用户名: 密码: 验证码:
产氢产乙酸优势菌群构建及其对厌氧消化系统的强化效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在参与厌氧消化过程的各微生物类群中,产氢产乙酸菌群在营养生态位上位于产酸发酵菌群和产甲烷菌群之间,在功能生态位上起到承上启下的重要作用,它将产酸发酵菌群代谢产生的丙酸、丁酸等有机挥发酸和乙醇等进一步降解转化为乙酸、CO2和H2,为后续的产甲烷菌群提供了可以直接利用的底物,是有机物甲烷发酵过程必不可少的重要环节。因此强化产氢产乙酸菌群的功能作用,将会有效地提高厌氧生物处理系统的效能。本论文以ABR的运行为基础,以反应器中活性污泥为出发菌群,利用选择培养基进行多次连续传代培养,成功构建了产氢产乙酸优势菌群。然后以构建成功的优势菌群为研究对象,将该产氢产乙酸优势菌群按照适当的配比加入到厌氧消化系统中,考察其生物强化特性对厌氧生物处理系统的生物强化作用。
     通过厌氧活性污泥的选育,利用选择性培养基经过数次传代培养,分别构建成功了氧化丙酸的产氢产乙酸优势菌群B83和氧化丁酸的产氢产乙酸优势菌群D83,借助生理生化试验和PCR-DGGE分子生物学技术对优势菌群B83和D83菌群组成和稳定性进行分析,结果表明,经过10次传代富集培养,B83菌群结构基本稳定;经过7次传代富集培养,D83菌群结构基本稳定。接着考察了稳定的B83和D83产氢产乙酸优势菌群对不同底物的降解特性。
     在保证总生物量一致的前提下,分别考察了B83优势菌群和D83优势菌群在厌氧生物处理系统中的生物强化作用。在以葡萄糖为底物时,B83优势菌群通过生物强化作用,葡萄糖产甲烷率达到1.415 mol/mol,较对照系统提高了1.98倍;D83优势菌群通过生物强化作用,葡萄糖产甲烷率达到2.048 mol/mol,较对照系统提高了1.11倍;当二者复合时,葡萄糖产甲烷率达到1.577 mol/mol,较对照系统提高了2.32倍。而以制糖废水为底物时,单位COD转化H2较对照系统提高了54%,单位COD转化CH4较对照系统提高了63%;相同时间内,COD去除率较对照系统提高了14.1%;生物强化效果明显,有效地提高厌氧生物处理系统的效能。
All kinds of bacteria in anaerobic treatment system take their own functions in anaerobic fermentation; hydrogen-producing acetogens (HPA) connect acidogentic fermentation bacteria with methanogens in function niche. They can convert interim products such as ethanol, propionic acid and butyric acid into acetic acid, H2 and CO2, which can be digested directly by methanogens to methan. This results in relieving the restriction for metabolism of HPA in the meantime. The efficiency of anaerobic organic wastewater treatment system would be improved by enhancing the hydrogen-producing acetogens. This article based on the operation of Anaerobic Baffled Reactor (ABR),through the breeding of sludge we construct the dominant HPA successfully, and then using this sort of HPA, we set them into the anaerobic treatment system with the stable ratio to test its efficacy of bioaugmentation.
     Via to the breeding of anaerobic activated sludge, we cultivated the HPA for times through the selectivity culture media, and then the dominant HPA of B83 and D83 were constructed. According to the results of physiological and biochemical test and PCR-DGGE analysis, the community structure of B83 was perfect after bred for ten times reculture, as well as the community structure of D83 was perfect after bred for seven times reculture. After that, we inspected the degradation characterics of base materials for the dominant HPA of B83 and D83.
     Followed the rules of the equal biomass, we detected the efficacy of bioaugmentation of B83 and D83 in anaerobic treatment system. Utilized the glucose as the base material, the methan-producing rate of unit glucose to B83 is 1.415 mol/mol G, which is 1.98 times than the normal sample; the methan-producing rate of unit glucose to D83 is 2.048 mol/mol G, which is 1.11 times than the normal sample; when we compounded B83 and D83, the methan-producing rate of unit glucose is 1.577 mol/mol G, which is 2.32 times than the normal sample. Also, when we adopted the composition of the normal molasses as the base material, the COD removal of hydrogen-producing increases 54%, the COD removal of methan-producing increases 63%, and the COD removal increases 14.1% during the same time, so we can conclude that the efficacy of bioaugmentation to the dominant HPA is very obvious, and the efficacy of bioaugmentation demonstrated the better effect of resource-rization.
