用户名: 密码: 验证码:
高分散负载型金属催化剂的制备及其加氢性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
负载型金属催化剂具有较高的活性、选择性和稳定性,且容易回收重复利用,被广泛应用于加氢、脱氢及重整等催化反应中,是石油炼制及石油化工过程中最重要的一类催化剂。该类催化剂的传统制备方法为溶液浸渍法。采用浸渍法制备负载型金属催化剂时,活性金属组分的前驱体受浸渍溶液表面张力及溶剂化效应的影响,在干燥阶段容易以聚集形式沉积于载体表面。浸渍后金属盐物种与催化剂载体之间难以形成较强的相互作用,在随后的焙烧和还原过程中活性金属组分容易发生迁移并进一步团聚,从而使得到的催化剂金属分散度较差,活性比表面较低,催化性能不佳。
     本论文在Pd/Al2O3催化剂的制备过程中引入第二种金属组分Ag,以期达到抑制活性组分Pd在热处理及还原过程中团聚的目的,从而提高催化剂的金属分散度,并将得到的双金属Pd-Ag/Al2O3催化剂应用于碳二加氢反应中。实验结果表明,Ag的引入未能使催化剂中Pd的金属分散度明显提高,但却使Pd的电子状态发生改变,形成了一部分Pd-Ag合金或固溶体,降低了催化剂中Pd对氢的吸附能力。吸附氢数量的减小和钯与氢原子结合能力的加强,减少了体相溢出氢参与乙烯反应的机会,因此加入Ag助剂之后,催化剂的乙烯选择性有较显著的提高。但与此同时,体相吸附氢数量的减少和向表面扩散能力的下降却降低了催化剂的加氢活性。
     水滑石(Layered Double Hydroxides,简称LDHs)是一类具有特殊结构的无机层状材料。由于静电排斥作用的影响,LDHs层板上的二价、三价金属阳离子彼此远离。另外,由于层板的静电平衡作用以及阴离子之间的静电排斥作用,LDHs层间的阴离子也呈高度分散状态有序排列。
     本论文将利用LDHs的结构特点,采用多种方法制备高分散负载型金属催化剂。首先,以尿素为沉淀剂,在球形氧化铝载体表面原位生长PdCl42-/MgAl-CO3-LDHs,焙烧后得到PdO/MgO-Al2O3催化剂前驱体。SEM、TPR和TPD结果表明,与浸渍法制备的Pd/Al2O3催化剂相比,原位法制备的Pd/MgO-Al2O3具有较高的金属Pd分散度和较小的颗粒尺寸,此外,均匀分散在氧化铝载体表面的MgO微晶降低了载体表面的酸性。在反应温度为50℃至100℃的条件下,Pd/MgO-Al2O3催化剂在碳二加氢反应中表现出较高的反应活性、选择性和稳定性。
     采用原位沉淀-还原法在球形氧化铝表面原位生长Pd/MgAl-LDHs,得到的产物Pd/MgAl-LDHs/Al2O3可以直接作为碳二加氢反应的催化剂。该催化剂比表面积较大、Pd颗粒尺寸均一、分散度较高、且催化剂中Pd微晶具有特殊的形貌,因此暴露出来的催化活性位(边、角和面)较多。Pd/MgAl-LDHs/Al2O3催化剂经焙烧和还原后得到另一种催化剂Pd/MgO-Al2O3。由于LDHs的存在,在焙烧和还原的过程中Pd微晶的团聚现象得到抑制,因此Pd/MgO-Al2O3催化剂仍然具有较高的金属分散度,且比表面较焙烧前有所增加。在相同的反应条件下,Pd/MgO-Al2O3和Pd/MgAl-LDHs-Al2O3催化剂在碳二加氢反应中的活性和稳定性明显高于浸渍法制备的Pd/Al2O3催化剂。
     以孔结构优良的γ-Al2O3为催化剂载体,利用其表面的Al源,采用原位法在氧化铝载体内孔表面原位合成NiAl-LDHs,焙烧及还原后得到高分散Ni/Al2O3催化剂。结果表明,载体孔内原位合成的NiAl-LDHs层状结构较好,且LDHs微晶并不是简单的负载在载体表面,LDHs微晶中与Ni配位的O与AlO4四面体发生键合,由于这种较强相互作用力的存在以及受到构成LDHs的Al的氧化物的隔离作用,Ni原子在焙烧和还原后仍能均匀分散在催化剂表面。与浸渍法制备的Ni催化剂相比,原位法制备的Ni/Al2O3的金属分散度提高了28%,因此催化剂在氯苯加氢脱氯反应中表现出了较高的活性和稳定性。
     考察了碳二加氢及氯苯加氢反应中工艺条件(如反应温度、压力、空速等)对催化剂加氢性能的影响,并对其原因进行了探讨。
Supported metal catalysts have been widely used in the hydrogenation, dehydrogenation and reforming catalytic reactions because of their high activity, selectivity and stability. The conventional preparation method is solution impregnation method. However, supported metal catalysts prepared by this method have an inhomogeneity in metal distribution over the support, due to the surface tension of the impregnating solution and other solvent effects. Futhermore, the weak interactions between the support and metal ion species lead to the migration and aggregation of metal ions during subsequent calcinations and reduction processes. Thus, the catalysts prepared by this method possess low metal dispersion, active surface and catalytic properties.
     On the purpose of increasing Pd dispersion, Ag was introduced onto the surface of catalyst during the preparation of Pd catalyst. The obtained Pd-Ag/Al2O3 was then used as a catalyst for the selective hydrogenation of acetylene. The results indicated that the addition of Ag has no significant effect on increasing Pd dispersion but alters the electronic state of Pd supported on the surface of alumina. The formation of Pd-Ag alloy or sosolid strengthened the interaction between Pd atom and H atom and decreased the amount of adsorbed hydrogen. In comparsion of Pd/Al2O3 catalyst, Pd-Ag/Al2O3 exhibited higher ethylene sectivity but lower acetylene conversion in the selective hydrogenation of acetylene.
