用户名: 密码: 验证码:
厌氧消化-SBR-絮凝组合工艺处理牛粪废水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国畜禽养殖业的快速发展以及不可再生能源的短缺,迫切需要研究、解决日益严重的畜禽粪便废水污染及生物能源再利用问题。本文既是结合牛粪废水的特点,采用厌氧消化-SBR-絮凝组合工艺对其进行综合处理,克服以往单独以处理废水为目的的做法,达到既可以获得可再生能源,又能够治理废水污染的双重目的,具有重要的经济、社会效益。
     牛粪废水的厌氧消化是本文研究的核心。为了高温厌氧消化过程的快速启动和平稳运行,获得更多的厌氧消化气,本文首先进行了接种物的筛选、培养和驯化研究,重点考察了接种物种类、培养条件等因素对废水厌氧消化性能的影响。结果表明:采用生活污水处理厂的二沉池污泥与厌氧消化污泥混合物来培养接种物效果良好,具体表现在:厌氧消化反应启动较快,产气过程较平稳,产气持续时间长,产气量大;体系的pH值比较稳定,对挥发性酸的积累具有更强的缓冲能力;对COD的去除率也相对较高。
     在此基础上,采用选定的接种物,实验研究了温度、进水有机物浓度以及微量元素等对牛粪废水厌氧消化过程中甲烷产率及COD去除率的影响。结果显示:温度对牛粪废水厌氧消化产气状况影响较大,相对室温而言,高温厌氧消化产气量高,且其中甲烷含量也比较高(63%),经厌氧消化后,废水COD去除率达57%。进水COD浓度对沼气产量有一定的影响,随着进料COD浓度增加,虽然总产气量增加,但是单位质量COD的产气量(甲烷转化率)以及COD去除率有所减小;微量元素的加入对低浓度废水影响不大,但对高浓度废水高温厌氧消化情况有一定改善,且不同微量元素对厌氧消化过程影响不同,微量元素Fe~(2+),Mg~(2+)、Ni~(2+)的适宜添加量不大于0.5 mmol/L。
     结合牛粪废水高温厌氧消化的实验研究结果,利用Stover-Kineannon动力学模型,建立了牛粪废水高温厌氧消化动力学方程,其中:最大反应速率常数U_(max)=13.18 gCOD/(L_(溶液)·d),饱和常数K_b=13.77 gCOD/(L_(溶液)·d)。另外,通过研究高温厌氧消化过程中甲烷产率的动力学关系,得到甲烷最大产率常数M_(max)=18.11L_(gas)/(L_(溶液)·d);甲烷产率系数M_b=49.31 gCOD/(L_(溶液)·d)。这些动力学研究成果,对厌氧消化反应器的设计及运行具有重要的理论意义。
     考虑到牛粪废水经高温厌氧消化后有机物含量仍然较高,本文采用自制的SBR反应器对厌氧消化液做进一步处理,重点研究了普通絮状活性污泥的培养、颗粒污泥的培养、两种污泥对污染物去除能力的对比、SBR絮状污泥处理过程中各参数对处理效果的影响以及SBR工艺处理高温厌氧消化液的动力学行为。结果表明:当高温厌氧消化液的COD在0.5~1.6 g/L之间变化时,SBR反应器表现出较强的抗负荷冲击能力;两种污泥对厌氧消化液中污染物去除能力都比较高,其中采用颗粒污泥进行处理,SBR出水悬浮物含量较低,且对COD、总氮(TKN)的去除略优于絮状活性污泥;另外,结合SBR絮状活性污泥处理厌氧消化液实际情况,建立了SBR反应器中COD降解的动力学方程。
     最后,针对SBR处理出水仍有较多细小纤维素等悬浮物的特点,本文采用化学絮凝方法,对SBR净化水进行二级处理,旨在降低废水色度、悬浮物含量以及有机物浓度等。实验考察了絮凝剂种类、絮凝剂用量、搅拌速度、絮凝沉淀时间等因素对废水处理效果的影响,得出较佳的絮凝条件,即:采用聚合氯化铝作为絮凝剂、絮凝剂浓度1.5g/L、搅拌速度120r/min、慢速搅拌时间2.5min、沉淀时间20min。在此条件下,处理水的COD浓度低于400mg/L、悬浮物含量144mg/L、色度为48。
     本文利用高温厌氧消化并结合SBR-絮凝法对经过预处理的牛粪废水进行处理,既获得了可再生能源-甲烷,又使废水达到了理想的处理效果,处理出水COD、色度、悬浮物等指标可以达到国家规定的畜禽养殖业污染物排放标准(GB18596-2001),为处理类似的畜禽粪便废水及再生能源的回收提供了新的组合工艺及理论依据。
The pollution of the dejection wastewater discharged from breed farms become severely and needed to be solved urgently in China. Based on the characters of the wastewater, the technology of thermophillic anaerobic digestion-SBR-flocculation was studied to treat them in this paper. Not only the reproducible energy was obtained but also the environmental pollutions were treated, it has important social and economic benefits.
