用户名: 密码: 验证码:
石油污染土壤生物修复试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物对污染土壤和水体中石油烃的降解严重受氧含量的制约,缺乏分子氧微生物基本无法降解土壤和水体中的石油。如果能通过提供氧分子以外的其它电子受体来改善微生物对石油污染的修复,就可望为土壤和水体石油污染生物修复开辟新途径。
     本研究在缺氧和厌氧条件下,采用批式试验方法研究了活性污泥在供给硝酸盐、亚硝酸盐、EDTA铁盐或硝酸盐+EDTA铁盐下对苯的降解效果,探讨了这些电子受体对苯缺氧和厌氧微生物降解的影响以及这些电子受体之间的相互作用。结果表明:
     (1)微生物可以在缺氧条件下利用硝酸盐作为电子受体加速苯的降解。控制适宜的C/N比不仅可以促进苯的完全降解,而且还可以避免硝酸盐引起地下水的二次污染。本研究通过改变硝酸盐浓度来确定苯在不同C/N比情况下的降解效果,结果显示,苯在C/N比为15左右时生物降解效果最好。
     (2)在供给硝酸盐时,苯的生物降解作用、硝酸盐还原和亚硝酸盐暂时累积现象同时出现;
     (3)当供给亚硝酸盐时,苯的生物降解作用不明显;
     (4)在供给EDTA铁盐为电子受体时,苯的生物降解作用明显,亚铁盐浓度逐渐升高;
     (5)当同时供给硝酸盐和EDTA铁盐时,苯的生物降解作用明显,并且没有出现明显的亚硝酸盐和亚铁盐累积现象。表明同时供给硝酸盐和EDTA铁盐时,伴随苯的降解首先硝酸盐和铁盐还原产生亚硝酸盐和亚铁盐,随后亚硝酸盐将亚铁盐氧化为铁盐,氧化产生的铁盐又继续作为苯降解的电子受体来降解苯;铁离子和亚铁离子之间构成的氧化还原循环促进了苯的缺氧降解和硝酸盐还原。
Oxygen is one of the key control factors of petroleum hydrocarbons biodegradation in contaminated soil and water body due to the fact that the biodegradation of petroleum hydrocarbons typically occurs under aerobic condition. A potential method to improve bioremediation of petroleum contaminated soil and water body under oxygen-free condition is to supply alterative electron acceptors in the biodegradation process.
     This research was carried out in batch test using activated sludge to investigate the biodegradation of benzene under anoxic condition (using nitrate, nitrite and EDTA-ferric as electron acceptors) and anaerobic condition (using EDTA-ferric as electron acceptors). The results of the effects of supplying the alterative electron acceptors on biodegradation of benzene show that:
     (1) Benzene can be biodegraded with nitrate as electron acceptor under anoxic condition. C/N ratio affects not only biodegradation of benzene, but also removal of contamination due to excess nitrate. The optimum C to N ratio for biodegradation of benzene is at about 15.
     (2) Biodegradation of benzene, reduction of nitrate and accumulation of nitrite occurred simultaneously when nitrate used as electron acceptor.
     (3) Less benzene was removed when nitrite were fed as electron acceptor.
     (4) When EDTA-ferric was supplied as electron acceptor, the amount of benzene removed significantly increased while ferrous concentration gradually increased.
     (5) More benzene was removed when nitrate and EDTA-ferric used as electron acceptor. It is implied that the nitrate and ferric ion were reduced into nitrite and ferrous ion firstly during benzene degradation, and then ferrous ion was further oxidized into ferric ion using nitrite as electron acceptor ensuing less nitrite and ferrous ion accumulated in the activated sludge system, finally the resultant ferric ion acted as electron acceptor in the benzene biodegradation process. Higher degree of benzene biodegradation and nitration reduction could be achieved due to the iron ion reduction-oxidization cycle under oxygen-free condition.