     The layered double hydroxides (LDHs) are a group of anionic clays with layered structure. Metal cations are uniformly dispersed within the layers without the formation of'lakes'of like cations. Moreover, the anions in the interlays are uniformly dispersed due to the electrostatic balance of the layer and the electrostatic repulsion among ions. Thus, these materials were used as the precursor to make high dispersed metal catalysts in this work.
     PdCl42-/MgAl-CO3-LDH crystallites have been synthesized in-situ on the surface of micro-spherical A12O3 using urea as the precipitant. After calcination and reduction, Pd/MgO-Al2O3 catalyst was obtained. SEM and TPR results indicated that Pd/MgO-Al2O3 prepared by in-situ method has higher Pd dispersion, smaller particle size and larger surface area than Pd/Al2O3 prepared by impergantion method. In addition, MgO microcrystallites decreased the surface acidity of alumina support. The obtained Pd/MgO-Al2O3 exhibited higher catalytic activity and selectivity than Pd/Al2O3 prepared by the impregnation method over the temperature range 50-100℃in the selective hydrogenation of actelene.
     Pd/MgAl-LDHs crystallites were synthesized on the surface of A12O3 by in-situ precipitation-reduction method. The obtained Pd/MgAl-LDHs/Al2O3, with high specific surface area, uniform Pd particle size, high dispersion and more active sites, can be used as a catalyst for the selective hydrogenation of actelene. After calcination and reduction, another catalyst Pd/MgO-Al2O3 was obtained. Due to the existence of LDHs crystallites grown on the surface of A12O3, the congregation of Pd2+ during calcination process was prevented. Thus, the calcinated product Pd/MgO-Al2O3 still has high dispersion and surface area. In addition, the LDHs and MgO microcrystallines decreased the surface acidity of alumina. Pd/MgO-Al2O3 and Pd/MgAl-LDHs-Al2O3 exhibited much higher activity and stability than Pd/Al2O3 prepared by the impregnation method in the selective hydrogenation of actelene.
     Moreover, micro-sphericalγ-Al2O3 was used as a support for the synthesis of NiAl-CO3-LDHs in the pores of the material. Formation of the LDH resulted from decomposition of urea dissolved in an aqueous solution of Ni2+ impregnated into theγ-Al2O3. After calcination and reduction, Ni/γ-Al2O3 catalyst was obtained. Due to the existence of LDHs and strong interaction between Ni and alumina, the migration and aggregation of Ni species during calcination was suspressed. In comparison of the metal dispersion of Ni catalyst prepared by impregation method, that of Ni/γ-Al2O3 prepared by in-situ method increase by 28%. Thus, Ni/γ-Al2O3 prepared by in-situ method exhibited much higher acitivity and stability than the catalyst obtained by impregation method in the hydrodechlorination of chlorobenzene.
     In this work, the influence of procress conditions, including reaction temperature, pressure and velocity on the catalytic properties, was also studied in the selective hydrogenation of actelene and hydrodechlorination of chlorobenzene.
引文
[1]李扬洲.负载型钯催化剂在钯催化反应和潜手性酮不对称还原反应中的应用[D].上海:复旦大学,2005
    [2]Bond W D, Brubacke C H, Chandrasekaran E S, et al. Polystyrene attached titanocene species. Preparation and reactions[J]. J.Am.Chem.Soc.,1975,97:2128-2132
    [3]曾成华.负载型金属催化剂的研究进展[J].攀枝花学院学报,2006,23:110-114
    [4]Caaus P, Briinkner A, Mohr C. et al. Supported Gold Nanoparticles from Quantum Dot to Mesoscopic Size Scale:Effect of Electronic and Structural Properties on Catalytic Hydrogenation of Conjugated Functional Groups[J]. J.Am.Chem.Soc.,2002,122: 11430-11439
    [5]麻春艳,负载型Au-Pd双金属催化剂的制备及其CO氧化与噻吩加氢脱硫反应性能的研究[D].山东:烟台大学,2007
    [6]吴世华,黄唯平,张守民.不同方法制备的Cu-Cr/γ-Al2O3的结构及其对糠醛加氢制2-甲基呋喃反应的催化性能[J].催化学报,2000,21:419-422
    [7]Baiker A, Maeiejewski M, Tagliaferri S, et al. Carbon monoxide oxidation over catalysts prepared by in situ aetivation of amorphous gold-silver-zireonium and gold-iron-zireoniuxnalloys[J]. J. Catal,1995,151:407-419
    [8]Kohara I, Fujiyama H. Catalytic activity of Cu ion-exchanged Na-MCM-41 in the liquid phase oxidation of 2,6-di-tert-butylphenol[J]. J. Mol. Catal. A:Chem.,2000,153:93-101
    [9]孔令江,卞俊杰,宋盘龙,等.介孔分子筛MCM-41负载贵金属催化剂用于萘加氢反应的研究[J].石油化工,2004,Z1:1529-1531
    [10]Yonemitsu M, Tanaka Y, Iwamoto M. Metal Ion-Planted MCM-41.1.Planting of Manganese(Ⅱ) Ion into MCM-41 by a Newly Developed Template-Ion Exchange Method[J]. Chem. Mater.,1997,9:2679-2681
    [11]刘卫锋,胡军,衣宝廉,等.Pt/C催化剂的制备与评价[J].电源技术,2005,29:431-433
    [12]李灿.高度隔离过渡金属催化剂及其催化烯烃环氧化反应[J].催化学报,2001,22:479-483
    [13]Cozzolino M, Di Serio M, Tesser R, et al. Grafting of titanium alkoxides on high-surface SiO2 support:An advanced technique for the preparation of nanostructured TiO2/SiO2 Catalysts[J].Appl. Catal. A:Gen.,2007,325:256-262 Yang Q H, Li C, Wang S L, et al. Epoxidation of olefins on M-SiO2 (M=Ti, Fe, V)
    [14]catalysts with highly isolated transition metal ions prepared by ion beam implantation[J]. Stud. Surf. Sci. Catal.,2000,130:221-226
    Oldroyd R D, Thomas J M, Maschmeyer T, et al. The Titanium (IV)-Catalyzed Epoxidation by tert-Alkyl Hydroperoxides[J]. Angew. Chem. Int. Ed. Engl.,1996,35:2787-2790
    [16]Wu P, Iwamoto M. Metal-ion-planted MCM-41. Part 3. Incorporation of titanium species by atom-planting method[J]. J. Chem. Soc. Fara. Trans.,1998,94:2871-2875
