用户名: 密码: 验证码:
磁电复合材料及陶瓷粉体的低温合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信息产业的迅猛发展使得“轻薄化、多功能化、无线化”成为电子元器件的发展趋势,作为电子元器件载体的电子材料,也顺应这种趋势向高集成化和多功能化发展。低温共烧陶瓷LTCC(Low Temperature Co-firedCeramics)以其优异的电学、机械、热学及工艺特性,已经成为电子器件模块化和集成化的主要技术之一,因此,符合高集成化和多功能化同时具有低温共烧特性的磁电复合材料以及相关的陶瓷粉体应运而生。本论文以具有低温烧结特性的磁电复合材料和陶瓷粉体为研究目标,采用热混热压技术制备了NZO/POE柔性磁电复合材料,采用传统固相烧结法和混杂工艺制备了一系列具有低温共烧特性的磁电复合材料,并对以上磁电复合材料的性能进行了研究。分别采用低温燃烧法和熔盐法制备了NaNbO_3和K_(0.5)Na_(0.5)NbO_3以及LiNbO_3和CoFe_2O_4超细粉体,研究了制备工艺参数对粉体的物相和形貌的影响及相关机理。
     (1)采用Nb_2O_5、Na_2CO_3和K_2CO_3为原料,用尿素作为燃料剂,低温燃烧法合成了纯度较高的NaNbO_3和K_(0.5)Na_(0.5)NbO_3超细粉体。研究了热处理温度、保温时间以及尿素的用量等对所得粉体的物相组成和形貌的影响。结果表明:当[Na_2CO_3+Nb_2O_5]/[尿素]比以及[K_2CO_3+Na_2CO_3+Nb_2O_5]/[尿素]比值为1:1,燃烧热处理温度控制为550℃,并在此温度保温时间为6h时可得到的较纯的正交相结构的NaNbO_3和K_(0.5)Na_(0.5)NbO_3超细粉体。通过SEM对所得粉体的形貌进行分析发现晶粒发育完全,大部分呈明显的方形颗粒状,晶粒小且分布均匀。表明尿素可以作为燃烧剂,在反应过程中释放出热量使得NaNbO_3和K_(0.5)Na_(0.5)NbO_3在较低的温度下形成超细粉体。
     (2)分别以Li_2SO_4-Na_2SO4和NaCl-KCl为熔盐,采用熔盐法在较低的温度下合成了纯相的LiNbO_3和CoFe_2O_4超细粉体。研究了熔盐的种类及热处理温度、保温时间以及熔盐的用量等对所得粉体的物相组成和形貌的影响。结果表明,以Li_2SO_4-Na_2SO4为熔盐可以在650℃,保温5min的条件下快速合成LiNbO_3超细粉体,而采用NaCl-KCl为熔盐无法得到纯相的LiNbO_3超细粉体。反应物与熔盐的比例从2:1变化到1:2的范围内均可以获得纯相的LiNbO_3超细粉体。由于Li_2SO_4-Na_2SO4熔盐的最低共熔点小于NaCl-KCl熔盐,所以,采用Li_2SO_4-Na_2SO4为熔盐可以在更低的温度(700℃)下得到纯相的CoFe_2O_4超细粉体。对于所合成的LiNbO_3和CoFe_2O_4超细粉体,随着热处理温度的升高和保温时间的延长,粉体的晶粒粒径均呈现出逐渐增大的趋势,晶粒发育逐渐完善。
     (3)本论文采用热混热压技术制备了Ni_(0.8)Zn_(0.2)Fe_2O_4/POE (NZO/POE)柔性磁电复合材料。当聚合物基体的含量一定的情况下,随着NZO含量的增加,复合材料的介电常数、磁导率、介电损耗和磁导率均逐渐增加。所有复合材料的截止频率均高于1GHz。复合材料的介电常数和磁导率均显示出较好的频率稳定性。且在测试频率范围内复合材料的具有非常小的介电损耗和磁损耗。随着填充相含量的增加,复合材料的机械性能降低。所有的复合材料均具有较好的柔性。
     (4)采用传统的固相烧结法制备了0.7BiFeO_3-0.3BaTiO_3/BiY_2Fe_5O_(12)(BFO-BT/BYIG)和La_(0.1)Bi_(0.9)FeO_3/BiY_2Fe_5O_(12)(LBFO/BYIG)复合材料。用XRD和SEM对复合材料的相组成和微观形貌进行了表征。XRD结果表明铁电功能相和铁磁功能相之间没有明显的化学反应发生,两相能共存。SEM微观结构分析表明,所得复合材料具有较为致密均匀的微观结构。电磁性能研究表明,所得复合材料具有较高的电阻率,从而保证提高磁性的同时,铁电性得到了较好的继承。
     (5)采用混杂工艺制备了0.7BiFeO_3-0.3BaTiO_3/Y_3Fe_5O_(12)(BFO-BT/YIG)复合材料。用XRD和SEM对复合材料的相组成和微观形貌进行了表征。XRD结果表明BFO-BT和YIG两相之间没有明显的化学反应发生,两相能共存。SEM微观结构分析表明,所得复合材料具有较为致密均匀的微观结构。表明YIG以溶胶的形式引入可以显著降低烧结温度,从而达到两相的低温共烧。电磁性能研究表明,所得BFO-BT/YIG复合材料具有较高的电阻率,从而保证提高磁性的同时,铁电性得到了较好的继承。当BYIG的含量为5%时,复合材料的剩余极化强度与纯相的BFO-BT几乎相等。
     (6)以低熔点BaCu(B_2O-5)作为烧结助剂,分别采用传统的固相烧结法和丝网印刷工艺制备了具有低温烧结特性的Ba_(0.6)Sr_(0.4)TiO_3/Ni_(0.37)Cu_(0.20)Zn_(0.43)Fe_(1.92)O_3.88(BST/NiCuZn)块体复合材料和复合厚膜材料。用XRD和SEM对复合材料的相组成和微观形貌进行了表征。XRD结果表明BST和NiCuZn两相之间没有明显的化学反应发生,两相能共存。SEM微观结构分析表明,所得复合材料具有低温共烧特性且具有较为致密均匀的微观结构。电磁性能研究表明,复合材料的具有较高的介电常数和磁导率以及较小的介电损耗和磁损耗。
     (7)采用传统的固相烧结法制备了Bi_3Ti_4O_(12)/Ni_(0.37)Cu_(0.20)Zn_(0.43)Fe_(1.92)O_3.88(BTO/NiCuZn)复合材料。用XRD和SEM对复合材料的相组成和微观形貌进行了表征。XRD结果表明BTO和NiCuZn两相之间没有明显的化学反应发生,两相能共存。SEM微观结构分析表明,950℃烧结所得复合材料具有较为致密均匀的微观结构。电磁性能研究表明,复合材料具有较高的磁导率和巨介电常数效应。巨介电常数效应源于复合材料中存在Maxwell-Wagner界面极化机制,。