引文
[1]李法云,曲向荣,吴龙华,污染土壤生物修复理论基础与技术,[M]北京:化学工业出版社 2006
    [2]陆秀君,郭书海,孙清等,石油污染土壤的修复技术研究现状及展望[J],沈阳农业大学学报,2003-02,34(1):63-67
    [3]丁克强,孙铁珩,李培军,2000,石油污染土壤的生物修复技术[J],生态学杂志,19(2):50-55
    [4]蔺昕,李培军,台培东,石油污染土壤植物-微生物修复研究进展[J]生态学杂志2006,25(1):93-100
    [5]关卫省,雷自学,张志杰,石化废水生化处理特性研究[J],西安建筑科技大学报,1999,31(1):99-102
    [6]张从,夏立江,污染土壤生物修复技术[M],北京:中国环境科学出版社,2000:246-273
    [7]吴凡,刘训理,石油污染土壤的生物修复研究进展[J],土壤(Soils),2007,39(5):701-707
    [8]齐永强,王红旗,微生物处理土壤石油污染的研究进展[J],上海环境科学,2002,21(3):177-180
    [9]王蓓,张旭,李广贺,芦苇根系对土壤中石油污染物纵向迁移转化的影响[J],环境科学学报,Vol.27,No.8 Aug.,2007 1281-1287
    [10]贾建丽,石油污染土壤微生物学特性与生物修复效应研究[D],北京:清华大学环境科学与工程系,2005:3-51
    [11]张士萍,郑广宏,王磊,石油污染的修复与处理技术[J],四川环境,第26卷第4期 2007年8月
    [13]孙铁珩,周启星,李培军,污染生态学[M],北京:科学出版社,2001:30-368
    [14]周启星,宋玉芳,孙铁珩,生物修复研究与应用进展[J],自然科学进展,第14卷 第7期 2004年7月
    [15]丁克强,尹睿,刘世亮等,石油污染土壤堆制微生物降解研究[J],应用生态学报,2002,13(9):1137-11401
    [16]姜昌亮,石油污染土壤的物理化学处理-生物修复工艺与技术研究[D],沈阳:中国科学院应用生态研究所,2001.1-20
    [17]李永涛,吴启堂,土壤污染治理方法研究[J]农业环境保护,1997,16(3):118-122
    [18]钱暑强,刘铮,污染土壤修复技术介绍[J]化工进展,2000,(4):10-12
    [19]于晓丽,落地原油对土壤污染及治理技术[J]农业环境与发展,2000,(3):28-29
    [20]巩宗强,李培军,台培东等,污染土壤的淋洗法修复研究进展[J]环境污染治理技术与设 备Vol.3,No.7Jul.2002,45-50
    [21]Aatry AR,Euis GM.1992.Bioremediation:An effective remedied alternative for petroleum hydrocarbon contaminated soil[J].Environ.Prog.,11:312-318.
    [22]Shimp J F,Tracy JC,Davis LC,et al.1993.Beneficial effects of plants in the remediation of soil and groundwater contaminated with organic materials[J].Crit.Rev.Envi ton.Sci.Technol.,23:41-77.
    [23]Atlasrm.Petroleum biodegradation and oil spill bioremediation[J].Preprints Div Pet Chem ACS,1993,38(2):236-237.
    [24]Bull AT,Goodfellow M,Slater JH.Biodiversity as a source of innovation in biotechnology [J].Annual Rev.Microbiol.,1992,40:219-252.
    [25]李凤梅,郭书海,牛之欣等,稠油降解菌的筛选及其对胶质和沥青质生物降解[J],土壤通报,2006,37(4):764-767
    [26]Jensen V.Bacterial flora of soil after application of oilywaster[J].Oikos,1975,26:152-158.
