用户名: 密码: 验证码:
板带轧机液压AGC系统主要参数的分析和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压AGC系统是一个集板带材料、轧机本体、轧制工艺、液压系统、电气系统以及控制系统等于一体的复杂系统。深入研究液压AGC系统,建立机电液一体化模型和提高板带材厚度精度是轧制领域的一个深远而广泛的课题,具有重要的理论意义和应用价值。
     本项研究在国家自然科学基金和河北省自然科学基金的资助下,主要进行以下几个方面研究:建立机电液一体化模型、通过模型分析,提出轧机液压AGC系统和轧制工艺以及控制策略的改进依据;使用参数辨识、参数优化,数据分析,信号处理等工具对轧制过程数据进行厚度偏差分析,实现这些工具相互之间的融合和调用;完成液压AGC系统仿真和轧制实验等软件开发;利用某单机架可逆实验轧机和燕山大学300四辊轧机进行针对性实验,验证理论模型,为优化控制策略以提高系统性能奠定基础。
     本文针对轧机机电液一体化模型进行了深入的研究,从液压系统,机械系统,轧制工艺和控制策略等方面进行了全面而系统地分析,进一步完善了现有的液压AGC系统数学模型。
     基于位置闭环模型和轧制力闭环模型,分析了伺服阀、液压油缸、高压管道、等液压关键元件及性能参数对液压AGC系统的动态响应和稳态精度的影响;随着轧制工艺的变化,系统控制方式也应作调整,其理论依据为何,本文做了进一步研究,即根据优化目标,制定控制参数优化方案,提高控制系统性能。这些研究成果对制定轧制工艺和控制策略而言具有重要的参考价值,也是国内外众多专家学者进行广泛而深入研究的热点问题。
     基于传统的轧制机理分析,结合现代的数据分析和计算工具,对影响厚差的因素进行分析;FFT工具,小波分析工具,参数辨识工具,相关性分析,非线性回归分析,信号处理工具等丰富了数据分析处理的功能,使得轧制系统在不同轧制工艺下的各厚差影响因素对板厚的影响得到量化,从而给制定轧制工艺,设计液压AGC系统,制定控制策略提供了重要参考,也为理论模型的研究提出新的思路。
     从理论和实践的角度来分析液压AGC系统,为轧制工艺的改进和智能化的研究提供了基础;这对于指导生产,提高轧制效率和产品质量,具有重要的理论意义和应用价值。
Hydraulic automatic gauge control (AGC) system is an integrated system which combines sheet strip, rolling mill, rolling technical, electrical system as well as control system. It is a profound and comprehensive topic to probe into hydraulic AGC system mechatronic hydraulic model to increase sheet strip accuracy in gauge.
     With the National Natural Science Fund and Hebei Natural Science Fund, based on Yanshan University 300 four-high rolling mill experiment, this study consists of the following aspects: To establish hydraulic AGC integrated model, analyze, simulate and revise the model, to shed light on improving the hydraulic AGC system, rolling mill practice and control strategy. To analyze the data of the rolling process systemically, involving FFT tool, parameters identification tool, parameters controlling and optimization tool, data analysis tool, signal processing tool, to research on the implementation approach and integrating methods of the kit, and the procedure call. To complete the software development of the virtual rolling mill simulation system and field roll milling experiment. To improve control strategy by verifying the theoretical model based on the Yanshan University 300 four-high mill experiment.
     The dissertation researches in-depth on the mechatronic hydraulic model, to analyze and simulate the system from the aspects of rolling mill practice and control strategy, to improve the hydraulic AGC systemic mathematical model.
     Base on the position closed-loop model and rolling force closed-loop model, the dissertation separately analyzes the performance parameters of fluid power key elements such as servo-valve, cylinder, control-piping and accumulator and its influence on hydraulic AGC systemic dynamic response and steady state accuracy. It analyses the influence of back pressure characteristics and supply pressure characteristic on the system. It comes up with the solutions of some common problems such as selecting servo-valve, designing screw-down cylinder independently, designing fluid power recruit hydraulic system. These research findings provide fluid power AGC system design staff with important theoretic references, give some hints to establish compensate strategy, thus it has important theory meaning and application value.