引文
1朱莉·斯托弗.水危机—寻找解决淡水污染的方案.科学出版社. 2000:7~9
    2 P L McCarty. The development of anaerobic treatment and its future [J]. Water Science and Technology, 2001,44(8):149~156
    3 C. J. Banks, Z. Wand. Development of a two phase anaerobic digester for the treatment of mixed abattoir wastes. Wat. Sci. Tech. 1999,40(1):69~76
    4董慧明,李佰广,张颖等.污水厌氧生物处理研究回顾与展望.鞍山师范学院学报. 2006-12, 8(6):31~35
    5李建政,任南琪,秦智.污染控制微生物生态学.哈尔滨工业大学出版社. 2005:190
    6郑元景,沈永明,沈光范.污水厌氧生物处理.中国建筑工业出版社, 1987:10~30
    7张希衡.废水厌氧生物处理工程.中国环境科学出版社, 1996:10~30
    8 Michael J. McInerney, Marvin P. Bryant, Norbert Pfennig. Anaerobic Bacterium that Degrades Fatty Acids in Syntrophic Association with Methanogens. Arch. Microbiol. 1979,122:129~135
    9凌代文,刘聿太,乐华爱.厌氧消化器中微生物生态学的研究.微生物学报. 1992, 32(2):79~84
    10 Michael J. McInerney, Marvin P. Bryant. Anaerobic Degradation of Lactate by Syntrophic Associations of Methanosarcina and Desulfovibrio Species and Effect of H2 on Acetate Degradation. Applied and Environmental Microbiology. 1981,41(2):346~354
    11胡纪萃,周孟津,左剑恶等.废水厌氧生物处理理论与技术.中国建筑工业出版社,2003:49~51
    12闵航,陈美慈,赵宇华等.厌氧微生物学.浙江大学出版社,1993:162~178
    13 M. Talabardon, J. P. Schwirzguébel, P. Péringer. Anaerobic Thermophilic Fermentation for Acetic Acid Production from Milk Ermeate. Journal of Biotechnology. 2003,(76):83~92
    14 Yunli Ren, Xinhui Xing, Chong Zhang. A simplified method for assay of hydrogenase activities of H2 evolution and uptake in Entreobacter areogenes. Bitechnology Letters. 2005,27 :1029~1033
    15祖波,祖建,周富春等.产甲烷菌的生理生化特性.环境科学与技术.2008,31(3) :5~8
    16马超.产氢产乙酸优势菌群的选育及其生理生态特性研究.哈尔滨工业大学硕士论文. 2008:11~12
    17 G. E. Hutchinson. Concluding Remarks. Cold Spring Symposia on Quantitative Biology. 1957,(22): 415~427
    18 Speece R E. Anacrobic Digestion of Biomass[M]. USA:Else-vier Applied Science Pub. 1987:77~79
    19 L Metcal, H P Eddy. American Sewerage Practice,Ⅲ[A]. Disposal of Sewage [C]. McGraw Hill Book Company. NewYork. 1995:4~5
    20 A M Buswel. Laboratory Studies of Sludge Digestion [J]. StateWater Survey. 1930:29
    21 G J Stander. Water Pollution Research- A Key to Wastewater Management[J]. Journal Water Pollution Control Federation. 1966,(38):774~777
    22 J Young, J P McCarty. Treatment of domestic strength wastewater with anaerobic hybrid reactors[J]. Water Pollut Control.1969,(41):160~173
    23 G Lettinga. Application of Anaerobic Digestion for Treating Low Strengh Wastes [J]. H2O. 1972,(5):510~515
    24 G Lettinga, K C Pette, R de Vletter. Anaerobic Treatment of Sugarbeet WasteWater in a 6m3 pilot plant[J]. H2O. 1977,(10):526~531
    25雒文生,张青,蔡振华. UASB处理低浓度城市生活污水的中试试验[J].环境工程. 2006, 10(5):89~93
    26胡纪萃,周孟津,左剑恶等.废水厌氧生物处理理论与技术.中国建筑工业出版社,2003:155~191
