan DZ, et al. Construction of antibacterial multilayer films containing nanosilver via layer-by-layer assembly of heparin and chitosan-silver ions complex. Journal of Biomedical Materials Research Part A, 2006, 79A(3): 665~674
    [204]李毕忠,抗菌塑料的发展和应用,化工新型材料,2000,28(6):8~12
    [205] Yoon KY, Byeon JH, Park JH, et al. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Science of the Total Environment, 2007, 373(2-3): 572~575
    [206] Charles F, Heinig J. O3 or O2 and Ag-new catalyst technology for aqueous phase sanitation. in: Ozone science and engineering. USA: International Ozone Society, 1993, 533~546
    [207] Alt V, Bechert T, Steinrücke P, et al. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials, 2004, 25(18): 4383-4391
    [208] Xu HT, Ma L, Shi HF, et al. Chitosan-hyaluronic acid hybrid film as a novel wound dressing: in vitro and in vivo studies. Polymers for Advanced Technologies, 2007, 18(11): 869~875
    [209] Liu XF, Song L, Li L, et al. Antibacterial effects of chitosan and its water-soluble derivatives on E. coli, plasmids DNA, and mRNA. Journal of Applied Polymer Science, 2007, 103(6): 3521~3528
    [210] Wang RM, He NP, He YF, et al. The preparation of nano-scope chitosan-oligomer copper complexes and their interaction with DNA. Polymers for Advanced Technologies, 2005, 16(8): 638~641
    [211] Cuera RG, Osuji G, Washington A. N-carboxyl chitosan inhibition of aflatoxin production-role of zinc. Biotechnology Letters, 1991, 13: 441~447
    [212] Je JY, Kim SK. Chitosan derivatives killed bacteria by disrupting the outer and inner membrane. Journal of Agricultural and Food Chemistry, 2006, 54(18): 6629~6633
    [213] Muzzarelli RA, Muzzarelli C, Tarsi R, et al. Fungistatic activity of modified chitosans against Saprolegnia parastitia. Biomacromolecules, 2001, 2(1): 165~169
    [214] Taha SM, Swailam HM. Antibacterial activity of chitosan against Aeromonas hydrophila. Nahrung/Food, 2002, 46(5): 337~340
    [215] Gerasimenko DV, Avdienko ID, Bannikova GE, et al. Antibacterial effects of water-soluble low-molecular-weight chitosans on different microorganisms. Applied Biochemistry and Microbiology, 2004, 40(3): 253~257
    [216] No HK, Park NY, Lee SH, et al. Antibactenafactivity of chitcsans and chitosan digomers with different mcleular weights. International Journal of Food Microbiology, 2002, 21(2): 138~140

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700