     The method of controlling system should be adjusted with the changes of rolling mill practice. The dissertation further studies on the controlling methods and their theory background, namely, establish controlling parameter optimization schemes and improve control system's performance according to the optimization objective. These research findings are important references to establish rolling mill practice and control strategy. Besides, they are the hot issues which specialists at home and abroad would like to discuss about comprehensively and lucubrately.
     The dissertation makes diagnosis on thickness error, based on conventional rolling mill mechanical analysis with modern data analysis and computational tools. FFT tool, wavelet analysis tool, parameter identification tool, relevance analysis, nonlinear regression analysis and signal processing tool could fulfill the data analysis functions, quantize the influence of roll milling system under different rolling mill practice on strip thickness. Thus the paper could offer references to the rolling mill practice establishment, hydraulic AGC system design. Besides, it gives clues to the research on theoretical model.
引文
1连家创,刘宏民.板厚板形控制.北京:兵器工业出版社,1996:9-20;32-33
    2行娟娟.轧机液压AGC系统数学模型及其控制方法研究.[西安理工大学硕士论文].2004:1-5
    3张士祥.邯钢连铸连轧机的液压板厚自动控制.液压与气动,2000,(3):10-12
    4张进之.动态设定型板形板厚自动控制系统.冶金设备,2000,(5):6-11
    5琐田,征雄.改变热精轧机的轧制规程对热轧带钢凸度进行控制.International Conference on Steel Rolling,Tokyo,Japan,1980:474-484
    6魏衡江.轧钢过程自动化技术的新进展(上).冶金自动化,1996,20(2):5-10
    7魏衡江.轧钢过程自动化技术的新进展(下).冶金自动化,1996,20(3):1-4
    8李凤翔.冷薄板技术新进展.鞍钢技术,1985,(12):1-8
    9 Yoshikazu Mori, Toshio Ishibashi. Modernization of Gauge Control System at Sumitomo Wakayama 5-stand Cold Mill. Iron and Steel Engineer,1999,(8):46-50
    10 Y.Washikita. Advanced AGC System for Cold Tandem Mill Based on I.L.Q. Design Theory. Proceedings of the 35th Conference on Decision and Control Kober,Japan,1996,12:1234-1235
    11 J.FAN,A.K. TIEU, W.Y.D.YUEN. Strip Thickness Control of Reversing Mill Using Self-Tuning PID Neuro-controller. ISIJ International,1999,39(1):39-46
    12 Frank Feldmann. Application of Fuzzy Logic Technology to Tandem Mill Transitional Gauge Variation. Iron and Steel Engineer,1998,6:40-43
    13 M.J.Grimble. Polynomial Solution of the Standard H∞Control Problem for Strip Mill Gauge Control. IEEE Process Control Theory Application,1995,42(5):515-525
    14 Xu Guang, Zhang Haizhou, Yang Jie, ect. Application of Adaptive Control Theory to the Automatic Control of a Tandem Cold Mill. Modernization of Steel Rolling Proceeding of International Conference on Modernization of Steel Rolling,1988:586-590.