    [17]Oldroyd R D, Sankar G, Thomas J M, et al. Enhancing the Performance of a Supported Titanium Epoxidation Catalyst by Modifying the Active Center[J]. J. Phys. Chem. B., 1998,102:1849-1855
    [18]Zheng S, Gao L, Zhang Q H, et al. Synthesis, characterization and photocatalytic properties of titania-modified mesoporous silicate MCM-41[J]. J. Mater. Chem.,2000,10: 723-727
    [19]Kang K K, Ahn W S. Analysis of the ab-initio force-fields of the polyatomic molecules followed by solution of the inverse spectral problem[J]. J. Mol. Catal. A:Chem.,2000, 159:403-410
    [20]Maschmeyer T, Rey F, Sankar G, et al. Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica[J]. Nature,1995,378:159-162
    [21]Morey M S, Brien S O, Schwarz S, et al. Hydrothermal and postsynthesis surface modification of cubic, MCM-48, and ultralarge pore SBA-15 mesoporous silica with titanium[J]. Chem. Mater.,2000,12:898-911
    [22]Cho Y S, Park J C, Lee B, et al. Preparation of Mesoporous Catalyst Supported on Silica with Finely Dispersed Ni Particles[J]. Catal. Lett.,2002,81:89-96
    [23]Bamwenda G, Tsubota S, Nakamura T, et al. The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation[J]. Catal. Lett.,1997,44:83-87
    [24]Andreeva D, Tabakova T, Idakiev V, et al. Au/a-Fe2O3 catalyst for water-gas shift reaction prepared by deposition-precipitation[J].Appl. Catal. A:Gen.,1998,169:9-14
    [25]Moreau F, Bond G C, Taylor A O. Gold on titania catalysts for the oxidation of carbon monoxide:control of pH during preparation with various gold contents[J]. J Catal.,2005, 231:105-114
    [26]Okumura M, Tanaka K, Ueda A, et al. The reactivities of dimethylgold(Ⅲ) β-diketone on the surface of TiO2[J]. Solid State Ionics,1997,95:143-149
    [27]Herrmann J, Disdier H, Pichat P. Photo-assisted depoeition of noble metals. Preparation of catalysts Ⅵ[M]. Elsevier Science B.V.,1987:285-293
    [28]吴世华,黄唯平,张守民,等.溶剂化金属原子浸渍法制备高分散Au/TiO2氐温CO氧化催化剂[J].催化学报,2000,21:419-422
    [29]Khan H R, Frey H A C. Magnetic susceptibility measurements to determine the superconducting parameters related to morphology and structure of Nb0.4Ti0.45Ta0.075Zr0.075 tapes[J]. J. Alloys Compounds,1993,10:209-213
    [30]Koryabkina N A, Shkrabina R A, Ushakov V A, et al. Synthesis of a mechanically strong and thermally stable alumina support for catalysts used in combustion processes [J]. Catalysis Today,1996,29:427-431
    [31]Yuan Y, Kozlova A P, Asaktura K, et al. Supported Au catalysts prepared from Au phosphine complexes and as-precipitate metal hydroxides:characterization and low-temperature CO oxidation [J]. J. Catal.,1997,170:191-199
    [32]Kozlova A P, Sugiyama S, Kozlow A I, et al. Iron-oxide supported gold catalysts derived from gold-phosphine complex Au(PPh3)(NO3):State and structure of the support[J]. J. Catal.,1998,176:426-438
    [33]Kozlow A I, Kozlova A P, Liu H, et al. A new approach to active supported Au catalysts[J]. Appl. Catal. A:Gen.,1999,182:9-28
    [34]李彦鹏,刘大鹏,刘晨光.基于原位生长法的MgAl水滑石制备及在铂基脱氢催化剂中的应用[J].中国石油大学学报(自然科学版),2009,33:127-133
    [35]张蕊,李殿卿,张法智,等γ-Al2O3载体孔内原位合成水滑石[J].复旦学报(自然科学版),2003,3:333-338
    [36]毛纾冰,李殿卿,张法智,等γ-Al2O3表面原位合成Ni-Al-CO3 LDHs研究[J].无机化学学报,2004,20:596-602
    [37]Feng J T, Lin Y J, Evans D G, et al. Enhanced metal dispersion and hydrodechlorination catalytic properties of a Ni/Al2O3 catalyst derived from layered double hydroxides [J]. J. Catal.,2009,266:351-358
    [38]朱洪法.催化剂载体[M].北京,化学工业出版社,1980:1-303
    [39]刘勇,陈晓银.氧化铝热稳定性的研究进展[J].化学通报,2001,2:65-70
    [40]Skotak M, Karpinski Z, Juszczyk W, et al. Characterization and catalytic activity of differently pretreated Pd/Al2O3 catalysts:the role of acid sites and of palladium-alumina interactions[J]. J. Catal.,2004,227:11-25
    [41]Li N, Wang A Q, Li L, et al. NO reduction by CH4 in the presence of excess O2 over Pd/sulfated alumina catalysts[J].Appl. Catal. B:Environ.,2004,50:1-7
    [42]Garcia-Diegueza M, Pietaa I S, Herrera M C, et al. Transient study of the dry reforming of methane over Pt supported on different γ-Al2O3[J]. Catal. Today, In press
    [43]Li G H, Hu L J, Josephine M H. Comparison of reducibility and stability of alumina-supported Ni catalysts prepared by impregnation and co-precipitation[J].Appl. Catal. A:Gen.,2006,301:16-24
    [44]Yoo J W, Hathcock D J, El-Sayed M A. Propene hydrogenation over truncated octahedral Pt nanoparticles supported on alumina[J]. J. Catal.,2003,214:1-7
    [45]Ando C, Kurokawa H, Miura H. Selective hydrogenation of aldehyde groups in various α,β-unsaturated aldehydes over alumina-supported cobalt (0) catalyst[J].Appl. Catal. A: Gen.,1999,185:181-183
    [46]Qu L L, Prins R. Hydrogenation of Cyclohexene over in Situ Fluorinated NiMoS Catalysts Supported on Alumina and Silica-Alumina[J]. J. Catal.,2002,207:286-295
    [47]Barrio V L, Arias P L, Cambra J F. Aromatics hydrogenation on silica-alumina supported palladium-nickel catalysts[J]. Appl. Catal. A:Gen.,2003,242:17-30
    [48]Ding X J, Zhang J Z, Li J J, et al. Spray-dried alumina granules for extrusion[J]. J. Inorg. Mater.,2001,16:1094-1100
    [49]董维阳,苏运来,王文祥,等.球形活性氧化铝的制备和性能研究[J].工业催化,1995,2:36-42
    [50]Li C Z, He Y Q, Jing F L, et al. Preparation of spherical γ-Al2O3 support by rolling agglomeration[J]. Industrial Catalysis,2003,11:39-40
    [51]马宁,王正平.担载型铂基催化剂制备方法的研究[J].化学工程师,2004,12:51-52
    [52]Hoeksra. Manufacture of spheroidal alumina particles[P]. USP 2620314, December 9, 1952
    [53]Mitsche. Manufacture of spheroidal alumina particles[P]. USP 3943070, March 9,1976.
