用户名: 密码: 验证码:
厌氧折流板反应器中硫酸盐还原菌颗粒污泥处理含铜废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展,各种废水的产生量大幅度上升,由此带来的环境污染问题日益严峻。以硫酸盐还原菌(Sulfate Reducing Bacteria ,简称SRB)为代表的厌氧微生物处理技术具有对污染物降解完全、处理成本低和不产生二次污染的特点,是一项极具发展潜力的污水处理技术。厌氧折流板反应器(Anaerobic Battled Reactor ,简称ABR)具有其独特的优势,设计简单、成本较低,截留污泥能力强,稳定性高,是一种高效的厌氧反应器。本文在分析了ABR反应器的研究与应用现状、硫酸盐还原菌处理重金属废水研究进展的基础上,较系统地对利用ABR反应器培养、驯化SRB颗粒污泥及处理含铜废水的性能进行了研究。
     利用实验室自制的ABR反应器,采用人工葡萄糖配水进行实验,分析了ABR反应器启动过程的运行特性及SRB颗粒污泥的特性,结果表明:35℃恒温条件下,在ABR反应器中直接接种厌氧颗粒污泥, 57天可完成启动,最高容积负荷可达4.9kgCOD/(m3·d),COD与SO42-去除率都稳定在91%以上;启动完成后,反应器中1#、2#格室颗粒污泥的VSS/TSS值比接种污泥的值大,颗粒污泥具有较高的生物活性和良好的沉淀性。
     接着,通过静态试验研究了在不同pH值、SO42-质量浓度、Cu2+质量浓度条件下系统比产甲烷活性的变化规律以及SRB颗粒污泥去除有机物、还原硫酸盐、去除Cu2+等的效果。结果表明:(1)当pH=6~8时,SRB颗粒污泥活性最高,SO42-的去除率最高达91.8%,COD去除率为83.2%~90.5%,SRB颗粒污泥对Cu2+的去除效率也达到最佳,去除率>91.6%。(2)当SO42-质量浓度为2000mg/L,COD与SO42-质量浓度的比值ω(COD)/ω(SO42-)=2时,SRB颗粒污泥的活性最高,此时系统比产甲烷活性为406.2mL/(g·d),SO42-和Cu2+去除率分别达到93.4%、97.1%,且Cu2+去除率与SO42-还原率呈正相关关系。(3)当Cu2+质量浓度为10 mg/L时,系统产甲烷量达到最大值,为58.3mL/h,COD去除率高达90.5 %,但SO42-最大去除率(91.9%)却出现在Cu2+浓度为8mg/L时;当溶液的Cu2+浓度低于35mg/L时,SRB颗粒污泥对Cu2+的去除效率基本稳定在98%以上。
     最后,研究了ABR反应器处理含铜废水的运行特性,结果表明:(1)在整个进水硫酸盐浓度调节阶段(即SO42-质量浓度由2000mg/L逐步降低到500mg/L,再逐步提到到2000mg/L),水中溶解性硫化物(DS)质量浓度在51~246mg/L的范围内波动,没有达到毒害厌氧微生物的浓度,而Cu2+去除率也始终保持在95.1%以上,SO42-去除率维持在83.1%~92.7%之间。(2)当水力停留时间(HRT)由初始状态的20h缩短至7h,COD容积负荷由4.8kgCOD/(m3·d)增加到13.7kgCOD/(m3·d),COD去除率、SO42-去除率、Cu2+的去除率、DS质量浓度均呈阶梯状下降。(3)随着进水Cu2+浓度的增加,厌氧系统对Cu2+的去除效率基本稳定在90%以上,出水SO42-浓度在266 ~562 mg/L之间;当Cu2+浓度增加到10mg/L时,COD去除率低至69%;ABR反应器1#格室内单位质量SRB颗粒污泥中总铜的量也随着运行时间不断增加,且SRB颗粒污泥中的重金属铜主要以有机质硫化态的形式存在。
     通过扫描电镜观察到,接种污泥表面高低不平,有些区域光滑,有些区域粗糙,颗粒污泥中的微生物形态较为单一,以杆菌为主,也有少量的球菌;启动结束后的颗粒污泥表面较为光滑,颗粒表面有较多孔穴,污泥中微生物含量更丰富,形态更多样,微生物分布比接种污泥更密集。但通入模拟含铜废水后,颗粒污泥的粒径也不断增大,表面高低不平,颗粒污泥的结构也越来越蓬松,在较强的水力冲击下,容易解体而被冲出反应器。
The environmental pollution become worse and worse when more and more wastewater is produced rapidly with the economic development. The treatment technology with anaerobic microorganism which is on the representation of SRB has a lot of advantages, such as reducing the pollutant completely, lower cost and none of the second pollution and it becomes the hotest wastewater treatment at present. According to the structural characteristic of ABR, it has a lot of advantages, such as simple structure, lower price, strong ability of retaining sludge, and high stability and so on, and it has became one of the hot topic of anaerobic reactor study nowadays. On the bases of analyses of principle and applications of ABR and present researches on the heavy metals treatment by SRB, the operation characteristic and performance of treating copper wastewater with SRB granular sludge which was domesticated in ABR were studied systematically in the paper.