    15 Rajani K.Mudi, Nikhil R.Pal. A Robust Self-tuning Scheme for PI- and PD-type Fuzzy Controllers. IEEE Transactions on Fuzzy Systems,1999,7(1):2-15
    16孙一康编著.带钢冷连轧计算机控制.北京:冶金工业出版社,2002:127-128;104-118
    17曾良才,吴海峰,陈奎生,等.轧机液压厚度自动控制系统试验技术及设备研究.液压与气动,2003,(4):5-7
    18 Huzyak P, Gerper T L. Design and application of hydraulic gap control systems. Iron and Steel engineer,1984,61(8):13-20
    19 Ginzburg V B. High-quality steel rolling: theory and practice,New York:Marcel Dekkor Inc.,1993
    20金学俊.液压AGC在板带轧机上的应用.液压气动与密封,2000,(4):45-47
    21 Ginzburg V B. Dynamic characteristics of automatic gage control system with hydraulic actuators. Iron and Steel Engineer,1984,61(1):57-65
    22 Guo Remn-Min. Evaluation of dynamic characteristics of HAGC system. Iron and Steel Engineer,1991,68(7):52-63
    23高英杰,赵静一,孔祥东,等.板带轧机液压AGC系统的动态模拟.中国机械工程,1998,9 (7):23-26
    24罗祯伟,刘路漫.中厚板轧机液压AGC系统的动静态品质分析.宽厚板,2000,(6):15-20
    25高英杰.轧机AGC液压系统故障诊断技术的研究.[燕山大学工学博士学位论文].2001:25-27
    26张伟.基于冷连轧过程的虚拟轧制系统中轧制设备关键技术研究.[燕山大学工学博士学位论文].2004:35-41
    27余英泽,廖里,吴渝.一种新型数据分析技术-数据挖掘.计算机与现代化,2000,(1):12-15
    28丁剑洁,鱼滨,侯红,等.软件度量中的数据分析技术.微机发展,2006,(2):27-29
    29吴婕.浅析数据挖掘软件的发展.情报理论与实践,2006:21-24
    30 Chen Leida. Data Mining Methods,Application,Tools. Information Systems Management, 2000,17(1):65-70
    31 Feeldersa, H.danielsab, M.Holsheimer. Methodogical and Practical Aspects of Data Mining. Information & management,2000,(37):271-281
    32 Fernando Crespoa, Richard Weber. A Methodology for Dynamic Data Mining Base on Fuzzy Clustering. Fuzzy Sets and Systems, 2005,(150):267-284
    33杨林,徐慧,任廷革,等.文献信息数据挖掘方案的研究-基于WWW的中医方剂文献分析处理系统.第五届全国计算机应用联合学术会议,北京.1999:21-24
    34贾琳,李明.基于数据挖掘的电信客户流失模型的建立与实现.计算机工程与应用,2004,(4): 85-188
    35李秋丹.数据挖掘相关算法的研究与平台实现.[大连理工大学工学博士论文].2004:212-225
    36 K.Aistleitner, L.G.Mattersdorfer, W.Haas, ect. Neural Network for Identification of Roll Eccentricity in Rolling Mills. Journal of Materials Processing Technology,1996:387-392
    37 Hideki ASADA, Akira KITAMURA, Satoshi NISHINO. Adaptive and Robust Control Method with Estimation of Rolling Characteristics for Looper Angle Control at Hot Strip Mill. ISIJ International,2003,43(3):358-365
    38冯彩霞,赵新军,周曦.基于六西格玛理论的冷轧生产线数据挖掘和应用.中国金属学会,2002年全国轧钢生产技术会议暨第七届轧钢年会.2002:1551-1554
    39苏冬平,周明,郭朝晖,等.利用数据挖掘预报连铸板坯中心偏析.计算机科学,2002,29(3): 348-350
    40 Satoshi NISHINO, Hiroshi NARAZAKI, Akira KITAMURA. An Adaptive Approach to Improve the Accuracy of a Rolling Load Prediction Model for a Plate Rolling Process. ISIJ International, 2000,40(12):1216-1222
    41 E.SCHOLTZ, I.K.CRAIG, P.C.PISTORIUS. Modeling for Control of a Steel Hot Rolling Mill. ISIJ International,2000,40(10):1003-1012
    42黄庆学,梁爱生著.高精度轧制技术.北京:冶金工业出版社,2002:35-38
    43孟令启,李成.中板厚轧机测量测试与力学建模.郑州:黄河水利出版社,2006:219-224
    44蔡正国.数据挖掘技术在设备诊断领域中的应用研究展望.第十二届全国设备监测与诊断学术会议.北京:机械工业出版社,2004:95-90