    [27]孙铁珩,李培军,周启星,土壤污染形成机理与修复技术,[M]北京:科学出版社 2005
    [28]周启星,宋玉芳,污染土壤修复原理与方法,[M]北京:科学出版社 2004
    [29]王焕校,污染生态学,[M]北京:高等教育出版社 2000
    [30]Lee CH,Lee J Y.Evaluation of air injection and extraction test at a petroleumcontaminated site[J].Water,Air and Soil Pollution,2002,135(1):65-97
    [31]郭江峰,孙锦荷,污染土壤生物治理的研究方法[J]环境科学进展,1995,3(5:62-68
    [32]陆光华,万蕾,苏瑞莲,石油烃类污染土壤的生物修复技术研究进展[J],生态环境2003,12(2):220-223
    [33]张海荣,李培军,孙铁珩等,四种石油污染土壤生物修复技术的研究[J]农业环境保护,2001,20(2):78-80
    [34]李培军,郭书海,孙铁珩等,不同类型原油污染土壤生物修复技术研究[J],应用生态学报,Nov.2002,13(11):1455-1458
    [35]巩宗强,李培军,郭书海等,多环芳烃污染土壤的生物泥浆法修复[J]环境科学,2001,22(5):112-116
    [36]周启星,宋玉芳,植物修复技术内涵及展望[J],安全与环境学报,2001,1(3):48-53
    [37]Flathrnan PE,Lanza GR.Current views on an emerging green technology[J].Journal of Soil Contamination,1998,7:415-432
    [38]魏树和,周启星,有机污染环境植物修复技术,生态学杂志2006,25(6):716-721
    [39]沈德中,2002,污染环境的生物修复[M]北京:化学工业出版社
    [40]孙铁珩,宋玉芳,徐华夏.植物法生物修复PAHs和矿物油污染土壤的调控研究.应用生态学报,1999,10(2):225-229
    [41]丁克强,骆永明.多环芳烃污染土壤的生物修复.土壤,2001,33(4):169-176
    [42]刘晓冰,刑宝山,周克琴等,2005,污染土壤植物修复技术及其机理研究[J],中国生态农业学报,13(1):134-138
    [43]郜红建,蒋新,常江等,2004,根分泌物在污染土壤生物修复中的作用[J],生态学杂志,23(4):135-139
    [44]Gunther T,Dornberger U,Fritsche W.1996.Effects of ryegrass on bioremediation of hydrocarbons in soil[J].Chemosphere,33(2):203-215.
    [45]丁克强,骆永明,2001,生物修复石油污染土壤[J],土壤,4:179-196
    [46]丁克强,骆永明,2001,多环芳烃污染土壤的生物修复[J],土壤,4:169-178
    [47]陈嫣,李广贺,张旭等,2005,石油污染土壤植物根际微生态环境与降解效应[J],清华大学学报(自然科学版),45(6):784-787
    [48]Raghavan P U M,VivekanandanM.1999.Bioremediation of Oil-spilled sites through seeding of naturally adapted Pseudomonas putida[J].International Biodeterioration and Biodegradation,44(1)29-32.
    [49]宋玉芳,许华夏,任丽萍,两种植物条件下土壤中矿物油和多环芳烃(PAHs)的生物修 复研究应用生态学报[J],Feb.2001,12(1):108-112
    [50]van Beilen J B,Li Z,Duetz W A,et al.Diversity of alkanehydroxylase systems in the environment[J].Oil & Gas Science andTechnology Rev IFP,2003,58(4):427-440.
    [51]Bezalel L,Hadar Y,Cerniglia C E.Enzymatic mechanisms involvedin phenanthrene degradation by the white rot fungus Pleurotusostreatus[J].Appl Environ Microbiol,1997,63(7):2495-2501.
    [52]Collins P J,Kotterman M J J,Field J A,et al.Oxidation of anthracene and benzo[a]pyrene by laccases from Trametes versicolor[J].App Environ Microbiol,1996,62(12):4563-4567.
    [53]Kohlmeier S,Smits T H M,Ford R M,et al.Taking the fungal highway:mobilization of pollutant-degrading bacteria by fungi[J].Environ Sci Technol,2005,39(12):4640-4646.
    [54]Wick L Y,Remer R,Wurz B,et al.Effect of fungal hyphae on theaccess of bacteria to phenanthrene in soil[J].Environ Sci Technol,2007,41(2):500-505.
    [55]韩慧龙,汤晶,江皓,真菌.细菌修复石油污染土壤的协同作用机制研究,环境科学,Vol.29,No.1,Jan.,2008,189-195
    [56]韩慧龙,陈镇,杨健民,真菌.细菌协同修复石油污染土壤的场地试验,环境科学,Vol.29,No.2,Feb.,2008 454-461
    [57]Coates J D,et al.Emerging techniques for anaerobic bioremediation of contaminated environments[J].Trends in Biotechnology,2000,18(10):408.
    [58]Antonio M.A.Fiuza,M.Cristina C.Vila,An insight into soil bioremediation through respireometry[J]Environment International 31(2005)179-183.