     The running characteristics during the set-up of ABR and performance changes of granule sludge were analyzed using laboratory-made anaerobic baffled reactor. The experiment results showed that, when the reactor started at a constant temperature of 35℃with inoculated anaerobic granular sludge and simulated synthetic wastewater as substrate,the whole start-up period was 57 days, and the maximum volume loading rate was up to 4.9kgCOD/(m3·d), and the removal rate of COD and SO42- stabled above 91%. And after the set-up, the VSS/TSS of granule sludge in the first and second compartments more than that of inoculated sludge and the granule sludge could still attain high biological activity and fine settlement property.
     Later, the effect of various pH, SO42- and Cu2+ concentration on the performance of sulfate reducing bacteria granular sludge treating COD, SO42- and Cu2+ were investigated by intermittent experiments in this paper. The results indicated that, (1) The SRB granular sludge would be likely to enter into the best operative state when pH was equal to 6~8. Besides, the maximum SO42- removal rate was 91.8%, the removal rate of COD was 83.2% to 90.5% and the maximum Cu2+ removal rate was over 91.6%. (2) The SRB granular sludge would be likely to enter into the best operative state whenω(COD)/ω(SO42-) was equal to 2 with the mass concentration of SO42- being 2000mg/L. Besides, specific methanogenic activity was 406.2mL/(g·d), the maximum SO42- removal rate was 93.4% and the maximum Cu2+ removal rate reached 97.1%, at the same time the removal rate of COD was positive correlation with the SO42- removal rate. (3) When the mass concentration of Cu2+ was equal to 10mg/L, the maximum content of methane produce was 58.3mL/h and the maximum COD removal rate was 90.5%. But the maximum SO42- removal rate (91.9%) presented at Cu2+=10mg/L. The removal rate of Cu2+ became stabled over 98% while mass concentration of Cu2+ was lower than 35mg/L.
     At last, the operation characteristic and performance of treating copper wastewater with SRB granular sludge by ABR were studied. The results indicated that, (1) At the moment of changing the SO42- concentration (the SO42- concentration fell from 2000mg/L to 500mg/L, then increased from 500mg/L to 2000 mg/L ), the DS concentration ranged from 51mg/L to 246mg/L which is lower than the deadly concentration. Besides the Cu2+ removal rate was over 95.1% and the SO42- removal rate ranged from 83.1% to 92.7%. (2) When HRT was shorten from 20h to 7h with the COD volume load increased from 4.8 kgCOD/(m3·d) to 13.7 kgCOD/(m3·d), the removal rate of COD, SO42- and Cu2+ as well as DS concentration decreased steadily. (3) The removal rate of Cu2+ became stabled over 90% and the effluence SO42- concentration was from 266mg/L to 562mg/L with the increasing Cu2+ concentration in influence. The COD removal rate was lower to 69% while Cu2+ concentration increased to 10mg/L. The tatal copper content of SRB granular sludge in the first compartment increased day by day and the copper of SRB granular sludge was mainly in organic sulfate fraction.
     The SEM showed that the inoculated granular sludge surface was rugged and species of microorganisms in it was single such as bacillus and coccus. On the other hand, the surface of domesticated SRB granular sludge was slippery, lacunaris and diversiform. There were various microorganisms in the domesticated SRB granular sludge and they were dense. The granular sludge grew up day by day with treating the copper wastewater. The surface of the granular sludge was so shaggy that it was disaggregated by the current in the ABR.