    27 M Kato, JA Field, R Kleerebezem. Treatment of low strength wastewater in upflow anaerobic sludge blanket reactors[J]. Ferment Bioengineer. 1994,(77):679~685
    28李建政,朱葛夫,欧阳红等.利用厌氧折流反应系统进行有机废水发酵制氢.化工学报. 2004,55:70~74
    29胡谨,陆新华.隔油-气浮-好氧-厌氧生物滤池工艺处理含油废水.吉林师范大学学报(自然科学版). 2008,4:47~48
    30周秀凤,庞金钊,杨宗政等.生物强化厌氧/好氧组合工艺处理模拟冰淇琳废水.中国给水排水. 2007,23(21):59~61
    31吴锦华,李平,查清云等.厌氧/好氧/生物滤池工艺处理牛仔服漂洗废水.中国给水排水. 2008,24(22):56~59
    32于宏兵,黄涛,林学钰等. 70℃高温水解/厌氧/好氧/ BAC工艺处理高浓度有机废水.环境科学. 2005,26(6):110~114
    33 L Wang, Q Zhou, F T Li. Avoiding propionic acid accumulation in the anaerobic process for biohydrogen production. Biomass and Bioenergy. 2006,30:177~182
    34 Lin Ch-Y, Sato K, Noike T, et al. Methanogenic Digestion Using Mixed Substrate of Acetic, Propionic and Butyric Acids. Water Research. 1986, 20(3):385~394
    35任南琪,刘敏,丁杰等.两相厌氧系统中产甲烷相有机酸转化规律.环境科学. 2003, 24(2):21~26
    36刘艳玲.两相厌氧系统底物转化规律与群落演替的研究.哈尔滨工业大学博士学位论文. 2001:58~98
    37 Garcia J L, Patel K C, Ollivier B. Taxonomic, phylogefletie and ecological diversity of methanogenic[J]. Amh Anaerobe. 2000,(6):205~226
    38 Lange M, Ahring B K. A comprehensive study into the molecular methodology and molecular biology of methanogenic Archaea[J]. FEMSMicrobiolgy Reviews. 2001,5(12):553~571
    39 C Gallert, J Winter. Propionic acid accumulation and degradation during restart of a full-scale anaerobic biowaste digester. Bioresource Technology. 2008,99:170~178
    40刘聿太,王大耜.产氢产乙酸菌与产甲烷菌互养培养物的分离.中国沼气. 1987, 5(3):8~11
    41 M. J. McInerney , M. P. Bryant , N. Pfennig. Anaerobic Bacterium that Degrades Fatty Acids in Syntrophic Association with Methanogens. Arch. Microbiol. 1979, (122):129~135
    42东秀珠.厌氧降解中互营产甲烷代谢机制的探讨.微生物学通报. 1993,20(1):36~42
    43 M. P. Bryant, E. A. Wolin, M. J. Wolin. Methanobacillus omelianskii, a Symbiotic Association of Two Species of Bacteria. Archiv for Microbiolgy. 1967,(59):20~31
    44李艳娜,许科伟,陈坚等.厌氧生境体系中产氢产乙酸细菌的FISH定量解析.微生物学报. 2007,47(6):1038~1043
    45任馨,吴伟祥.转Bt基因克螟稻秸杆对淹水土壤细菌群落的影响.环境科学学报.2004,24(5):871~877
    46 M J McInerney, M P Bryant, N Pfennig. Anaerobic Bacterium that DegradesFatty Acids in Syntrophic Association with Methanogens. Arch. Microbiol. 1979,(122):129~135
    47 M J McInerney, R I Mackie, M P Bryant. Syntrophic Association of a Butyrate-Degrading Bacterium and Methanosarcina Enriched from Bovine Rumen Fluid. Applied and Environmental Microbiology. 1981,(41):826~828
    48 Zhao H, Yang D, Woese C R. Assignment of Fatty Acidβ-Oxidizing Syntrophic Bacteria to Syntrophomonadaceae fam.nov.on the Basis of 16S rRNA Sequence Analysis Syst Bacteriol. 1993,(43):278~286
    49 A J M Stams, C. Dijkema. Growth of Syntrophic Propionate-Qxidizing Bacteria with Fumarate in the Absece of Methanogenic. Applied and Environmental Microbiology. 1993,(59):1114~1119