     (8)以低熔点BaCu(B_2O-5)作为烧结助剂,采用传统的固相烧结法制备了Ba(Fe_(0.5)Nb_(0.5)) O_3/Ni_(0.37)Cu_(0.20)Zn_(0.43)Fe_(1.92)O_3.88(BFN/NiCuZn)复合材料。用XRD和SEM对复合材料的相组成和微观形貌进行了表征。XRD结果表明BTO和NiCuZn两相之间没有明显的化学反应发生,两相能共存。SEM微观结构分析表明,950℃烧结所得复合材料具有较为致密均匀的微观结构。复合材料的具有较高的介电常数和磁导率。NiCuZn的引入可以在一定程度下降低BFN的介电损耗。
With the rapid development of information and wireless technologies, thematerials which can meet the requirements of shrinking circuit dimension,multifunction, high level of passive integration are needed. LTCC is a classicalmethod for integration of components. Thus the magnetoelectric composites withlow sintering temperature and the related ultrafine powder are promisingcandidates for LTCC technology. In this thesis, some magnetoelectriccomposites with low sintering temperature were prepared. NaNbO3,K0.5Na0.5NbO3, LiNbO3and CoFe2O4ultrafine powder were synthesized bylow-temperature combustion method and molten salt synthesis method,respectively. The properties of the above composites and powders wereinvestigated, as well as some related mechanism.
     With Nb2O5, Na2CO3and K2CO3as starting materials and urea as fuel,NaNbO3and K0.5Na0.5NbO3powders were synthesized by low-temperaturecombustion method. The effect of calcining temperature, keeping time and theamount of urea on the phase composition and morphology of the powders wereinvestigated in detail. The results show that as the amount of urea is equivalent tothat of starting materials the single-phase orthorhombic NaNbO3andK0.5Na0.5NbO3powders can be obtained at550oC for6h. The as-preparedpowders are composed of well-developed and well-dispersed cubic grains. It canconclude that it is heat originated from the ignition of urea make the formation ofNaNbO3and K0.5Na0.5NbO3powders at lower temperatures.
     With Li2SO4-Na2SO4and NaCl-KCl as molten salt, LiNbO3and CoFe2O4powders were synthesized by molten salt synthesis method. The effect ofcalcining temperature, keeping time and the species and amount of urea on the phase composition and morphology of the powders were investigated in detail.The results show that LiNbO3powders can be rapid synthesized at650oC for5min in Li2SO4-Na2SO4molten salt. On the contrary single phase LiNbO3powders cannot be obtained in NaCl-KCl molten salt. Single phase LiNbO3powders can always be obtained with the ratio of starting materials and moltensalt ranged from2:1to1:2. Single phase CoFe2O4powders can be obtained at alower temperature in Li2SO4-Na2SO4molten salt than those in NaCl-KCl moltensalt due to the fact that the eutectic point of Li2SO4-Na2SO4molten salt is lowerthan that of NaCl-KCl molten salt. Single phase CoFe2O4powders can beobtained at700oC. With the increase of calcing temperature and prolongingof the keeping time the grain sizes of the as-prepared LiNbO3and CoFe2O4increase.