引文
[1] Wang Jianlong, Huang Yongheng, Zhao Xuan. Performance and characteristics of an anaerobic baffled reactor[J]. Bioresource Technology, 2004, 93(2): 205-208
    [2] Grobicki A.M.W, Stuckey, D.C. Hydrodynamic characteristics of the anaerobic baffled reactor[J]. Wat. Res, 1992, 26:371–378
    [3] Barber W.P, Stuckey D. The use of the anaerobic baffled reactor (ABR) for wastewater treatment: A review[J]. Water Res, 1999, 33(7):1559–1578
    [4] Uyanik S, Sallis P.J, Anderson G.K. The effect of polymer addition on granulation in an anaerobic baffled reactor (ABR). Part 1: process performance[J]. Water Res, 2002, 36: 933–943
    [5] Plumb J, Bell J, Stuckey D.C. Microbial populations associated with treatment of an industrial dye effluent in an anaerobic baffled reactor[J]. Appl Environ Microbiol, 2001, 67(7): 3226–3235
    [6] Logna B.E, Hunt J.R. Biofloculation as a microbial response to sub-strate limitations[J]. Biotechnology Bioengineering, 1988, 31: 91-101
    [7] William P.B, Stuckey D.C. Nitrogen removal in a modified anaerobic baffled reactor (ABR):1,denitrification[J].WaterRes., 2000, 34(9): 2413-2422
    [8] William P.B, Stuckey D.C. Nitrogen removal in a modified anaerobic baffled reactor(ABR): 2,Nitrification[J]. Water Res., 2000, 34(9): 2423-2432
    [9] Boopathy R, Tilche A. Anaerobic digestion of high strength molasses wastewater using hybrid anaerobic baffled reactor[J]. Water Res., 1991, 25(7): 785-790
    [10] Barber W.P, Stuckey D. Metal bioavailability and trivalent chromium removal in ABR[J]. J Environ Eng, 2000, 126(7): 649-656
    [11] Bell J, Buckey C.A. Treatment of a textile dye in the anaerobic baffled reactor[J]. Water SA , 2003, 29(2):129–134
    [12] Bell J, Plumb J, Buckley C, et al. Treatment and decolorization of dyes in an anaerobic baffled reactor[J]. Environ Eng, 2000, 126(11): 1026–1032
    [13]沈耀良,王宝贞.废水生物处理新技术—理论与应用[M].北京:中国环境科学出版社,1999
    [14]戴友芝,冀静平,施汉昌等.厌氧折板流反应器对有毒有机物冲击负荷的适应性[J].环境科学,2000,21(1):12-18
    [15]李刚,欧阳峰,杨立中.ABR反应器性能研究:回顾与总结[J].中国沼气,2001,19(3):9-14
    [16]沈耀良,孙立柱,管闻,等.ABR反应器处理低浓度废水的研究[J].江苏环境科技,2004,17(4):1-5
    [17]孙剑辉,张波,彭云辉.新型高效生物处理技术—厌氧折流板反应器[J].工业水处理,2002,22(4):5-8
    [18]许保玖,龙腾锐.当代给水与废水处理原理[M].北京:高等教育出版社,2000
    [19] Boopathy R. Performance of a modified anaerobic baffled reactor to treat swine waste[J]. Trans ASAE, 1991, 34(6):2573-2578
    [20] Nachaiyasit S, Stuckey D C, The effect of low temperature on the performance of an anaerobic baffled reactor (ABR)[J].Chem. tech. Biotechnol, 1997,69:276-284
    [21] Chynoweth D P, Srivastra V J,Conrad J R .Research study to determine the feasibility of producing methane gas from sea kelp [R]. Annual Report for General Electric Company, IGT Project 30502, 1980
    [22]赵丹等.厌氧折流板反应器(ABR)的水动力学及污泥特性[J].环境工程,2001,19(2):12-15
    [23] Fox P, Venka tasubbiah V. Coupled anaerobic/aerobic treatment of high-sulphate wastewater with sul-phate reduction and biological sul-phide oxidation [J]. Wat. Sci. Technol ,1996,34(5-6):359-366