    [59]J T Dibble and R Bartha,Effect of environmental parameters on the biodegradation of oil sludge,Appl Environ Microbiol.1979 April;37(4):729-739.
    [60]Thomas,J.M.,Ward C.H.,Raymond,R.L.,Wilson,J.T.,Loehr,R.C.,1992.Bioremediation.Encyclopedia of microbiology[J],369-385.
    [61]Mill,S.A,Frankenberger Jr.,W.T.,1994.Evaluation of phosphorus sources promoting bioremediation of diesel fuel in soil[J].Bull environ.Contam.Toxicol.53,280-284.
    [62]何良菊,李培杰,魏德洲,石油烃微生物降解的营养平衡及降解机理,环境科学,Vol.25,No.1Jan.,2004,91-94
    [63]Daniel Delillea,Frederic Coulona,Emilien Pelletier,Effects of temperature warming during a bioremediation study of natural and nutrient-amendedhydrocarbon-contaminated sub-Antarctic soils[J],Cold Regions Science and Technology 40(2004)61-70.
    [64]Rhykerd RL,Wearver RW,Mclrmes KJ.Influence of salinity on bioremediation of oil in soil[J].Environ Pollut 1995,90:127-130.
    [65]Alexander,M,1980.Biodegradation of chemicals of environmental concem[J].Science 211,132-133.
    [66]贾建丽,李广贺,张旭,石油污染土壤生物修复的中试系统构建与运行效果,中国环境科学2005,25(3):339-342
    [67]N.Vasudevan,P.Rajaram,Bioremediation of oil sludge-contaminated soil[J],Environment International 26(2001):409-411
    [68]Michael H.Huesemann,Michael J.Truex,The role of oxygen diffuseion in passive bioremediation of petroleum contaminated soils,Journal of Hazardous Materials 51(1996)93-113
    [69]R.L.Rhykerd,B.Crews,K.J.McInnes,R.W.Wwaver,Impact of bulking agents,forced aeration,and tillage on remediation of oil-contaminated soil,Bioresource Technology 67(1999)279-285.
    [70]TOMN.P.BOSMA,PETERJ.M.MIDDELDORP,GOSSESCHRAA,ALEXANDERJ.B.ZEHNDER,MassTransferLimitationofBiotransformation:Quantifying Bioavailability,Environ.Sci.Technol.1997,31,248-252.
    [71]FatimaM.Bento,FlavioA.O.Camargo,BenedictC.Okeke,WilliamT.Frankenberger,Comparative bioremediation of soils contaminated with diesel oil by natural attenuation,biostimulaton and bioaugmentation,Bioresource Technology 96(2005)1049-1055.
    [72]K.S.Jorgensen,J.Puustinen,A.M.Suortti,Bioremediation of petroleum hydrocarbon -contaminated soil by composting in biopiles,Environmental Pollution 107(2000)245-254.
    [73]Torsvik V,Goks yr J,Daae F L.High diversity in DNA of soil bacteria[J].Appl.Environ.Microbiol.,1990,56:782-787.
    [74]余素林,赵桂芳,刘芳,石油污染土壤微生物治理技术发展方向[J],中国农业科技导报,2007,9(4):55-60
    [76]Tomotada I,Nasu N.Current bioremediation practice and perspective[J].J.Bioscience and Bioeng.,2001,92:1-8.
    [76]Francis H.Chapelle,Bioremediation of Petroleum Hydrocarbon-contaminated ground water:the perspective of history and hydrology,Ground Water,Jan/Feb 1999;37,1,p122132
    [77]John D.Coates and Robert T.Anderson,Emerging techniques for anaerobic bioremediation of contaminated environments,Trends in Biotechnology,Volume 18,Issue 10,1 October 2000,Pages 408-412.
    [78]Paul J,Pedro J.J.Alvarez and Timothy M.Vogel,Biodegradation of monoaromatic hydrocarbons in aquifer columns amended with hydrogen peroxide and nitrate,Wat.Res.Vol.27,No.4,pp.685-691,1993.
    [79]Anderson RT&Lovley DR(2000)Anaerobic bioremediation of benzene under sulfate-reducing conditions in a petroleum-contaminated aquifer.Environ.Sci.Technol.34:2261-2266.