     Low loss flexible dielectric and magnetic composite with Ni0.8Zn0.2Fe2O4ferrite (NZO) ultrafine particles embedded in a Thermoplastic PolyolefinElastomer (POE) matrix was fabricated using the extrusion technology. Thedielectric and magnetic properties of the as-prepared composites with differentvolume fraction of ceramic fillers were investigated. The results indicate thatwith the increasing of the volume of ceramic fillers, the permittivity,permeability, dielectric loss and magnetic loss of the composites ‘all increase.The cut-off frequencies of the composites are all above1GHz. Because of thelow resistivity of NZO, the dielectric loss of the composites is high in lowfrequency range and decrease with frequency increasing. Good frequencystability of the electromagnetic properties within a wide frequency range wasobserved. With the increasing of the volume of ceramic filler, the tensile strengthincreases and elongation decreases. All the composites show very goodflexibility.
     0.7BiFeO3-0.3BaTiO3/BiY2Fe5O12(BFO-BT/BYIG) andLa0.1Bi0.9FeO3/BiY2Fe5O12(LBFO/YIG) composites were synthesized via theconventional solid-state reaction method. The phase composition and surfacemorphology of the composites were investigated using XRD and SEM,respectively. The two main phases can coexist. The composites possess denseand homogenous microstructure. The dielectric and magnetic properties of thecomposites were also investigated. The results show that the as-prepared composites with an excellent combination of ferroelectric and magneticproperties due to high resistivity of the composites.
     0.7BiFeO3-0.3BaTiO3/Y3Fe5O12(BFO-BT/YIG) composites weresynthesized via the hybrid processing route. The phase composition and surfacemorphology of the composites were investigated using XRD and SEM,respectively. The two main phases can coexist. The composites possess denseand homogenous microstructure. The dielectric and magnetic properties of thecomposites were also investigated. The results show that the as-preparedcomposites with an excellent combination of ferroelectric and magneticproperties due to high resistivity of the composites.
     Ba0.6Sr0.4TiO3/Ni0.37Cu0.20Zn0.43Fe1.92O3.88(BST/NiCuZn) composite bulksand thick films were prepared by the conventional solid-state reaction methodand screen printing method, respectively and sintered at low temperatures withthe addition of BaCu(B2O5). The phase composition and surface morphology ofthe composites were investigated using XRD and SEM, respectively. The twomain phases can coexist. The composites possess dense and homogenousmicrostructure. The dielectric and magnetic properties of the composites werealso investigated. The results show that the BST/NiCuZn composite bulks andthick films possess very high dielectric constants and permeabilities, and verylow loss.
     Bi3Ti4O12/Ni0.37Cu0.20Zn0.43Fe1.92O3.88(BTO/NiCuZn) composites with giantdielectric constant and high permeability were synthesized via the conventionalsolid-state reaction method. The phase composition and surface morphology ofthe composites were investigated using XRD and SEM, respectively. The twomain phases can coexist. The composites possess dense and homogenousmicrostructure. The dielectric and magnetic properties of the composites werealso studied. The results show that the BTO/NiCuZn composites have giantdielectric constants and very high permeabilities. The giant dielectric behavior ofthe BTO/NiCuZn composites is mainly attributed to the Maxwell-Wagnerpolarization.
     Ba(Fe0.5Nb0.5) O3/Ni0.37Cu0.20Zn0.43Fe1.92O3.88(BFN/NiCuZn) compositescan be sintered at low temperatures with the addition of BaCu(B2O5). The phasecomposition and surface morphology of the composites were investigated using XRD and SEM, respectively. The two main phases can coexist. The compositespossess dense and homogenous microstructure. The dielectric and magneticproperties of the composites were also studied. The results show that theBZN/NiCuZn composites possess very high dielectric constants andpermeabilities. The incorporation of NiCuZn can decrease the dielectric loss ofBFN.
引文
[1] Ren W, Suan TM, Randall CA, Shrout TR. Bismuth zinc niobate pyrochlore dielectric thinfilms for capacitive applications [J]. Journal of Applied Physics,2001,89(1):767-774.
    [2] Zhu ZX, Li JF. A comparative study of fibre-textured and epitaxial Nb-dopedPb(Zr0.53Ti0.47)O3thin films on different substrates [J]. Applied Surface Science,2010,256(12):3880-3887.
    [3] Wang C, Hou YD, Ge HY, et al. Crystal structure and orthorhombic-tetragonal phasetransition of nanoscale (Li0.06Na0.47K0.47)NbO3[J]. Journal of the European CeramicSociety,2009,29(12):2589-2594.
    [4] Hench LL, West JK. The sol-gel process [J]. Chemical Review,1990,90(1):33-72.