    [24]王健,沈耀良.废水厌氧反应器工艺的未来发展方向[J].污染防治技术,2002,15 (2):13-15
    [25]徐金兰.厌氧折流板反应器(ABR)系统的特性及调控研究[D].西安:西安建筑科技大学,2004
    [26]徐金兰,黄廷林,王志盈.厌氧折流板反应器处理难降解PVA废水[J].中国环境科学,2005,25(1):65-69
    [27] Ozlem S.K. Performance of anaerobic baffled reactor (ABR) treating synthetic wastewater containing p-nitrophenol[J]. Enzyme and Microbial Technology, 2005, 36: 888-895
    [28]高廷耀.水污染控制工程[M].高等教育出版社,1989
    [29]缪应棋.水污染控制工程[M].东南大学出版社,2002
    [30] Janssen. AJH Sleyster R. Kaa C vd. Jochensen A. Bontsema J. Lettinga G. Biological sulfide oxidation in a fed-batch reactor[J]. Biotechnology Bioeng. 1995, 47: 327-333
    [31]杨景亮,左剑恶,胡纪萃.两相厌氧工艺处理含硫酸盐有机废水的研究[J].环境科学,1994,16(3):8-12
    [32]李军,杨秀山,彭永臻.微生物与水处理工程[M].化学工业出版社,2002
    [33]赵宇华,叶央芳,刘学东.硫酸盐还原菌及影响因子[J].环境污染与防治,1997,19(5):41-43
    [34] Renze.T, Van Houten and Lettinga G. A novel reactor design for biological sulphate removal. proe.8th international conf.on anaerobic design, Sendai, JaPan, 1997, 5:25-29
    [35] Choi,E. and J.M.Rim. Competition and inhibition of sulfate reducers and methane producers in anaerobic treatment[J]. Wat. Sci. Tech., 1991, 23: 1259-1264
    [36] Vossoughi M. and Shakeri M. Performance of an-aerobic baffled reactor treating synthetic wastewater influenced by decreasing COD/SO4 ratios[J].Chemical Engineering and Processing,2003,42,811-816
    [37]缪应祺,倪国,岳强.ASBR法处理酸性钛白废水的技术研究[J].江苏大学学报,2003,24(1):87-90
    [38] Mizuno O., Li Y.Y. and Noike T. Effects of sulfate concentration and sludge retention time on the interaction between methane production and sulfate reduction for butyrate[J]. Wat.Sci. Tech., 1994, 30(8): 45-54
    [39] Uberoi, V., Bhattacharya, S.K. Interactions among sulfate reducers, acetogens and methanogens in anaerobic propionate system[J].Water Environ. Res., 1995, 67(3): 330-339
    [40] Lam Shirley, et al. Interactions between methanogenic, sulfate-reducing and syntrophic acetogenic bacteria in the anaerobic degradation of benzoate[J]. Water Res, 1996, 30(7): 1555-1562
    [41] R.E.斯皮斯著,李亚新译,马志毅校.工业废水厌氧生物技术[M].中国建筑工业出版社,2001
    [42] Bhattacharya S K., Uberoi V, Dronamraju M M. Interaction between acetate fed sulfate reducers and methanogens[J]. Water Res, 1996, 30(10): 2239-2246
    [43]任南琪,王爱杰,甄卫东.厌氧处理构筑物中SRB的生态学[J].哈尔滨建筑大学学报,2001,34(1):39-44
    [44] Parkin G F, Sneve Loos. Anaerobic filter treatment of sulafte containing wastewater[J]. Water Sci. Technol., 1991(23): 1283
    [45]杨景亮,赵毅,任洪强,等.含硫酸盐高浓度有机废水生物处理技术[J].中国环境科学,1999,19(3):281-284
    [46] M.A.M Reis, J.S Almeida, P.L Lemos, et al. Eeffet of hydrogen sulfide on growth of sulfate reducing bacteria[J]. Biotechnology and Bioengineering, 1992, 40(5): 593-600
    [47]吴烈,潘志平.含重金属离子废水的生物处理[J].中国给水排水,2001,17(10):31-34
    [48]叶锦韶,尹华,彭辉,等.重金属的生物吸附研究进展[J].城市环境与城市生态,2001,14(39):30-32
    [49]王清良,段晓恒,黄爱武.SRB生物法处理废水的研究进展与现状[J].中国矿业,2005,14(2):6-8
    [50]苏冰琴,李亚新.硫酸盐生物还原和重金属的去除[J].工业水处理,2005,25(9):1-4