    [54]Lee R K. Manufacture of spheroidal alumina particles[P]. USP 3979334, September 7, 1976
    [55]Takumi S. Method of manufacture of spherical alumina particles[P]. USP 4108971, August 22,1978
    [56]Michalko. Method of preparing spheroidal alumina particles[P]. USP 4250058, February 10,1981
    [57]Rives V. Layered double hydroxides:Present and Future[M],1st edition, New York, Nova Science Publishers,2001
    [58]段雪,张法智,等.无机超分子材料的插层组装化学[M].北京:科学出版社,2009:11-13
    [59]Vaccari A. Clays and catalysis:a promising future[J]. Appl. Clay Sci.,1999,14:161-198
    [60]Constantino V R L, Pinnavaia T J. Structure-reactivity relationships for basic catalysts derived from a Mg2+/Al3+/CO3 layered double hydroxide[J]. Catal. Lett.,1994,23: 361-368
    [61]Feitknecht W, Gerber W. Double hydroxides and basic double salts (Ⅲ) Mg-Al double hydroxides [J].Helv. Chim. Acta, Ibid.,1942,25:131-137
    [62]Feitknecht W. Formation of double hydroxides between bi-and trivalent metals[J]. Helv. Chim. Acta.,1942,25:555-569
    [63]Allmann R, Jepsen H P. Structure of hydroxide[J]. Neues Jahrb Miner., Monatsh.,1966, 12:544-551
    [64]Taylor H F W. Crystal structure of some double hydroxide minerals[J]. Miner. Mag.,1973, 39:377-389
    [65]Miyata S, Kumura T, Hattori H, et al. Physicochemical properties and structure of magnesia-alumina[J]. Nippon Kagaku Zasshi,1971,92:514-519
    [66]Reichle W. T., Catalytic reactions by thermally activated[J]. Synthetic anionic clay minerals. Catal.,1985,94:547-557
    [67]Reichle W T. Anionic clay-minerals[J]. Chemtech,1986,16:58-63
    [68]Cacani F, Trifiro F, Vaccari A. Hydrotalcite-type anionic clays:preparation, properties and applications[J]. Catalysts Today,1991,11:173-301
    [69]杜以波,Evans D G.,孙鹏,等.阴离子型层柱材料研究进展[J].化学通报,2000,63:20-24
    [70]Lagaly G, Beneke K. Intercalation and exchange reactions of clay minerals and non-clay layer compounds[J]. Colloid. Polym. Sci.,1991,269:1198-1121
    [71]Allmann R. Double layer structures with brucite-like ions [M(Ⅱ)l-xM(Ⅲ)x(OH)x+[J]. Chemica,1970,24:99-108
    [72]Koch C B. Structures and properties of anionic clay minerals[J]. Hyperfine Interactions, 1998,117:131-157
    [73]段雪,张法智,等.插层组装与功能材料[M].北京:化学工业出版社,2007
    [74]Trifiro F, Vaeeari A, Atwood J L, et al. Comprehensive supramolecular chemistry, vol.7 Solid-state supramolecular chemistry:Two-and Three-Dimensional Inorganie Networks[M]. Pergamon, Oxford,1996,251-291
    [75]Vaccari A. Preparation and catalytic properties of cationic and anionic clays[J]. Catal. Today,1998,41:53-71
    [76]Wang J D, Tian Y, Wang R C, et al. Pillaring of layered double hydroxides with polyoxometalates in aqueacs solution without use of preswelling agents[J]. Chem. Mater., 1992,4:1276-1286
    [77]Miyata S, Kumura T. Synthesis of new hydrotalcite-like compounds and their physic-cochemical properties [J]. Chem. Letters,1973,8:8438-8448
    [78]Bhattacharyya A, Hall D B. New Triborate-pillared hydtotalcite[J]. Inorg. Chem.,1992, 31:3689-3670
    [79]Bhattacharyya A, Hall D B. Novel oligovanadate-pillared hydrotalcite[J]. Appl. Clay Sci., 1995,10:56-57
    [80]Martin K J, Pinnavaia T J. Layered double hydroxides as supported anionic reagents. Halide-ion reactivity in zinc chromium hexahydroxide halide hydrates [Zn2Cr(OH)6X.nH2O] (X=Cl,I)[J]. J. Am. Chem. Soc.,1986,108:541-542
    [81]Jones W, Chibwe M. Pillared layered structureds:current trends and applications[M]. London:Elsevier,1990:67-77
    [82]Chibwe K, Jones W. Synthesis of polyoxometalate-pillared layered double hydroxides via calcined precursors [J]. Chem. Mater.,1989,1:489-490
    [83]Dimotakis E D, Pinnavaia T J. New route to layered double hydroxides intercalated by organic anions:precursors to polyoxometalate-pillared derivatives [J]. Inorg. Chem.,1990, 29:2393-2394
    [84]Giannelis E P, Nocera D G, Pinnavaia T J. Anionic photocatalysts supported in layered double hydroxides:intercalation and photophysical properties of a ruthenium complex anion in synthetic hydrotalcite[J]. Inorg. Chem.,1987,26:203-205
    [85]Lopez-Salinas E, Ono Y. Intercalation chemistry of a Mg-Al layered double hydroxides ion-exchanged with complex MCl42-(M=Ni, Co) ions from organic media[J]. Microporous Mater.,1993,1:33-42
    [86]Itaya K, Chang H. C, Uchida I. Anion-exchanged clay (hydrotalcite-like compounds) modified electrodes[J]. Inorg. Chem.,1987,26:624-626
    [87]Kwon T, Pinnavaia T. J. Pillaring of a layerd double hydroxides by polyoxometalates with Keggin-ion structures [J]. Chem. Mater.,1989,1:381-383