    [5] Livage J, Henry M, Sanchez C. Sol-gel chemistry of transition-metal oxides [J]. Progressin Solid State Chemistry,1998,18(4):259-341.
    [6] Liu ZS, Ma JF, Sun Y, et al. Low-temperature molten salt synthesis of YAlO3powdersassisted by an electrochemical process [J]. Ceramics International,2001,36(6):2003-2006.
    [7] Bortolani F, Dorey RA. Molten salt synthesis of PZT powder for direct write inks [J].Journal of the European Ceramic Society,2010,30(10):2073-2079.
    [8] Liu SP, Chen L, Wang YM. The synthesis of mesoporous zeolite beta aggregates withoutthe use of second template and additive [J]. Solid State Sciences,2010,12(7):1070-1075.
    [9] Wu DY, Long MC, Cai WM, et al. Low temperature hydrothermal synthesis of Nb-dopedTiO2photocatalyst with high visible-light activity [J]. Journal of Alloys and Compounds,2010,502(2):289-294.
    [10] Jayawardena KDGI, Fryar J, Ravi S, et al. Morphology Control of Zinc OxideNanocrystals via hybrid laser/hydrothermal synthesis [J]. Journal of Physical ChemistryC,2010,114(30):12931-12937.
    [11] Sun Y, Zheng WJ. Ultrathin SmVO4nanosheets ionic liquid-assisted hydrothermalsynthesis, characterization, formation mechanism and optical property [J]. DaltonTransactions,2010,39(30):7098-7103.
    [12] Kiatkittipong K, Ye CH, Scott J, et al. Understanding hydrothermal titanate nanoribbonformation [J]. Crystal Growth and Design,2010,10(8):3618-3625.
    [13] Zhu TJ, Chen X, Meng XY, Zhao, XB, et al. Anisotropic growth of cubic PbTenanoparticles to nanosheets: controlled synthesis and growth mechanisms [J]. CrystalGrowth and Design,2010,10(8):3727-3731.
    [14] Himanshu AK, Choudhary BK, Singh SN, et al. Synthesis and dielectric relaxationstudies of Ba substitution in Pb(Zn1/3Nb2/3)O3ceramics by co-precipitation method [J].Solid State Sciences,2010,12(7):1231-1234.
    [15] Muhammad JI, Saima F. Suitability of Sr0.5Ba0.5-xCexFe12-yNiyO19co-precipitatednanomaterials for inductor applications [J]. Journal of Alloys and Compounds,2010,493(2):595-600.
    [16] Yu HQ, Wang JG, Xin XD, et al. Synthesis and photoluminescence properties ofMn2+-doped ZnS by co-precipitation method [J]. Luminscence,2010,25(2):150-151.
    [17] Pookmanee P, Phanichphant S. Characterization of Ba0.77Sr0.23TiO3powder prepared froman oxalate co-precipitation and impregnation method [J]. Journal of Ceramic ProcessingResearch,2010,11(3):384-387.
    [18] Nan CW, Bichurin M.I., Dong SX, et al. Multiferroic magnetoelectric composites:historial perspective, status, and future directions [J]. Journal of Applied physics,2008,103(3):031101.
    [19] Eerenstein W., Mathur N.D., Scott J.F. Multiferroic and magnetoelectric materials [J].Nature,2006,442(7104):759-765.
    [20] Bogani L, Cavigli L, Gurioli M, et al. Magneto-optical investigations of nanostructuredmaterials based on single-molecule magnets monitor strong environmental effects [J].Acta Materialia,2007,19(22):3906-3911.
    [21] Kim KY, Tae HS, Lee JH. Measurement of dielectric and radiation losses for flexiblecircular dielectric waveguides in Q-Band [J]. Microwave and Optical Technology Letters,2002,35(2):102-106.
    [22] Zhang QM, Li HF, Martin P, et al. An all-organic composite actuator material with a highdielectric constant [J]. Nature,2002,419(6904):284-287.
    [23] Chu YH, Martin LW, Holcomb MB, et al. Electric-field control of local ferromagnetismusing a magnetoelectric multiferroic [J]. Nature Materials,2008,7(8):478-482.
    [24] Srinivasan G, Rasmussen ET, Gallegos J, et al. Magnetoelectric bilayer and multilayerstructures of magnetostrictive and piezoelectric oxides [J]. Physical Review B,2001,64(21):214408.
    [25] Srinivasan G, Rasmussen ET, Levin BJ, et al. Magnetoelectric effects in bilayers andmultilayers of magnetostrictive and piezoelectric perovskite oxides [J]. Physical ReviewB,2002,65(21):134402.
    [26] Srinivasan G, Rasmussen ET, Hayes R. Magnetoelectric effects in ferrite-lead zirconatetitanate layered composites: The influence of zinc substitution in ferrites [J]. PhysicalReview B,2003,67(1):014418.