    [80]Derek R.Lovley~*,Joan C.Woodward~* & Francis H.Chapelle,Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(Ⅲ)ligands,Nature 370,128-131(14 July 1994)
    [81]Lovley DR,Woodward JC &Chapelle FH(1996)Rapid anaerobic benzene oxidation with a variety of chelated Fe(Ⅲ)forms.Appl.Environ.Microbiol.62:288-291.
    [82]S R Hutchins,Biodegradation of monoaromatic hydrocarbons by aquifer microorganisms using oxygen,nitrate,or nitrous oxide as the terminal electron acceptor.Appl Environ Microbiol.1991 August;57(8):2403-2407
    [83]Tate.C.H.,Arnold.K.A.1990.In Water Quality and Treatment,4th ed.;American Water Works Association[M];McGraw-Hill Inc.New York,1990:pp 63-156.
    [84]Irwin,R.J..1997.Environmental Contaminants Encyclopedia.National Park Service,Fort Collins,CO,USA[M].
    [85]Stephen.H.,Stephen.T.1963.Solutilities of in organicand Organic Compounds,Pergamon,Oxford[M].
    [86]H.F.RIDGWAY,J.SAFARIK,D.PHIPPS,P.CARL,AND D.CLARK,Identification and Catabolic Activity of Well-Derived Gasoline-Degrading Bacteria from a Contaminated Aquifer,APPLIED AND ENVIRONMENTAL MICROBIOLOGY,Nov.1990,p.3565-3575.
    [87]JOHN D.COATES,ROBERT T.ANDERSON,DEREK R.LOVLEY,Oxidation of Polycyclic Aromatic Hydrocarbons under Sulfate-Reducing Conditions,APPLIED AND ENVIRONMENTAL MICROBIOLOGY,Mar.1996,p.1099-1101.
    [88]JD Coates,R Chakraborty,MJ McInerney,Anaerobic benzene biodegradation—a new era,Research in Microbiology 153(2002)621-628.
    [89]John D.Coates,Romy Chakraborty,Joseph G.Lack,Susan M.O'Connor,Kimberly A.Cole,Kelly S.Bender,Laurie A.Achenbach,Anaerobic benzene oxidation coupled to nitrate reductionin pure culture by two strains of Dechloromonas,28th June 2001,Nature:Letters,P.1039-1043.
    [90]Romy Chakraborty,Susan M.O'Connor,Emily Chan,and John D.Coates,Anaerobic Degradation of Benzene,Toluene,Ethylbenzene,and Xylene Compounds by Dechloromonas Strain RCB,Applied and Environmental Microbiology,December 2005,p.8649-8655,Vol.71,No.12.
    [91]Romy Chakraborty and John D.Coats,Hydroxylation and Carboxylation-Two crucial steps of anaerobic benzene degradation by Dechloromonas Strain RCB.
    [92]Marcio L.B.DA Silva,Graciela M.L.Ruiz-Aguilar &Pedro J.J.Alvarez.2005.Enhanced anaerobic biodegrtadation of BTEX-ethanol mixtures in aquifer columns amended with sulfate,chelated ferric iron or nitrate[J].Biodegradation(2005)16:105-114.
    [93]李咏梅,顾国维,赵建夫,焦化废水中几种含氮杂环化合物缺氧降解机理,同济大学学报,Vol.29,No.6,J un.2001,721-723
    [94]申海虹,顾国维,李咏梅,缺氧反硝化去除难降解杂环化合物吡啶研究,上海环境科学,2001年第20卷第11期,530-534
    [95]Wojciech holub,Magdalena Przytocka Jusiak,Mieczysl A W,et al.Nitrite as agent selecting anaerobic phenol2degrading microflora in petroleum refining sediments[J].Wat.Res.,2000,4:135421358.
    [96]Walton R K,Janet S H,Aaron L M.The geochemical effects of benzene,toluene,and xylene(BTX)biodegradation[J].Applied geochemistry,1997,12:2912303.
    [97]Jiunn J H,Ju S.Influences of carbon source and C/N ratio on nitratePnitrite denitfification and carbon breakthrough[J].Bioresource Technology,1995,54:45-51.