    50 M N Friedrich, N Springer, W Ludwig. Phylogenetic positios of Desulfofustis glycolicus gen. nov., sp. nov. and Syntrophbotulus glycolicus gen. nov. sp. nov., two new strict anaerobes growing with glycolic acid. Syst Bacterial. 1996,46:1065~1069
    51 Y Sekiguchi, Y Kamagata, K Nakamura. Syntrophothermus lipocalidus gen. nov.,sp. Nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Syst Evol.Microbiol. 2000,50:771~779
    52钱泽澍,马晓航.丁酸盐降解菌和氢营养菌共培养物的研究.微生物学报. 1989,29(5):321~329
    53赵宇华,钱泽澍.硬脂酸降解菌与嗜氢产甲烷杆菌共培养物的研究.浙江农业大学学报. 1991,17(1):75~79
    54程光胜,屠雄海,东秀珠等.厌氧降解丁酸共培养物中产氢产乙酸细菌与产甲烷细菌的分离与再组合.微生物学报. 1995, 35(6):442~449
    55竺建荣,胡纪萃,顾夏声.颗粒厌氧污泥中的产氢产乙酸细菌研究.微生物学通报. 1994,21(4):207~209
    56谭田丰,邵宗泽.海洋石油烃降解菌群构建及其在降解过程中的动态分析.厦门大学学报(自然科学版).2006,45:262~266
    57张志强,林波,胡九成等.高活性絮凝剂产生菌群的构建、培养及应用研究.环境科学学报. 2005,25(11):1497~1501
    58 C Y Young. The Use of Enzymes and Biocatalytic Additives for Wastewater Treatment Process. Water pollution control Fed. Highlights. 1976,13:5
    59全向春,刘佐才,范广裕等.生物强化技术及其在废水治理中的应用.环境科学研究. 1999,12(3):22~27
    60 C M Huban, R D Plowman. Bioaugmentation: Put Microbes to Work. Chemical engineering. 1997,(3):74~84
    61 Venkata Mohan, Christina Falkentoft, Venkata Nancharaiah. Bioaugmentation of microbial communities in laboratory and pilot scale sequencing batch biofilm reactors using the TOL plasmid. Bioresource Technology. 2009,100:1746~1753
    62 M S Kennedy, J Grammas. Parachlorophenol Degradation Uses Bioaugmentation Research. Water Pollution Control. 1990,62(3):227~233
    63何延青,刘俊良,张立勇等.工程菌生物强化处理高浓度农药废水的试验研究.环境科学与技术. 2008,31(11):116~119
    64 Venkata Mohan, G Mohanakrishna, Veer Raghavulu. Enhancing biohydrogen production from chemicalwastewater treatment in anaerobic sequencing batch biofilm reactor (AnSBBR) by bioaugmenting with selectively enriched kanamycin resistant anaerobic mixed consortia. Hydrogen Energy. 2007,32:3284~3292
    65秦智,任南琪,李建政.发酵生物制氢反应器的产氢菌生物强化作用研究.环境科学. 2007,28(12):2843~2848
    66龙敏南,史继祥,徐惠娟等. UASB生物制氢反应系统生物强化作用研究.厦门大学学报(自然科学版). 2008,47(5):620~623
    67 S M Soda, M Ike, Fujita. Effects of Inoculation of a Genetically Engineerd Bacterium on Performance and Indigenous Bacteria of a Sequencing Batch Activated Sludge Process Treating Phenol. Ferment Bieng. 1998,86(1):90~96
    68韩立平,王建龙,施汉昌等.生物强化技术在难降解有机物处理中的应用.环境科学. 1999,12(3):100~102
    69韩立平,王建龙,刘恒.泥浆体系总受喹啉污染土壤的生物修复.环境科学. 2000,21(6):89~91
    70 K S Ro, R W Babcock, M K Stenstrom. Demonstration of Bioaugmentation of Contaminated Soils. Appl. Environ. Microbiol. 1996,62(6):2045~2053
    71 D E Ellis, E J Lutz, J M Odom. Bioaugmentation for Accelerated in Situ Anaerobic Bioremediation. Environ. Sci. Technol. 2000,34:2254~2260
    72赵荫薇,王世明,张建法.微生物处理地下水石油污染的应用研究.应用生态学报. 1998,9(2):209~212
    73 T Bouchez, D Patureau, P Dabert. Ecological Study of a Bioaugmentation Failure. Environmental Microtechnology. 20002,2(2):179~190