    [27] Srinivasan G, Hayes R, Bichurin MI. Low frequency and microwave magnetoelectriceffects in thick film heterostructures of lithium zinc ferrite and lead zirconate titanate [J].Solid State Communications,2003,128(6-7):261-266.
    [28] Zheng H, Wang J, Lofland SE, et al. Multiferroic BaTiO3-CoFe2O4nanostructures [J].Science,2004,303(5658):661-663.
    [29] Cai N, Zhai J, Nan CW, et al. Dielectric, ferroelectric, magnetic, and magnetoelectricproperties of multiferroic laminated composites [J]. Physical Review B,2003,68(22):224103.
    [30] Shi Z, Nan CW, Zhang J, et al. Magnetoelectric effect of Pb(Zr,Ti)O3rod arrays in a (Tb,Dy)Fe2/epoxy medium [J]. Applied Physics Letters,2005,87(1):12503.
    [31] Wan JG, Wang XW, Wu YJ, et al. Magnetoelectric CoFe2O4-Pb(Zr, Ti)O3composite thinfilms derived by a sol-gel process [J]. Applied Physics Letter,2005,86(12):122501.
    [32] Wan JG, Liu JM, Wang GH. Electric-field-induced magnetization in Pb(Zr,Ti)O3/Terfenol-D composite structures [J]. Applied Physics Letter,2006,88(18):182502.
    [33] Chen XM, Tang YH, Chen IW, et al. Dielectric and magnetoelectric characterization ofCoFe2O4/Sr0.5Ba0.5Nb2O6composites [J]. Journal of Applied Physics,2004,96(11):6520.
    [34] Li YJ, Chen XM, Lin YQ, et al. Magnetoelectric effect of Ni0.8Zn0.2Fe2O4/Sr0.5Ba0.5Nb2O6composites [J]. Journal of the European Ceramic Society,2006,26(13):2839-2844.
    [35] Li YJ, Chen XM, Hou RZ, et al. Maxwell-Wagner characterization of dielectricrelaxation in Ni0.8Zn0.2Fe2O4/Sr0.5Ba0.5Nb2O6composite [J]. Solid State Communications,2006,137(3):120-125.
    [36] Cho IS, Bae ST, Yim DK, et al. Preparation, characterization, and photocatalyticproperties of CaNb2O6nanoparticles [J]. Journal of the American Ceramic Society,2009,92(2):506-510.
    [37] Wang LY, Yao K, Ren W. Piezoelectric K0.5Na0.5NbO3thick films derived frompolyvinylpyrrolidone-modified chemical solution deposition [J]. Applied Physics Letter,2008,93(9):092903.
    [38] Bencan A, Boullay P, Mercurio JP. Characterisation of BaBi2Nb2O9powders and thinfilms prepared by a solution synthesis technique [J]. Solid State Science,2004,6(6):547-551.
    [39] Telli MB, Bharadwajs SSN, Biegalski MD, et al.(00l) epitaxial Ag(Ta0.5Nb0.5)O3thinfilms on (001) SrRuO3/(001)LaAlO3substrates by chemical solution deposition [J].Journal of Applied Physics,2007,101(1):014111.
    [40] Zhou C, Chen G, Zhang HJ, et al. Hydrothermal synthesis of ultrafine A5Nb4O15(A=Ba, Sr)powders [J]. Materials Letters,2009,63(12):1004-1006.
    [41] Wu SY, Chen XM, Chen LM. Influence of reaction conditions on products of Ba5Nb4O15derived from hydrothermal process [J]. Journal of Electroceramics,2008,21(1-4):810-814.
    [42] Gaikwad SP, Potdar HS, Samuel V, et al. Co-precipitation method for the preparation offine ferroelectric BaBi2Nb2O9[J]. Ceramics International,2005,31(3):379-381.
    [43] Muthuurajan H, Rao NK, Gupta UN, et al. Novel hydroxide precursors for lowtemperature synthesis of selected ternary oxides [J]. Materials Research Bulletin,2008,43(7):1842-1849.
    [44] Gaikwad SP, Samuel V, Pasricha R, et al. Preparation of nanocrystalline ferroelectricBaNb2O6by citrate gel method [J]. Bulletin of Materials Science,2005,28(2):121-123.
    [45] Dhak D, Dhak P, Ghorai T, et al. Preparation of nano-sized ABi2Nb2O9(A=Ca2+, Sr2+,Ba2+) ferroelectric ceramics by soluble Nb tartarate precursor and their dielectriccharacteristics after sintering [J]. Journal of Materials Science: Materials in Electronic,2008,19(5):448-456.
    [46] Dhak D, Biswas SK, Pramanik P. Synthesis and characterization of nonocrystallineSrBi2Nb2O9ferroelectric ceramics using TEA as the polymeric matrix [J]. Journal of theEuropean Ceramic Society,2006,26(16):3717-3723.
    [47] Dhak D, Ghorai KT, Pramanik P. Studies of dielectric characteristics of BaBi2Nb2O9[J].Solid State Science,2007,9(10):57-64.