    [88]Ulibarri M A, Labajos F M, Rives V, et al. Compartive study of synthesis and properties of vanadate-exchanged layered double hydroxides[J]. Inorg. Chem.,1994,33:2592-2599
    [89]徐征,叶兴凯,吴越,等.前景广阔的催化材料—水滑石类阴离子粘土[J].石油化工,1995.24:63-71
    [90]Chibwe K, Jones W. Intercalation of organic and inorganic anions into layered double hydroxides[J]. J. Chem. Soc. Chem. Commun.,1989,926-927
    [91]Wolterman G M. New compositions[J]. US Patent,4454244,1984
    [92]Wang J D, Tian Y, Wang R C, et al. Pillaring of layered double hydroxides with polyoxometalates in aqueacs solution without use of preswelling agents[J]. Chem. Mater., 1992,4:1276-1286
    [93]Mascolo G, Marino O. Discrimination between synthetic Mg-Al double hydroxides and related carbonate phases[J]. Thermochim. Acta.,1980,35:93-98
    [94]Brindley G W, Kikkawa S. Thermal behavior of hydrotalcite and of anion-exchanged forms of hydrotalcite[J]. Clays and Clay Miner.,1980,28:87-91
    [95]肖铁,马骏,任韵玲.碳酸根离子柱撑钴铝LDH的合成与表征[J].催化学报,1999,20:459-462
    [96]Malherbe F., Besse J.P., Investigating the effects of Guest-Host Interactions on the Properties of Anion-exchange Mg-Al Hydrotalcites [J]. J.Solid State Chem.,2000,155: 332-341
    [97]Olsbye U, AkPoriaye D, Rytter E, et al. On the stability of mixed M2+/M3+ oxides[J]. Appl. Catal. A:Gen.,2002,224:39-49
    [98]Newman S P, Jones W. Synthesis characterization and application of layered double hydroxides containing organic guests[J]. New J. Chem.,1998,22:105-115
    [99]Tiehit D, Das N, Coq B, et al. Preparation of Zr-containing Layered Double Hydroxides and Charaeterization of the Aeido-Basie Properties of Their Mixed Oxides[J]. Chem. Mater.,2002,14:1530-1538
    [100]Roussel H, Briois V, Elkaim E, et al. Cationic Order and Structure of [Zn-Cr-Cl] Layered Double Hydroxides:AXRD and EXFS Study[J]. J. Phys.Chem.B,2000,104:5915-5923
    [101]Rives V, Kannan S. Layered double hydroxides with the hydrotalcite-type structure containing Cu2+, Ni2+and A12+[J]. J.Mater. Chem.,2000,10:459-495
    [102]Kwon T, Tsigdinos G A, Pinnavaia T J. Pillaring of layered double hydroxides (LDHs) by polyoxometalate anions[J]. J. Am. Chem. Soc.,1988,110:3653-3654
    [103]Chibwe K, Jones W. Intercalatio of organic and inorganic anions into layered double hydroxides[J]. J. Chem. Soc. Chem. Commun.,1989,14:926-927
    [104]Dimotakis E D, Pinnavaia T J. New route to layered double hydroxides intercalated by organic anions:precursors to polyoxometalate-pillared derivatives [J]. Inorg. Chem.,1990, 29:2393-2394
    [105]Wolterman G M, New compositions [P]. US4,454,244,1984
    [106]Reichle W T. Synthesis of anionic caly minerals (mixed matal hydroxides, hydrotalcite)[J]. Solid State Ionics,1986,22:135-141
    [107]Dimotakis E D, Pinnavaia T J. New route to layered double hydroxides intercalated by organic anions:precursors to polyoxometalate-pillared derivatives [J]. Inorg. Chem.,1990, 29:2393-2394
    [108]Kwon T, Tsigdinos G A, Pinnavaia T J. Pillaring of layered double hydroxides (LDHs) by polyoxometalate anions[J]. J. Am. Chem. Soc.,1988,110:3653-3654
    [109]Reichle W T. Catalytic reactions by thermally activated, synthetic anionic clay minerals[J]. J. Catal.,1985,94:547-557
    [110]Bellotto M, Rebours B, Clause O, et al. Hydrotalcite decomposition mechanism:a clue to the structure and reactivity of spinel-like mixed oxides[J]. J. Phys. Chem.,1996,100: 8535-8542
    [111]Casenave S, Martinez H, Guimon C, et al. Acid and base Properties of MgCuAl mixed oxides[J]. J. Therm. Anal. Calorim.,2003,72:191-198
    [112]Park M, Lee C, Lee E J, et al. Layered double hydroxides as Potential solid base for beneficial remediation of endosulfan-contaminated solid[J]. J. Phys. Chem. Solids,2004, 65:513-516
    [113]Fornasari G, Gazzano M, Matteuzzi D, et al. Structure and reactivity of high-surface-area Ni/Mg/Al mixed oxides[J]. Appl. Clay Sci.,1995,10:69-82
    [114]Constantino V R L, Pinnavaia T J. Basic properties of Mg2+1-xAl3+x layered double hydroxides intercalated by carbonate, hydroxide, chloride, and surface anions[J]. Inorg. Chem.,1995,34:883-892
    [115]Cavani F, Trifiro F, Vaccari A. Hydrotalcite-type anionie clays:Preparation, Properities and applications[J]. Catal.Today,1991,11:173-301
    [116]Aramendia M A, Aviles Y, Vorau V. Thermal decomposition of Mg/Al and Mg/Ga layered double hydroxides:a spectroscopic study[J]. J. Mater. Chem.,1999,9:1603-1607