    [51] Ueki, K. Removal of sulfate and heavy metal from acid mine water by anaerobic treatment with cattle waste: fffects of heavy metal ion sulfate reduction[J]. Environ Sci Health,1991,26(8):1471-1489
    [52] Dvorak, D.H., Hedin, R.S.. Treatment of metal-contaminated water using bacterial sulfate reduction: results from pilot-scale reactors[J]. Biotech. Bioeng., 1992, 40:609-616
    [53] Oliver J Hao,Li Huan and Jin M Chen. Effect of metal additions on sulfate reduction activity in wastewaters[J]. Toxicological and Environmental chemistry,1994,46:197-212
    [54]华尧熙,叶雪明,马晓航.硫酸盐生物还原法处理含锌废水[J].环境科学,1995,16(4):19-21
    [55] HuaYaoxi, MaXiaohang. Cd2+ removal from wastewater by sulfate reducing bacteria with an anaerobic fluidized bed reactor[J]. J.Environ.Sci., 1997, 9(3):366-370
    [56]张介驰,田小光,于德,等.硫酸盐还原菌净化含铬电镀废水的中试研究[J].生物技术,1997,7(1):32-34
    [57] Cheong Young-Wook, Min Jeong-Sik, Kwon Kwang-Soo. Metal removal efficiencies of substrates for treating acid mine drainage of the dalsung mine, South Korea[J]. Journal of Geochemical Exploration, 1998, 64:147- 152
    [58] Jalali Kathy, Baldwin Susan A. The role of sulfate reducing bacteria in copper removal from aqueous sulphate solutions [J].Wat. Res., 2000, 34(3):797-806
    [59] Foucher S, et al. Treatment by sulfate-reducing bacteria of cheesy acid- mine drainage and metals recovery [J]. ChemicalEngineering Science, 2001, 56:1639-1645
    [60] Glombitza F. Treatment of acid lignite mine flooding water by means of microbial sulphate reduction[J].Waste Management,2001,21:197-203
    [61] Shashank Harithsa, Savita Kerkar, Loka Bharathi P A. Mercury and lead tolerance in hypersaline sulphate-reducing bacteria [J].Marine Pollution Bulletin, 2002, 44:726-732
    [62] Tuppurainnen K O, Vaisanen A O, Rintala J A. Zinc removal in anaerobic sulphate-Reducing liquid substrate process[J]. Minerals Engineering, 2002, 15:847-852
    [63]安淼,周琪.城市污泥中重金属的形态分布和处理方法的研究[J].广州环境科学,2002,17(4):1-5
    [64]张延青,谢经良,彭忠,等.硫酸盐对重金属化学形态的转化作用[J].中国给水排水,2004,20(2):62-64
    [65] Silva A. J.and Vresche M. B. Sulphate removal from industrial wastewater using a packed-bed anaerobic reactor[J]. Process Biochemistry, 2002,37:927-935
    [66] Jong Tony, Parry David L. Removal of Sulfate and Heavy metals by sulfate reducing bacteria in short-term bench scale up-flow anaerobic packed bed reactor runs[J]. Wat. Res., 2003, 37:3379-3389
    [67] Kaksonen A H, Riekkola-Vanhanen M L, Puhakka J A. Optimization of metal sulphide precipitation in fluidized-bed treatment of acidic wastewater[J]. Wat. Res., 2003, 37: 255-266
    [68]瞿建国,申如香,徐伯兴,等.硫酸盐还原菌还原Cr(VI)的初步研究[J].华东师范大学学报:自然科学版,2005,24(1):105-110
    [69]夏军,瞿建国,李福德.硫酸盐还原菌(SRB)处理含锌废水的基础研究[J].上海化工,2006,31(8):1-3
    [70] I.S. Chang, B.H. Kim. Effect of sulfate reduction activity on biological treatment of hexavalent chromium [Cr(VI)] contaminated electroplating wastewater under sulfate-rich condition[J].Chemosphere, 2007,68:218-226
    [71] W.Liamleam, A.P. Annachhatre. Electron donors for biological sulfate reduction[J]. Biotechnology Advances, 2007,25:452-463.