    [48]中国材料工程编委会.中国材料工程大典[M].北京:化学工业出版社,2002.
    [49]吴其哗,巫静安.高分子材料流变学[M].北京:高等教育出版社,2002.
    [50]黄锐,王旭,李忠明.纳米塑料--聚合物/纳米天机物复台材料研制、应用与进展
    [M].北京:中国轻工业出版社,2002.
    [51] Zhang HF, Yao X, Zhang LY. Microstructure and dielectric properties of barium strontiumtitanate thick films and ceramics with a concrete-like structure, Journal of the AmericanCeramic Society,2006,90(8):2333-2340.
    [52] Shiratori Y, Magrez A, Dornseiffer J, et al. Polymorphism in Micro-, Submicro-, andNanocrystalline NaNbO3[J]. Journal of Physical Chemistry B.,2005,109(43):20122-20130.
    [53] Cheng ZX, Ozawa K, Osada M, et al. Low-temperature synthesis of NaNbO3nanopowders and their thin films from a novel carbon-free precursor [J]. Journal of theAmerican Ceramic Society,2006,89(4):1188-1192.
    [54] Bhattacharyya K, Tyagi AK. A novel soft-chemical method for the synthesis ofnanocrystalline MNbO3(M=Na,K)[J]. Journal of Alloys Compounds,2009,470(1-2):580-583.
    [55] Camargo ER, Popa M, Kaihana M. Sodium niobate (NaNbO3) powders synthesized by awet-chemical method using a water-soluble malic acid complex [J]. Chemistry ofMaterials,2002,14(5):2365-2368.
    [56] Kim KB, Hsu DK, Ahn B, et al. Fabrication and comparison of PMN-PT single crystal,PZT and PZT-based1-3composite ultrasonic transducers for NDE applications [J].Ultrasonics,2010,50(8):790-797.
    [57] Liu GX, Cui XX, Dong SX, A tunable ring-type magnetoelectric inductor [J]. Journal ofApplied Physics,2010,108(8):094106.
    [58] Zhou DY, Wang RY, Kamlah M, Determination of reversible and irreversiblecontributions to the polarization and strain response of soft PZT using the partialunloading method [J]. Journal of the European Ceramic Society,2010,30(12):2603-2615.
    [59] Zhukov S, Fedosov S, Glaum J, et al. Effect of bipolar electric fatigue on polarizationswitching in lead-zirconate-titanate ceramics [J]. Journal of Applied Physics,2010,108(1):014105.
    [60] Pojucan MMS, Santos MCC, Pereira FR, et al. Piezoelectric properties of pure and(Nb5++Fe3+) doped PZT ceramics [J]. Ceramics International,2010,36(6):1851-1855.
    [61] Zhu KJ, Qiu JH, Ji HL, et al. Microwave sintering of lead-free barium titanatepiezoelectric ceramics from barium titanate powders synthesized by a hydrothermalmethod [J]. Journal Ceramic Processing Research,2010,11(3):293-296.
    [62] Ma C, Tan X, Morphotropic phase boundary and electrical properties of lead-free(1-x)BaTiO3-xBi(Li1/3Ti2/3)O3ceramics [J]. Journal Applied Physics,2010,107(12):124108.
    [63] Zhang HB, Jiang SL, Xiao JZ, et al. Piezoelectric and dielectric aging ofBi0.5(Na0.82K0.12)TiO3lead-free ferroelectric thick films [J]. Journal of Applied Physics,2010,107(12):124118.
    [64] Jo W, Erdem E, Eichel RA, et al. Effect of Nb-donor and Fe-acceptor dopants in(Bi1/2Na1/2)TiO3-(K0.5Na0.5)NbO3lead-free piezoelectrics [J]. Journal of Applied Physics,2010,108(1):014110.
    [65] Yang Z, Ke C, Sun LL, et al. Growth and structure investigation of multiferroicsuperlattices:[(La0.8Sr0.2Mn3)(4n)/(BaTiO3)(3n)](m)[J]. Solid State Communications,2010,150(31-32):1432-1435.
    [66] Lu SC, Chen YH, Tuan WH, et al. Effect of microstructure on dielectric and fatiguestrengths of BaTiO3[J]. Journal of the European Ceramic Society,2010,30(12):2577-2583.
    [67] Li JH, Liu ZF, Wessels BW, Study of domain reversal and its field-dependence inepitaxial BaTiO3thin films [J]. Journal of Applied Physics,2010,107(12):124106.
    [68] Feteira A, Sinclair DC, Lanagan MT. Effects of average and local structure on thedielectric behavior of (1-x)BaTiO3-xLaYO3(0≤x≤0.40) ceramics [J]. Journal of AppliedPhysics,2010,108(1):014112.
    [69] Alkoy EM, Papila M. Microstructural features and electrical properties of copper oxideadded potassium sodium niobate ceramics [J]. Ceramics International,2010,36(6):1921-1927.