    45干解民,单旭沂,胡贤磊,等.基于数据集市的轧制力预报BP网络的数据挖掘.中国金属学会, 2002年全国轧钢生产技术会议暨第七届轧钢年会,本溪.2002:250-254
    46 Hoseong Jeon, Hyunseung Choo, Jai HoOh. Identification Key Based AAA Mechanism in Mobile IP Networks. Lecture Notes in Computer Science,Computational Science and Its Applications -ICCSA 2004:International Conference,Assisi,Italy,May 14-17,2004.Proceedings, Part I, 2004, (3043):765-775
    47 Mahdi Jalili-Kharaajoo. Identification and Control Using Direction Basis Function Neural Network. Lecture Notes in Computer Science, Computational Science - ICCS 2004:4th International Conference,Krakow,Poland,June 6-9,2004.Proceedings,Part II,2004:708-712
    48 X.H. Guo, B.H. Zhao, L. Qian. Fault Identification by Passive Testing, Telecommunications and Networking. 11th International Conference on Telecommunications,Fortaleza,Brazil. 2004:826-834
    49 Olga Fatyanova, Alexey Kondratiev. Comparative Analysis of Stochastic Identification Methods and Fault Diagnosis for Multi-mode Discrete Systems. Lecture Notes in Computer Science. 2003:446-455
    50 Jovan D, Bockovic Raman K, Mehra.Failure. Detection,Identification and Reconfiguration in Flight Control. Springer Tracts in Advanced Robotics, Fault Diagnosis and Fault Tolerance for Mechatronic Systems,2003:129-167
    51 S.Gutman. Identification of Piecewise-Constant Potentials by Fixed-Energy Phase Shifts. Applied Mathematics and Optimization,2001,44(1):49-65
    52赵春涛,赵克定.采用相关分析最小二乘法辨识轧机液压压下伺服系统参数的研究.液压与气动,2003(9):10-12
    53王益群,王海芳,高英杰,等.基于神经网络的轧机液压AGC系统自适应辨识.中国机械工程,2004,15(5):450-453
    54张春慨,邵惠鹤.基于神经网络模型的馄沌优化及其应用.化工自动化及仪表,2000,27(2): 19-22
    55李兵,蒋慰孙.混沌优化方法及应用.控制理论与应用,1997,14(4):613-615
    56候迪波.麦汁过滤过程的优化控制.仪器仪表学报,2005,26(8)增刊:712-724
    57于乃功,阮晓钢.青霉素发酵过程优化控制问题及方法研究.第二十二届中国控制会议论文集.武汉:武汉理工大学出版社,2003:141-144
    58张素贞,向振麟.聚醋(PET)生产过程计算机仿真及优化控制软件系统.中国自动化学会,2001: 168-173
    59 Stirling D, Seving S. Combined Simulation and Knowledge-Based Control of a Stainess Steel Rolling Mill. Expert System With Application USA,1991,(3):353-366
    60刘占英.轧制变形规程优化设计.北京:冶金工业出版社,1996:4-9
    61 Vyas M.M. An Expert System to Recommend Roll Adjustments in a Rail Mill. Expert System Applications in Material Processing and Manufacturing, Anaheim,California,1990:85-99
    62赵玉刚.中厚板水幕冷却专家系统.计算机工程与应用,2004,40(1):220-226
    63王益群,高英杰.液压AGC系统故障诊断专家系统的实现.液压气动与密封,2000,(1):29-31
    64李铁军,郑瑞,孙佳.线材尺寸精度控制专家系统的开发.轧钢,2005,22(2):46-49
    65 Fumiki HIRAO. An Expert System for Efficient Coil Transfer in Finish Line of Hot Strip Mill. ISIJ International,1990,30(2):167-172
    66 Yoshihiro JIMICHI. An Expert System of Automatic Slab Assignment for Hot Strip Mill. ISIJ International,1990,30(2):155-160
    67日本钢铁协会.板带轧制理论与实践.北京:中国铁道出版社,1990
    68 Stephan Ebersbach and Zhongxiao Peng. Expert system development for vibration analysis in machine condition monitoring. Expert Systems with Applications,2007,(34):291-299.