    [98]李本玉,顾国维,李咏梅,利用缺氧反硝化去除苯的试验研究,给排水Vol.31 No.3 2005,51-54
    [99]Khursheed K,Gupta S K.Continuous biotransformation and removalof nitrophenols under denitrifying condition[J].Water Research,2003,37:2953-2959.
    [100]Siobhan M.Burland and Elizabeth A.Edwards.Anaerobic benzene biodegradation linked to nitrate reduction.APPLIED AND ENVIRONMENTAL MICROBIOLOGY,Feb.1999,p.529-533.
    [101]曲东,毛晖,曾辰,添加铬、铁及葡萄糖对土壤中异化铁还原的影响,西北农林科技大学学报(自然科学版),Vol.32 No.10 Oct.2004,43-46
    [102]Lovely D R,Ph illip s E J P.Novel mode of microbialenergy metabolism:organic carbon oxidation coup ledto dissim ilato ry reduction of iron o r manganese[J].Appl Environ Microbiol,1988,54:147221480.
    [103]Cumm ings D E,M arch A W,Bo stick B.Evidence for microbial Fe(Ⅲ)reduction in anoxic,mining-impactedLake sediments(lake coeur d'alene,idaho)[J].Appl Environ Microbiol,2000,66:1542162.
    [104]谭盈盈,郑平,姜辛,微生物作用下铁(Ⅲ)对有机污染物的氧化,浙江大学学报,2002,28(3):350-354
    [105]王文燕,全向春,何孟常,Fe(Ⅲ)微生物还原机理及其研究进展,环境污染与防治 第28卷第2期2006年2月,116-119
    [106]Liu,C.X.,Y.A.Gorby,J.M.Zachara,J.K.Fredrickson,and C.E Brown.2002.Reduction kinetics of Fe(Ⅲ),Co(Ⅲ),U(Ⅵ)Cr(Ⅵ)and Tc(Ⅶ)in cultures of dissimilatory metal-reducing bacteria[J].Biotechnol.Bioeng.80:637-649.
    [107]Lloyd,J.R.2003.Microbial reduction of metals and radionuclides[J].Microbiol.Rev.27:411-425.
    [108]Lovley,D.R.2000.Fe(Ⅲ)and Mn(Ⅳ)reduction[M].p.3-30.In D.R.Lovley(ed.),Environmental microbe-metal interactions.ASM Press,Washington,D.C.
    [109]Nealson.K.H.,and D.Saffarini.1994.Iron and manganese in anaerobic respiration:environmental significance,physiology,and regulation[J].Annu.Rev.Microbiol.48:311-343.
    [110]Aaron J.Coby and Flynn W.Picardal.2005.Inhibition of NO_3~- and NO_2~- Reduction by Microbial Fe(Ⅲ)Reduction:Evidence of a Reaction between NO_2~- and Cell Surface-Bound Fe~(2+).APPLIED AND ENVIRONMENTAL MICROBIOLOGY,Sept,p:5267-5274.
    [111]Lovley,D.R.,and E.J.P.Phillips.1986.Organic matter mineralization with reduction of ferric iron in anaerobic sediments[J].Appl.Environ.Microbiol.51:683-689.
    [112]Lovley.D.R.1991.DissimilatoryFe(Ⅲ)and Mn(Ⅳ)reduction[J].Microbiol.Rev.55:259-287.
    [113]Roden,E.E.2004.Analysis of long-term bacterial vs.chemical Fe(Ⅲ)oxide reduction kinetics[J].Geochim.Cosmochim.Acta 68:3205-3216.
    [114]Straub,K.L.,M.Benz,and B.Schink.2001.Iron metabolism in anoxic environments at near neutral pH[J].FEMS Microbiol.Ecol.34:181-186.
    [115]Cooper,D. C.,F. Picardal,J. Rivera,and C. Talbot. 2000. Zinc immobilization and magnetite formation via ferric oxide reduction by Shewanella putrefaciens 200 [J]. Environ. Sci. Technol. 34:100-106.
    [116]Cummings,D. E.,F. Caccavo,S. Fendorf,and R. F. Rosenzweig. 1999. Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY [J]. Environ. Sci. Technol. 33:723-729.