    [70] Wang K, Li JF. Domain engineering of lead-free Li-modified (K, Na)NbO3ploycrystalswith highly enhanced piezoelectricity [J]. Advanced Functional Materials,2010,20(12):1924-1929.
    [71] Rubio-Marcos F, Marchet P, Merle-Mejean T, et al. Role of sintering time, crystallinephases and symmetry in the piezoelectric properties of lead-free KNN-modified ceramics[J]. Materials Chemistry and Physics,2010,123(1):91-97.
    [72] Lim JB, Zhang SJ, Jeon JH, et al.(K, Na)NbO3-based ceramics for piezoelectric “hard”lead-free materials [J]. Journal of the American Ceramic Society,2010,93(5):1218-1220.
    [73] Aksel E, Erdem E, Jakes P, et al. Defect structure and materials “hardening” inFe2O3-doped (Bi0.5Na0.5)TiO3ferroelectrics [J]. Applied Physics Letters,2010,97(1):012903.
    [74] Liu ML, Yang DA, Qu YF. Study on Bi2O3doping methods and dielectric properties of(1-x)BaTiO3-x(Bi0.5Na0.5)TiO3ceramics [J]. Journal of Alloys and Compounds,2010,496(1-2):449-453.
    [75] Sung YS, Kim JM, Cho JH, et al. Roles of lattice distortion in (1-x)(Bi0.5Na0.5)TiO3-xBaTiO3ceramics[J]. Applied Physics Letters,2010,96(20):202901.
    [76]吁霁,刘兴泉.铌酸锂多晶粉体的水热合成及表征[J].高等学校化学学报,2005,26(4):595-598.
    [77]赵九蓬,权茂华,张蕾,强亮生.用聚合物前驱体法合成铌酸锂纳米粉体[J].硅酸盐学报,2005,30(10):1179-1184.
    [78] Liu MN, Xue DF, Zhang SC, et al. Chemical synthesis of stoichiometric lithium niobatepowders [J]. Materials Letters,2005,59(8-9):1095-1097.
    [79] Qu YQ, Yang HB, Yang N, et al. The effect of reaction temperature on the particle size,structure and magnetic properties of coprecipitated CoFe2O4nanoparticles [J]. MaterialsLetters,2006,60(29-30):3548-3552.
    [80] Lee JG, Park JY, Jim CS, Growth of ultra-fine cobalt ferrite particles by a sol-gel methodand their magnetic properties [J], Journal of Materials Science,1998,33(15):3965-3968.
    [81] Sani R, Beitollahi A, Maksimov YV, et al. Synthesis, phase formation study andmagnetic properties of CoFe2O4nanopowder prepared by mechanical milling [J]. Journalof Materials Science,2007,42(6):2126-2131.
    [82] Komarneni S, D'Arrigo MC, Leonelli C. Microwave-hydrothermal synthesis ofnanophase ferrites [J]. Journal of the American Ceramic Society,1998,81(11):3041-3043.
    [83]张良莹,姚熹.电介质物理[M].西安:西安交通大学出版社,1991.
    [84] Rikukawa H. Relationship between microstructures and magnetic properties of ferritescontaining closed pores [J]. IEEE Transaction on Magnetism,1982,18:1535-1537.
    [85] Snoek JL. New developments in ferromagnetic materials [J]. Physica (Amsterdam)1948,14:207-217.
    [86] Li BW, Shen Y, Yue ZX, Nan CW. High-frequency magnetic and dielectric properties ofa three-phase composite of nickel, Co2Z ferrite, and polymer [J]. Journal of AppliedPhysics,2006,99(12):123909.
    [87] Huang CK, Chen SW, Wei CJ. Processing and property improvement of polymericcomposites with added ZnO nanoparticles through microinjection molding [J]. Journal ofApplied Polymer Science,2006,102(6):6009-6016.
    [88] Tang HG, Qi Q, Wu YP et al. Reinforcement of elastomer by starch [J]. MacromolecularMaterials and Engineering,2006,291(6):629-637.
    [89] Wang J, Neaton JB, Zheng H, et al. Epitaxial BiFeO3Multiferroic Thin FilmHeterostructures [J].Science,2003,299(5713):1720-1722.
    [90] Fischer P, Polomskya M, Sosnowska I, et al, Temperature-dependence of the crystal andmagnetic-structures of BiFeO3[J]. Journal of Physics C-Solid State Physics,1980,13(10):1931-1940.
    [91] Wang J, Neaton JB, Zheng H, et al. Epitaxial BiFeO3multiferroic thin filmheterostructures [J]. Science,2003,299(5613):1719-1722.
    [92] Wang SY, Qiu X, Gao J, et al. Electrical reliability and leakage mechanisms in highlyresistive multiferroic La0.1Bi0.9FeO3ceramics [J]. Applied Physics Letters,2011,98(15):152902.
    [93] Yan F, Miao S, Sterianou I, et al. Multiferroic properties and temperature-dependentleakage mechanism of Sc-substituted bismuth ferrite-lead titanate thin films [J]. ScriptaMaterialia,2011,64(5):458-461.