    69 Achmad Widodo and Bo-Suk Yang. Support vector machine in machine condition monitoring and fault diagnosis. Mechanical Systems and Signal Processing,2007,21(6):2560-2574
    70 L. Yao, I. Postlethwaite, W.Browne,ect. Design, implementation and testing of an intelligent knowledge-based system for the supervisory control of a hot rolling mill. Journal of Process Control,2005,15(6):615-628
    71 D. A. Linkens and E. B. Tanyi. A G2-based hybrid modelling and simulation methodology and its application to a rolling mill. Control Engineering Practice,1999,(7):1101-1112
    72徐光,杨节.前馈AGC的改进.武汉钢铁学院学报,1990,13(4):392-396
    73刘建昌,王贞祥,王立平,等.AGC系统控制模型与结构的研究.钢铁,1994,29(4):35-39
    74张飞,童朝南,孙一康,等.针对尾部厚跃的热轧自适应硬度前馈控制.冶金自动化,2006,(5): 29-33
    75 Bulut B, Katebi M R. Predictive control of hot rolling processes Proceedings of the American Control Conference. Chicago,2000:2058-2062
    76于丽杰,王京.监控AGC系统的智能PID控制策略.北京科技大学学报,2005,(2):119-122
    77王成阁,吴敏.参数自整定模糊控制器厚度监控AGC的实现.有色金属加工,2004,(6):42-48
    78杨景明,韩宗刚,徐雅洁.秒流量液压AGC系统的动态仿真研究.冶金设备,2006,(4):1-4
    79张立静,张浩.冷轧板厚度控制系统中的秒流量控制.河北冶金,2005,23-28
    80肖至勇,张伟,宋接.基于激光测速仪的秒流量AGC控制.宝钢技术,2004(1):17-21
    81 Tomoyuki Tezuka, TakasHi YamasHita. Application of a New Automatic Gauge Control System for Reversing Tandem Cold Mill. IEEE Translation Industry Applications,2006:22-25
    82 Stephens R I, Randall A. On-line adaptive control in the hot rolling of steel. IEE Proc Control Theory and Applications,2002,144(1):15-24.
    83朱义国.宝钢1420轧机AGC系统分析.宝钢技术,2005增刊:24-28
    84杨卫东.基于弹跳方程的GM-AGC的局限性.冶金自动化,2005,(4):59-61
    85于强,李刚夫.八钢冷轧平整恒延伸率控制及其影响因素分析.新疆钢铁,2006,(1):3-5
    86张胜芬,唐志富.冷轧平整机组延伸率自动控制系统浅析.攀钢技术,1997,(2):1-3
    87陈萍,李东亭.2030mm冷轧平整机延伸率控制系统的研究.宝钢技术,2004,(4):44-47
    88向浪涛.平整机延伸率控制系统.重钢技术,2006,(2):34-37
    89史步海,丁川,张健,等.智能PID算法在延伸率控制中的应用.控制工程,2003,(3):239-242
    90 H.Dyja, J.Markowski, D.Stoinski. Asymmetry of Roll Gap as a Factor Improving Work of the Hydraulic Gauge Control in the Plate Rolling Mill. Journal of Materials Processing Technology, 1996:73-80
    91杨军宏,尹自强,李圣怡.阀控非对称缸的非线性建模及其反馈线性化.机械工程学报,2006,(5):203-207
    92 Q.Zhang, XD.Kong. Study of Valve Function and Characteristics Programmability Using Programmable E/H Valve. Proceedings of the 5th International Conference on Fluid Power Transmission and Control(ICFP’2001),Hangzhou,2001,(4):258-264.