    [117]Millange F, Walton R. I, O'Hare D. Time-Resolved in situ X-ray diffraction study of the liquid-phase reconstruction of Mg-Al-carbonate hydrotalcite-like compounds[J]. J. Mater. Chem.,2000,10:1713-1720
    [118]Aramendia M A, Aviles Y, Vorau V. Thermal decomposition of Mg/Al and Mg/Ga layered double hydroxides:a spectroscopic study[J]. J. Mater. Chem.,1999,9:1603-1607
    [119]Shen J, Guang B, Tu M, et al. Preparation and characterization of Fe-MgO catalysts obtained from hydrotalcite-like compounds[J]. Catal. Today,1996,30:77-82
    [120]Aramendia M A, Aviles Y, Vorau V. Thermal decomposition of Mg/Al and Mg/Ga layered double hydroxides:a spectroscopic study[J]. J. Mater. Chem.,1999,9:1603-1607
    [121]Millange F, Walton R I, O'Hare D. Time-Resolved in situ X-ray diffraction study of the liquid-phase reconstruction of Mg-Al-carbonate hydrotalcite-like compounds[J]. J. Mater. Chem.,2000,10:1713-1720
    [122]Rebours B, d'Espinosa de la Cailerie J B, Clause O. Decoration of nickel and magnesium oxide crystallites with spinel-type phases[J]. J. Am. Chem. Soc.,1994,116:1707-1717
    [123]Shen J, Guang B, Tu M, et al. Preparation and characterization of Fe-MgO catalysts obtained from hydrotalcite-like compounds[J]. Catal. Today,1996,30:77-82
    [124]Yun S K, Pinnavaia T J. Water content and particle texture of synthetic hydrotalcite-like layered double hydroxides[J]. Chem. Mater.,1995,7:348-354
    [125]Clause O, Coelho M G, Gazzano M. Synthesis and thermal reactivety of nickel-containing anionic clays[J]. Appl. Clay Sci.,1993,8:169-186
    [126]Kloprogge J T, Frost R L. Fourier Transform Infrared and Raman spectroscopic study of the local structure of Mg-, Ni-, and Co-hydrotalcties[J]. J. Solid State Chem.,1999,146: 506-515
    [127]Solomon D H, Hawthorne D G. Chemistry of Pigments and Fillers[M]. Krieger, Malabar, FL,1991
    [128]Yogo H T, Sakamoto W, Yamada S, et al. In situ processing of electroceramic fine particles/polymer hybrids [J]. Journal of European Ceramic Society,2001,21:1479-1483
    [129]Han Y F, Li H J, Ma X R, et al. Preparation and formation process of Ni2+Fe3+ CO32-LDHs materials with high crystallinity and well-defined hexagonal shapes[J]. Solid State Sci.,2009,11:2149-2155
    [130]Iyi N, Sasaki T. Deintercalation of carbonate ions and anion exchange of an Al-rich MgAl-LDH (layered double hydroxide)[J]. Appl. Clay Sci.2008,42:246-251
    [131]Okamoto K, Iyi N, Sasaki T. Factors affecting the crystal size of the MgAl-LDH (layered double hydroxide) prepared by usin gammonia-releasing reagents[J]. Appl. Clay Sci.2007, 37:23-31
    [132]Choudary B M, Madhi S, Chowdari N S, et al. Layered Double Hydroxide Supported Nanopalladium Catalyst For Heck-, Suzuki-, Sonogashira-, and Stille-Type Coupling Reactions of Chloroarenes[J]. J.Am.Chem.Soc.,2002,124:14127-14136
    [133]Pausch I, Lohse H H, Allmann R, et al. Synthesis of disordered and Al-rich hydrotalcite-like compounds[J]. Clays and Clay Minerals,1986,34:507-511
    [134]Stanimirova T, Kirov G. Cation Composition during crystallization of layered double hydroxides from mixed (Mg, Al) oxides[J]. Appl.Clay Sci.,2003,22:295-301
    [135]Sato T, Fujita H, Endo T, et al. Synthesis of hydrotaleite-like compounds and their Pyhsicoehemieal Properties [J]. Reaet. Solids,1988,5:219-228
    [136]Kooli F, Rives V, Ulibarri M A. Vanadate-Pillared Hydrotalcite Containing Transition Metal Cations[J]. Mater. Sci. Forum,1994,152/153:375-378
    [137]Carpentier J, Lemonier J F, Siffert S, et al. Characterisation of Mg/Al hydrotalcite with interlayer Palladium complex for catalytic oxidation of toluene[J]. Appl.Catal.A.,2002, 234:91-101
    [138]Leroux F, Besse J P. Polymer Interleaved Layered Double Hydroxides:A New Emerging Class of Nanocomposites[J]. Chem. Mater,2001,13:3507-3515
    [139]lnacio J, Taviot-Gueho C, Forano C, et al. Adsorption of MCPA Pesticide by MgAl-layered double hydroxides[J]. Appl. Clay Sci.,2001,18:255-264
    [140]You Y, Zhao H, Vanee G F. Adsorption of dicamba (3,6-dichoro-2-methoxy benzoic acid) in aqueous solution by calcined-layered double hydroxides[J]. Appl. Clay Sci.,2002, 21:217-226
    [141]You Y, Casal B, Ruiz-Hitzky E. Intracrystalline aldylation of benzoate ions into layered double hydroxides[J]. J. Mater. Chem,2001,11:554-560
    [142]Gardner E, Huntoon K M, Pinnavaia T J. Direct Synthesis of Alkonide-Intercalated Derivatives of Hydrotalcite-like Layered Double Hydroxide Precursors for the Formation of Colloidal Layered Double Hydroxide Suspension and Transparent Thin Films [J]. Adv. Mater.,2001,13:1263-1266