    74 T Bouchez, D Patureau, P Dabert. Successful and UnsuccessfulBioaugmentation Experiments Monitored by Fluorescent in Situ Hybridization. Water science and technology. 2000,41(12):61~68
    75 P A Wilderer, M A Rubio, L Davids. Impact of the Addition of Pure Cultures on the Performance of Mixed Culture Reactors. Wat. Res. 1991,25(11):1307~1313
    76苏月来,张建中,谢雨生等.有毒难降解有机物废水处理的生物强化技术.环境污染与防治. 1998,21(1):36~39
    77王璟,张志杰,孙先锋等.应用生物强化技术处理焦化废水难降解有机物.城市环境与城市生态. 2000,13(6):42~44
    78 S. Beaty, M. J. Mcinernery. Growth of Syntrophomonas Wolfei in Pure Culture on Crotonate. Arch Microbiol.. 2003,(147): 389~393
    79李建政,刘枫,郭小宇等.一株产氢产乙酸菌的生长条件及产乙酸特性.科技导报. 2008,26(5):26~30
    80 Irini Angelidaki, Wendy Sanders. Assessment of the anaerobic biodegradability of macropollutants. Reviews in Environmental Science and Bio/Technology. 2004,3:117~129
    81周德庆.微生物学教程(第二版).高等教育出版社. 2002:91~99
    82杨安钢,毛积芳,药立波.生物化学与分子生物学实验技术.高等教育出版社. 2000:105,276~277
    83任南琪,马放,杨基先等.污染控制微生物学.哈尔滨工业大学出版社. 2004:123~125
    84单国彬,金文标,林佶侃等.变性梯度凝胶电泳在环境微生物生态学中的应用.生态学杂志. 2006,25(10):1257~1264
    85 G. Muyzer,E. C. D. Waal,A. G..Uitterlinden. Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction Amplified Genes Coding for 16S rRNA. Appl. Environ. Microbiol. . 1993, 59(3):695~700
    86杨洋,左剑恶,全哲学等.UASB反应器中厌氧氨氧化污泥的种群分析.中国环境科学. 2006, 26(1):52~56
    87邢德峰,任南琪,宫曼丽. PCR——DGGE技术解析生物制氢反应器微生物多样性.环境科学. 2005,26(2):172~176
    88 L. Raskin, J. M. Stromley, B. E. Rittmann, at el. Group-specific 16S rRNA Hybridization Probes to Describe Natural Communities of Methanogens. Appl. Environ. Microbiol. 1994, (60):1232~1240
    89邢德峰,任南琪,宋佳秀等.不同16S rDNA靶序列对DGGE分析活性污泥群落的影响.环境科学. 2006, 27(7):1424~1428
    90 B J Bassam, Caetano-Anolles G, P M.Gresshoff. Fast and Sensitive Silver Staining of DNA in Polyacrylamide Gels. Anal. Biochem. 1991,(196):80~83
    91尹军,谭学军,张立国,等.测定脱氢酶活性的萃取剂选择.中国给水排水, 2004, 20(7): 96~98
    92 Daniel Marino, Esther M. González, Pierre Frendo. Alain Puppo.Cesar Arrese-Igor NADPH recycling systems in oxidative stressed pea nodules: a key role for the NADP+-dependent isocitrate dehydrogenase. Planta, 2007, (225):413~421
    93 A Cristina, Fonseca. Comparative Measurements of Microbial Activity in Drinking Water Biofilters. Water Research, 2001,5(16):3817~3824
    94尹军,谭学军,任南琪.用TTC与INT电子传递体系活性表征重金属对污泥活性的影响.环境科学. 2005,26(1):56~62
    95谭学军,尹军,王建辉. OUR和INT-ETS表征污泥活性的比较.中国给水排水. 2005,21(7):43~46
    96 Jeffrey P, Obbard. Measurement of dehydrogenase activity using 2-p-iodophenyl-3-p-nitrophenyl-5 -phenyltetrazolium chloride (INT) in the presence of copper. Biol Fertil Soils. 2001,33:328~330
    97赵凯,许鹏举,谷广烨. 3,5-二硝基水杨酸比色法测定还原糖含量的研究.食品科学. 2008,29(8):534~536

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700