    [117]Fredrickson,J. K.,J. M. Zachara,D. W. Kennedy,M. C. Duff,Y. A. Gorby,S. Li,and K. M. Krupka. 2000. Reduction of U(VI) in goethite (a-FeOOH) suspensions by a dissimilatory metal-reducing bacterium. Geochim [J]. Cosmochim.Acta 64:3085-3098.
    [118]Fredrickson,J. K.,J. M. Zachara,D. W. Kennedy,R. K. Kukkadapu,J. P. McKinley,S. M. Heald,C. X. Liu,and A. E. Plymale. 2004. Reduction of TcO4- by sediment-associated biogenic Fe(II) [J]. Geochim. Cosmochim. Acta 68:3171-3187.
    [119]Lloyd,J. R.,P. Yong,and L. E. Macaskie. 2000. Biological reduction and removal of Np(V) by two microorganisms [J]. Environ. Sci. Technol. 34:1297-1301.
    [120]Roden,E. E.,M. R. Leonardo,and F. G. Ferris. 2002. Immobilization of strontium during iron biomineralization coupled to dissimilatory hydrous ferric oxide reduction [J]. Geochim. Cosmochim. Acta 66:2823-2839.
    [121]Kim,S.,and F. W. Picardal. 1999. Enhanced anaerobic biodegradation of carbon tetrachloride in the presence of reduced iron oxides. Environ [J]. Toxicol.Chem. 18:2142-2150.
    [122]McCormick,M. L.,E. J. Bouwer,and P. Adriaens. 2002. Carbon tetrachloride transformation in a model iron-reducing culture: relative kinetics of biotic and abiotic reactions[J]. Environ. Sci. Technol. 36:403-410.
    [123]Lovley, D.R., Woodward, J.C., Chapelle, F.H..1996.Rapid anaerobic benzene oxidation with a variety of chelated Fe(IH) forms [J] .Applied and Environmental Microbiology 62:288-291.
    [124]Calewell, M.E., Tanner, R.S., Suflita, J.M., 1999.Microbial metabolism of benzene and the oxidation of ferrous iron under anaerobic condition: implications for bioremediation [J] .Anaerobe 5, 595-603.
    [125]Heider,J。, Spermann, A.M., Beller,H.R., Widdel,F.1999.Anaerobic bacterial metabolism of hydrocarbons[J]. FEMS microbiology Reviews 22, 459-473.
    [126] Straub,K. L.,M. Benz,B. Schink,and F. Widdel. 1996. Anaerobic,nitrate dependent microbial oxidation of ferrous iron [J]. Appl. Environ. Microbiol. 62:1458-1460.
    [127] Straub,K. L.,and B. E. E. Buchholz-Cleven. 1998. Enumeration and detection of anaerobic ferrous iron-oxidizing,nitrate-reducing bacteria from diverse European sediments [J]. Appl. Environ. Microbiol. 64:4846-4856.
    [128]Straub,K. L.,W. A. Scho¨nhuber,B. E. E. Buchholz-Cleven,and B. Schink.2004. Diversity of ferrous iron-oxidizing,nitrate-reducing bacteria and their involvement in oxygen-independent iron cycling [J]. Geomicrobiol. J. 21:371-378.
    [129] John M. Senko,Thomas A. Dewers,and Lee R. Krumholzl. 2005. Effect of Oxidation Rate and Fe(II) State on Microbial Nitrate-Dependent Fe(lII) Mineral Formation [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY,Nov. 2005,p. 7172-7177.
    [130]Nielsen, J.L., Nielsen, P.H., 1998.Microbial nitrate-dependent oxidation of ferrous iron in activated sludge [J]. Environ.Sci.Technol.32p: 3556-3561.
    [131] Obuekwe.C.O., D.W.S.Westlake,and F.D.Cook. 1981.Effect of nitrate on reduction of ferric iron by a bacterium isolated from crude oil [J]. Can.J.Microbiol.27:692-697.
    [132] Thomas J.Dichristina. 1992.Effects of nitrate and nitrite on dissimilatory iron reduction by shewanella putrefaciens 200 [J] Journal of Bacteriology,p: 1891-1896.
    [133] Matthew E.Caldwell,Ralph S.Tanner and Joseph M. Suflita.l999.Microbial metabolism of benzene and the oxidation of ferrous iron under anaerobic conditions: implications for bioremediation.[J].Anaerobe(1999) 5, 595-603.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700