    [143]Ogawa M, Kuroda K. Photofunctions of intercalation compounds[J]. Chem. Rev.,1995, 95:399-438
    [144]Vaccari A. Preparation and catalytic properties of cationic and anionic clays[J]. Catal. Today,1998,41:53-71
    [145]Shen J Y, Guang B, Tu M, et al. Preparation and characterization of Fe/MgO catalysts obtained from hydrotalcite-like compounds [J]. Catal. Today,1996,30:77-83
    [146]Mai T, Jianyi S, Yi C. Microcalorimetric studies of surface acid/base precursors[J]. J. Solid State Chem.,1997,128:73-79
    [147]Zack R S, Skamser R O. Ethylene from NGL feedstocks [J]. Hydrocarbon Process,1983, 62:99-104
    [148]Weirauch W. Naphtha, gasoline demand is forecast[J]. Hydrocarbon Process,1998,77: 25-27
    [149]邹仁鋆.石油化工裂解原理与技术[M],北京:化学工业出版社,1982
    [150]Molnar A, Sarkany A, Varga M. Hydrogenation of carbon-carbon multiple bonds: chemoregio-and stereo-selectivity[J]. J. Molec. Catal. A,2001,173:185-221
    [151]Ng L K, Eng C N, Zack R.S. Ethylene from NGL feedstocks[J]. Hydrocarbon processing, 1983,62:99-103
    [152]Battiston G C, Dalloro L, Tauszik G R. Performance and aging of catalysts for the selective hydrogenation of acetylene:a micropilot-plant study[J]. Appl. Catal.,1982,2: 1-17
    [153]张莉,陈伟,许学翔,等.金属有机配位化合物催化烯烃/CO共聚合的动向[J].石油化工,1998,27:379-384
    [154]黄开辉,万惠霖.催化原理[M].北京:科学出版社,1983
    [155]Zhang Q W, Li J, Liu X X, et al. Synergetic effect of Pd and Ag dispersed on A12O3 in the selective hydrogenation of acetylene[J].Appl. Catal. A:Gen.,2002,197:221-223
    [156]Leviness S, Nair V, Weiss A H. Acetylene hydrogenation selectivity control on PdCu/Al2O3 catalysts[J]. J. Molec. Catal.,1984,25:131-140
    [157]Kang J H, Shin E W, Kim W J, et al. Selective Hydrogenation of Acetylene on TiO2-Added Pd Catalysts[J]. J. Catal.,2002,208:310-320
    [158]Heinrichs B, Delhez P. Palladium-silver Sol-Gel catalysts for selective hydrodechlorination of 1,2-Dichloroethane into ethylene[J]. J. Catal.,1997,172:322-335
    [159]Kang J H, Shin E W, Kim W J, et al. Selective Hydrogenation of Acetylene on TiO2-Added Pd Catalysts[J]. J.Catal.,2002,208:310-320
    [160]Hong J P, Chu W, Chen M H, et al. Preparation of novel titania supported palladium catalysts for selective hydrogenation of acetylene to ethylene[J]. Catal. Comm.,2007,8: 593-597
    [161]Kovnir K, Armbruster M, Teschner D, et al. In situ surface characterization of the intermetallic compound PdGa-A highly selective hydrogenation catalyst[J]. Surface Science,2009,603:1784-1792
    [162]Blais J M, Schindler D W, Muir D C G, et al. Accumulation of Persistent ogranochloride compounds in mountains of western Canada[J]. Nature,1998,359:585-588
    [163]Stanmore B R. Modeling the formation of PCDD/F in solid waste incinerators[J]. Chemosphere,2002,47:565-573
    [164]Seignez C, Vuillemin A, Adler N, et al. A procedure for production of adapted bacteria to degrade chlorinated aromatics[J]. J. Hazard. Mater.,2001,84:265-277
    [165]Jechorek M, Wendlandt K. D, Beck M. Cometabolic degradation of chlorinated aromatic compounds[J]. J. Biotechnol.,2003,102:93-98
    [166]Consuegra A L, Patterson P M, Keane M A. Use of unsupported and silica supported molybdenum carbide to treat chloroarene gas streams[J]. Appl. Catal. B:Environ.,2006, 65:227-239
    [167]Subramani V, Santosh K G. Synthesis of alumina supported nickel nanoparticle catalysts and evaluation of nickel metal dispersions by temperature programmed desorption[J]. Solid State Ionics.,2006,177:803-811
    [168]Shin E J, Spiller A, Tavoularis G, et al. Chlorine nickel interactions in gas phase catalytic hydrodechlorination:catalyst deactivation and the nature of reactive hydrogen[J]. Phys. Chem. Chem. Phys.,1999,1:3173-3181
    [169]Huang W, Pyrz W, Lobo R F, et al. Selective hydrogenation of acetylene in the presence of ethylene on K+-β-zeolite supported Pd and PdAg catalysts[J]. Appl. Catal. A:Gen.,2007, 333:254-263
    [170]Cesteros Y, Salagre P, Medina F, et al. Effect of the alumina phase and its modification on Ni/Al2O3 catalysts for the hydrodechlorination of 1,2,4-trichlorobenzene[J]. Appl. Catal. B:Environ.,1999,22:135-147
    [171]Gregg S J, Sing K S W. Adsorption, Surface Area and Porosity,2nd Ed., Academic Press, New York,1982, p.41
    [172]Karski S, Witonska I, Rogowski J, et al. Interaction between Pd and Ag on the surface of silica[J]. J. Molec. Catal. A:Chem.,2005,240,155-163
    [173]Zhang Q W, Li J, Liu X X, et al. Synergetic effect of Pd and Ag dispersed on A12O3 in the selective hydrogenation of acetylene[J]. Appl. Catal. A:Gen.,2000,197:221-228