    [72] D. Teclu, G. Tivchev, M. Laing, M. wallis et al., Determination of the elemental composition of molasses and its suitability as carbon source for growth of sulphate-reducing bacteria[J]. J. Hazard. Material, 2008
    [73]冯易军,谢家理.共存离子对SRB处理含铬废水的影响研究[J].环境污染及防治,1995,17(4):15-17
    [74]田小光,张介驰,傅俐.硫酸盐还原菌净化工业废水的研究[J].生物技术,1997,7(l):29-51.
    [75]潘响亮,王建龙,张道勇.硫酸盐还原菌混合菌群胞外聚合物对Cu2+的吸附和机理[J].水处理技术,2005,31(9):25-28
    [76]潘响亮,王建龙,张道勇,王凡.硫酸盐还原菌混合菌群胞外聚合物对Zn2+的吸附和机理[J].环境科学研究,2005,18(6):53-57
    [77]马军,邱立平,郝醒华.微生物絮凝法处理含铬工业废水中试研究[J].哈尔滨建筑大学学报,2001,34(5):44-48
    [78] LAHJ, KIMKH, QUANZX, et al. Enhancement of sulfate reduction activity using granular sludge in anaerobic treatment of acid mine drainage[J]. Biotechnology Letters, 2003(25):503-508
    [79]苏冰琴,李亚新.EGSB反应器中硫酸盐还原与重金属去除[J].中国矿业大学学报,2008,37(2):246-249
    [80]国家环保局等,水和废水监测分析方法[M],第四版.北京:中国环境出版社,1989
    [81]刘永红,贺延龄,李耀中.UASB反应器中颗粒污泥的沉降性能与终端沉降速度[J].环境科学学报,2005,25(2):176-179
    [82]石元值,康孟利,马立锋,韩文炎.茶园土壤中铅形态的连续浸提测定方法研究[J].茶叶科学,2005,25(1):23-29
    [83] Merington G. The transfer and fate of Cd, Cu, Pb and Zn from two historic metallifercus mine in the U.K[J].Applied Geochemistry, 1994, 9(4):677-687
    [84] Rittmann BE. Me Carty PL著.文湘华等译.环境生物技术原理与应用[M].北京:清华大学出版社,2004,8:516-517
    [85] Postgate J R. The Sulphate Reducing Bacteria. UK: Cambridge University Press, 1984
    [86]马溪平.厌氧微生物学与污水处理[M].北京:化学工业出版社,2005
    [87] Kooter Z.W., Rinzema A., Vegt A.L. and Lettinga G. Sulfide inhibition of the methanogenic activity of granular sludge at virious pH-Levels[J]. Wat. Res. 1986, 20(12):1561-1567
    [88]刘开綦,丁桑岚,刘敏.硫酸盐废水厌氧处理中限制因子的探讨[J].资源开发与市场,2007,23(5):398-400
    [89]杨健.有机工业废水处理理论与技术[M].北京:化学工业出版社,2004:219
    [90]谢冰.重金属对活性污泥微生物的影响[J].上海化工,2005(2):13-16
    [91] Shimada K. Removal of heavy metals from mine wastewater using sulphate-reducing bacteria[J]. Wastewater. Jpn, 1987, 31(5): 52-56
    [92] Okabe S, Nielsen P H, Characklis W G. Factors affecting microbial sulfate reduction by desulfovibrio desulfuricans in continuous culture: limiting nutrients and sulfide concentration. Biothch. Bioeng, 1992, 40: 725-734
    [93] Nachaiyasits, Stuckey D.C. The effectt of low temperature on the performance of ananaerobic baffled reactor (ABR)[J].Chem Tech Biotechnol, 1997(69): 276-284
    [94]单孝全,王仲文.形态分析与生物可给性[J].分析试验室,2001,20(6):103-108
    [95]施惠生,袁玲.工业废渣中重金属化学形态的分析测定[J].水泥化学工程,2003,12:1-3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700