    93李洪人,王栋梁,李春萍.非对称缸电液伺服系统的静态特性分析.机械工程学报, 2003,(2):18-23
    94 T. J. Viersma. Analysis, synthesis and design of hydraulic servo-system and pipelines. Elsevier Scientific Publishing Company,Amsterdam,1980:26-29
    95 Prodip BHOWAL, S. K. MUKHERJEE. Modeling and Simulation of Hydraulic Gap Control System in a Hot Strip Mill. ISIJ International,1996,36(5):553-562
    96 V.Salganik. Mathematical Modeling of Roll Load and Deformation in a Four-high Strip Mill. Journal of Materials Processing Technology,2002:695-699
    97 H.Dyja, J.Markowski, D.Stoinski. Asymmetry of Roll Gap as a Factor Improving Work of the Hydraulic Gauge Control in the Plate Rolling Mill. Journal of Materials Processing Technology, 1996: 73-80
    98高殿荣,吴晓明.工程流体力学.北京:机械工业出版社,1999:57-62
    99王春行.液压伺服控制系统.北京:机械工业出版社,1997:15-16
    100范春懿.液压AGC系统动特性的计算机辅助分析.[燕山大学工学硕士学位论文].2000:23-24
    101肖凯鸣,谢士强,白志大.轧机液压压下系统动态性能分析和研究.液压气动与密封,2000(10): 17-20
    102罗祯伟,刘路漫.中厚板轧机液压系统的动静态品质分析.宽厚板,2000,6(6):15-20
    103刘劲军.管道动态特性分析及其液压伺服控制系统中的应用研究.[燕山大学工学博士学位论文].2002:12-38;54-59
    104孔祥东.DC轧机板厚板形综合调节控制系统理论与试验研究.[东北重型机械学院工学博士论文].1991:84-88
    105 Walton J. A digital compensator design for electro-hydraulic single-Rod cylinder position control systems. Journal of Dynamic Systems, Measurements and Control Transactions of the ASME. 1990,112:403-409
    106 Yao B, Bu F, Reedy J. Adaptive robust motion control of single-rod hydraulic actuators: theory and experiments. IEEE/ASME Transactions on Mechatronics,2000,5(1):79-91
    107孙文质.液压控制系统.北京:国防工业出版社,1995:53-56
    108孙如军.数控液压伺服阀组成与伺服油缸的性能分析.机床与液压,2007,35(7):87-91
    109杨尚平,吴张永,杨晓玉,等.粘性阻尼系数的动态测试法.机床与液压,2005,(1):80-82
    110卢长耿,李金良.液压控制系统分析与设计.北京:煤炭工业出版社,1991:138-163
    111金朝铭.液压流体力学.北京:国防工业出版社,1994:124-147
    112王静,龚国芳,杨华勇.油液弹性模量检测装置设计与仿真分析.液压与气动,2006(7):34-36
    113严金坤.液压动力控制.上海:上海交通大学出版社,1986:39-41
    114曾良才.大型轧机自动辊缝控制伺服缸的摩擦力自动测试.液压与气动,2002(1):26-28
    115石全.浅谈伺服液压缸的设计.液压与气动,2004,(3):52-53
    116 T.J.Viersms. Investigations into the accuracy of hydraulic servomotors. Thesis,Delft University of Technology,1961:107-109
    117唐谋凤.现代带钢冷连轧机的自动化.北京:冶金工业出版社,1995,8
    118王彤,刘相华.带钢轧机弹性曲线的研究.轧钢,2000,17(1):8-10