    [174]Ngamsom B, Bogdanchikova N, Borja M A., et al. Characterisations of Pd-Ag/Al2O3 catalysts for selective acetylene hydrogenation:effect of treatment with NO and N2O[J]. Catal. Commun.,2004,5:243-248
    [175]Lamb R N, Ngamsom B, Trimm D L, et al. Surface characterization of Pd-Ag/Al2O3 catalysts for acetylene hydrogenation using an improved XPS procedure[J]. Appl. Catal. A: Gen.,2004,268:43-50
    [176]Johnson M M, Walker D W, Nowack G P, et al. Selective hydrogenation catalyst[P]. USP 4404124,1983
    [177]Johnson M M, Cheung T T P. Alkyne hydrohenation process[P]. USP5585318,1996
    [178]Li F, Liu J J, Evans D G, et al. Stoichiometric Synthesis of Pure MFe2O4 (M=Mg,Co, and Ni) Spinel Ferrites from Tailored Layered Double Hydroxide (Hydrotalcite-Like) Precursors[J]. Chem. Mater.,2004,16:1597-1602
    [179]Kumar G, Blackburn J R, Albridge R G, et al. Photoelectron spectroscopy of coordination compounds. II. Palladium complexes[J]. Inorg. Chem.,1972,11:296-300
    [180]Mcgown W T, Kemball C, Whan D A, et al. Hydrogenation of acetylene in excess ethylene on an alumina supported palladium catalyst in a static[J]. J. Chem. Soc. Faraday Transl., 1997,73:632-647
    [181]Hong J P, Chu W, Chen M H, et al. Preparation of novel titania supported palladium catalysts for selective hydrogenation of acetylene to ethylene[J]. Catal. Commun.,2007,8: 593-597
    [182]Bond G C, Wells P B. The hydrogenation of acetylene I. The reaction of acetylene with hydrogen catalyzed by alumina-supported platinum[J]. J. Catal.,1965,4:211-219
    [183]Arnaldos J, Casal J. Study and modeling of mass transfer in magnetically stabilized fluidized beds[J]. Int. J. Heat Mass Transfer.,1987,30:1525-1529
    [184]Choo H P, He B L, Liew K Y, et al. Morphology and control of Pd nanoparticles[J]. J. Molec. Catal. A:Chem.,2006,244:217-228
    [185]Hong J, Chu W, Chen M H, et al. Preparation of novel titania supported palladium catalysts for selective hydrogenation of acetylene to ethylene[J].Catal. Commun.,2007,8: 593-597
    [186]Ahn I Y, Kontapakdee K, Praserthdam P. Performance of La2O3-or Nb2O5-added Pd/SiO2 catalysts in acetylene hydrogenation[J]. Appl. Catal. A:Gen.,2006,308:75-81
    [187]Gniewek A, Trzeciak A M, Ziolkowski J J. Pd-PVP colloid as catalyst for Heck and carbonylation reactions:TEM and XPS studies[J]. J. Catal.,2005,229:332-343
    [188]Choo H, He B L, Liew K Y. Morphology and control of Pd nanoparticles[J]. J. Mol. Catal. A:Chem.,2006,244:217-228
    [189]Bakala P C, Briot E, Millot Y, et al. Comparison of olefin metathesis by rhenium-containing y-alumina or silica-aluminas and by some mesoporous analogues[J]. J. Catal.,2008,258:61-70
    [190]Kovanda F, Rojka T, Bezdicka P, et al. Effect of hydrothermal treatment on properties of Ni-Al layered double hydroxides and related mixed oxides[J]. J. Solid State Chem.,2009, 182:27-36
    [191]Zhao Z F, Wu Z J, Zhou L X, et al. Synthesis of a nano-nickel catalyst modified by ruthenium for hydrogenation and hydrodechlorination[J]. Catal. Commun.,2008,9: 2191-2194
    [192]Boukha Z, Kacimi M, Fernand M, et al. Methane dry reforming on Ni loaded hydroxyapatite and fluoroapatite[J]. Appl. Catal. A:Gen.,2007,317:299-309
    [193]Heracleous E, Lee A F, Wilson K, et al. Investigation of Ni-based alumina-supported catalysts for the oxidative dehydrogenation of ethane to ethylene:structural characterization and reactivity studies[J]. J. Catal.,2005,231:159-171
    [194]Komandur V R C, Pendyala V R R, Vattikonda V R. Catalytic functionalities of nickel supported on different polymorphs of alumina[J]. Catal. Commun.,2008,9:886-893
    [195]Boudjahem A G, Monteverdi S, Mercy M, et al. Study of nickel catalysts supported on silica of low surface area and prepared by reduction of nickel acetate in aqueous hydrazine[J]. J. Catal.,2004,221:325-334
    [196]Cesteros Y, Salagre P, Medina F, et al. Synthesis and characterization of several Ni/NiAl2O4 catalysts active for the 1,2,4-trichlorobenzene hydrodechlorination[J]. Appl. Catal. B:Environ.,2000,25:213-227
    [197]Gopinath R, Lingaiah N, Sreedhar B, et al. Highly stable Pd/CeO2 catalyst for hydrodechlorination of chlorobenzene[J]. Appl. Catal. B:Environ.2003,46:587-594
    [198]Suzdorf R A, Morozov V S, Anshits N N, et al. Gas phase hydrodechlorination of chlorinated aromatic compounds on nickel catalysts[J]. Catal. Lett.,1994,29:49-55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700