    [94] Murari NM, Thomas R, Melgarejo RE, et al. Structural, electrical, and magneticproperties of chemical solution deposited BiFe1xTixO3and BiFe0.9Ti0.05Co0.05O3thinfilms [J]. Journal of Applied Physics,2009,106(1):014103.
    [95] Luo BC, Chen CL, Xu Z, Xie Q. Effect of Cr substitution on the multiferroic properties ofBiFe1xCrxO3compounds [J]. Applied Physics Letters,2010,374(41):4265-4268.
    [96] Wu JG, Wang J, Xiao DQ, Zhu JG. Multiferroic and fatigue behavior of silicon-basedbismuth ferrite sandwiched structure [J]. Journal of Materials Chemistry,2011,21(20):7308-7313.
    [97] Wu JG, Wang J. Effects of SrRuO3buffer layer thickness on multiferroicBi0.90La0.10(Fe0.95Mn0.05)3thin films [J]. Journal of Applied Physics,2009,106(5):054115.
    [98] Liu XH, Xu Z, Wei XY, et al. Ferroelectric, ferromagnetic, and magnetoelectriccharacteristics of0.9(0.7BiFeO3-0.3BaTiO3)-0.1CoFe2O4ceramic composite [J]. Journalof the American Ceramic Society,2010,93(10):2975-2977.
    [99] Park CH. Microscopic study on migration of oxygen vacancy in ferroelectric perovskiteoxide [J]. Journal of Korean Physical Society,2003,42(S): S1420-S1424.
    [100] Saha S, Krupanidhi SB. Dielectric response in pulsed laser ablated (Ba,Sr)TiO3thinfilms [J]. Journal of Applied Physics,2000,87(2):849-854.
    [101] Ke QQ, Lou XJ, Wang Y, Wang J. Oxygen-vacancy-related relaxation and scalingbehaviors of Bi0.9La0.1Fe0.98Mg0.02O3ferroelectric thin films [J]. Physical Review B,2010,82(2):024102.
    [102] Zhang JJ, Zhai JW, Jiang HT, et al. Raman and dielectric study ofBa0.4Sr0.6TiO3-MgAl2O4tunable microwave composite [J]. Journal of Applied Physics,2008,104(8):084102.
    [103] Marteau A, Velu G, Houzet G, et al. Ferroelectric tunable balanced right-andleft-handed transmission lines [J]. Applied Physics Letters,2009,94(2):023507.
    [104] Miyake H, Kozuka H. Photoelectrochemical properties of Fe2O3-Nb2O5films preparedby sol-gel method [J]. Journal of Physical Chemistry B,2005,109(38):17951-17956.
    [105] Saha S, Sinha TP. Structural and dielectric studies of BaFe0.5Nb0.5O3[J]. Journal ofPhysics: Condense Matter,2002,14(2):249-258.
    [106] Fang PY, Fan HQ, Qiu SJ, Chen J. Bi3.25La0.75Ti3O12powders by the complexpolymerization method synthesis characterization and morphology [J]. Journal ofSol-Gel Science and Technology,2009,50(3):290-295.
    [107] Garcia S, Font R, Portelles J, et al. Effect of Nb doping on (Sr, Ba)TiO3(BST) ceramicsamples [J]. Journal of Electroceramics,2001,6(2):101-108.
    [108] Haquea MM, Huq M, Hakim MA. Densification, magnetic and dielectric behaviour ofCu-substituted Mg-Zn ferrites [J]. Materials Chemistry and Physics.2008,112(2):580-586.
    [109] Wang CC, Cui YM, Zhang LW. Dielectric properties of TbMnO3ceramics [J]. AppliedPhysics Letters,2007,90(1):012904.
    [110] Su H, Zhang HW, Tang XL. Dielectric and magnetic properties of low-temperature firedNiCuZn-BaTiO3composites [J]. Journal of Magnetism and Magnetic Materials,2009,321(18):2763-2766.
    [111] Zhang MH, Wang H, Xiang F, Yao X. Low-temperature sintering (Ba0.6Sr0.4)TiO3thickfilm prepared by screen printing [J]. International Journal of Applied CeramicTechnology,2009,6(2):257-263.
    [112] Van de Zagg PJ. New views on the dissipation in soft magnetic ferrites [J]. Journal ofMagnetism and Magnetic Materials,1999,196:315-319.
    [113] Garcia S, Font R, Portelles J, Quinones RJ, Heiras J, Siqueiros JM. Effect of Nb dopingon (Sr,Ba)TiO3(BST) ceramic samples [J]. Journal of Electroceramics,2001,6(2):101-108.
    [114] Jia LJ, Li T, Zhang HW, et al. Electromagnetic properties of low-temperature co-firedxPZT+(1-x)NiCuZn-ferrite composites [J]. Journal of Magnetism and MagneticMaterials,2009,321(18):2936-2940.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700