    119 Kazuya Asano, Kazuhiro Yamamoto, Takashi Kawase, ect. Hot Strip Mill Tension-looper Control Based on Decentralization and Coordination. Control Engineering Practice 8,2000: 337-344
    120叶恒,傅周东.电液伺服阀阀系数的研究.液压与气动,2003,(12):12-14
    121李福尚,张继木,郑广良,等.电液伺服阀的内泄漏特性及故障在线分析实例.山东电力技术, 2006,(2):20-22
    122周梓荣,李夕兵,刘迎春.环形缝隙中压力水的流动规律研究与试验.中国机械工程,2005,(11): 1009-1112
    123孔祥东,刘劲军,谭兆彦,等.一种研究管道对电液伺服系统动态性能影响的综合分析法.燕山大学学报,1998,(1):59-62
    124雷天觉,杨尔庄,徐守刚.新编液压工程手册(上).北京:北京理工大学出版社,1984:12-15
    125华建新,王贞祥.全连续式冷连轧机过程控制.北京:冶金工业出版社,2000:115-120
    126陈建华,张殿华.压力AGC有关问题的综述.钢铁研究,1999,(5).36-40
    127赵厚信,王喆等.压力AGC系统与其它厚控系统共用的相关性分析.冶金设备,2005, 150(2):23-27
    128谭树彬,钟云峰,徐心和.压力AGC与监控AGC相关性研究.东北大学学报(自然科学版)2006, 27(3):256-258
    129王益群,孔祥东主编.控制工程基础.北京:机械工业出版社,2000:137-143
    130罗佑新,张龙庭,李敏著.灰色系统理论及其在机械工程中的应用.长沙:国防科技大学出版社, 2001:1-10
    131郭齐胜,郭晓军,李光辉,等编著.系统建模原理与方法.长沙:国防科技大学出版社, 2003:197-223
    132张瑞芳,刘峰,黄强,等.灰箱辨识在二系悬挂参数估计中的应用.铁道机车车辆,2006, 26(4):26-28
    133潘蕾,林中达,杨瑜文.重型单轴燃气轮机的机理型灰箱建模方法的研究.燃气轮机技术,2006,16(4):39-44
    134邓聚龙著.灰色系统理论教程.武汉:华中理工大学出版社,1990:24-28
    135邓聚龙著.灰色系统理论.武汉:华中理工大学出版社,1982:112-125
    136郭齐胜,杨秀月,王杏林等编著.系统建模.北京:国防工业出版社,2006:223-255
    137刘思峰等.灰色系统理论及其应用.北京:科学出版社,2000:102-110
    138陈午凡.小波分析及其在图象处理中的应用.北京:科学出版社,2002:12-18
    139周朋,奚日辉等.基于小波变换的医学图像融合技术的实现.中国图象图形学报,2006,(11): 45-47
    140张羽.小波分析在波浪理论中的应用研究.云南财经大学学报,2006,(5):32-34
    141王成明,颜云辉.神经网络方法在冷轧带钢表面质量检测中的应用研究.机械制造,2006, (12):45-48
    142欧阳永保,丁红瑞.小波分析在水文预报中的应用.海河水利,2006,(6):44-47
    143 Richter B, Warburton R. A New Generation of Super Conducting Gravimeters Enables the In-situ detection and Elimination of Offsets and Interruptions from Continuous Gravity Measurements.In: Ducarme B, ed. Proc. 13th Symp. Earth Tides,Brussels,2006:545-555
    144赵志业.金属塑性变形与轧制理论.北京:冶金工业出版社,1982:23-33
    145王苏斌.SPSS统计分析.北京:机械工业出版社,2003:132-145
    146刘华,杨荃,何安瑞.速度对极薄铝箔轧制的影响,塑性工程学报,2007,14(1):76-80
    147白永昕.热连轧热卷箱速度控制及匹配的设计应用.电气传动,2006,(7):48-51
    148辛达夫.铝箔轧制的速度效应.轻合金加工技术,1984,(9):10-15
    149顾洪家.酸轧联合机组速度优化控制技术的应用.宝钢技术,2007(4):68-71
    150张志平,周立,毛大恒.铝箔轧制润滑机理和速度效应的研究.轻合金加工技术,2004,(12): 16-20
    151李跃宇,钮鸿儒.考虑粘着摩擦和滑动摩擦的轧制变形速度的计算.河北理工学院学报,2006, 28(13):40-43
    152刘涛.带钢冷轧辊热行为及其补偿策略研究.[燕山大学工学博士学位论文].2006:62-63
    153张玉铎.系统辨识与建模.北京:水力电力出版社,1995:3-5
    154方崇智,萧德云.过程辨识.北京:清华大学出版社,1988:1-3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700