     The thermophilic anaerobic digestion of cow manure wastewater was the kernel part of this paper. In order to make the biochemistry reaction running smoothly and quickly, the inocula used in the experiments were selected and cultivated firstly, and the effects of the inocula's species, the cultivating conditions etc on the process of the wastewater thermophilic anaerobic digestion were discussed. Results showed that the anaerobic digestion reaction inoculated with the inocula cultivated with mixed sludge start up more quickly, biogas production more steady and last longer than that of the anaerobic digestion inoculated with inocula domesticated with single sludge, and the pH was more steady, COD removal efficiency higher too.
     On the basis of the effects of inocula on the biochemistry's reaction, the selected incula was adopted and the effects of temperature, COD concentration and trace elements were studied. Results indicated that the temperature has greater impact on the system's operation. The biogas production, the percentage of methane in the biogas (63%) and the COD removal efficiency (57%) of thermophilic anaerobic digestion were higher than that of room temperature.
     There wre some effects of COD concentration on the biogas production. With the increasing of COD concentration, total biogas production increased, while the biogas produced by per-unit quality of COD was decreased. The addition of trace elements had little effect on the lower COD concentration wastewater, but it could improve the treatment efficiency of higher COD wastewater. The appropriate quantity of Fe~(2+), Mg~(2+) or Ni~(2+) was about 0.5 mmol/L to the higher COD wastewater.
     Combined with the results of thermophilic anaerobic digestion of cow manure wastewater, a kinetics equation based on the Stover-Kincannon model was obtained with the maximum reaction rate constant U_(max) as 13.18 gCOD/(L_(溶液)·d) and the saturation constant K_b as 13.77 gCOD/(L_(溶液)·d). In the same way, the maximum constant of methane production rate (M_(max)=18.11 L_(gas)/(L_(溶液)·d)) and coefficient of methane yield (M_b= 49.31 gCOD/(L_(溶液)·d)) were obtained too by studying the dynamics of the methane production rate. These research results have very important theoretical significance on the design and operations of anaerobic digestion reactor.
     The concentration of COD, suspended substance were still higher than that of the discharge standard after the wastewater was treated by thermophilic anaerobic digestion and the SBR made by ourselves was used to treat them furthermore. The cultivation of popular active sludge and granular sludge, the COD removal efficiency of the two types sludge, the factors that affect the disposal efficiency of popular active sludge and the SBR kinetics were studied in this stage. Results showed that the SBR have a certain ability to resist the impact of organic loading rate when the COD concentration ranged from 0.5 g/L to 1.6 g/L. Both of the two types sludge have high removal efficiencies on organic compounds of the wastewater. The difference between them was that the suspended substance was lower, the removal efficiencies of COD and TKN a little higher of the water treated by granular sludge than that of treated by popular active sludge. In addition to that, the kinetics equation of SBR was established based on the actual situation of treating the effluent of the cow manure wastewater treated by the method of thermophilic anaerobic digestion.
     Because the water treated by SBR still contained lots of celluloses and other tiny suspended substances, a process of flocculation as the secondary treatment was adopted to decrease the color, the suspended substances and the organic compounds concentration. The effects of the coagulant categories, dosage of coagulant, stirring speed, stirring time and settlement time were investigated, and the better flocculation conditions were obtained as coagulant dosage 1.5 g/L, stirring speed 120 r/min, stirring time 2.5 min and settlement time 20 min. After being treated under these conditions, COD concentration lower than 400 mg/L, suspended substance about 144 mg/L and the color about 50.
     Not only the reproducible energy was obtained but also the ideal treatment effects of cow manure wastewater were obtained by the process of thermophilic anaerobic digestion combined with SBR and flocculation. The COD, suspended substances and color all met the discharge standard of water pollutants for farm breeds (GB18596-2001) after being treated by this method. A new integrated technology and theoretical basis were provided for the treatment of the similar wastewater.
引文
[1]卞有生.生态农业中废弃物的处理与再生利用[M].北京:化学工业出版社,2002,35-42.
    [2]中华人民共和国国家统计局.中国统计年鉴[M].北京:中国统计出版社,2003,198-203.
    [3]孔源,韩鲁佳.我国畜牧业粪便废弃物的污染及其治理对策的探讨[J].中国农业大学学报,2002,7(6):92-95.
    [4]李庆康,吴雷,刘海琴等.我国集约化畜禽养殖场粪便处理利用现状及展望[J].农业环境保护,2000,19(4):251-254.
    [5]王新谋.家畜粪便学[M].上海:上海交通大学出版社,1998,53-57.
    [6]彭里,王定勇.重庆市畜禽粪便年排放量的估算研究[J].农业工程学报,2004,20(1):288-292.
    [7]全国农业技术推广服务中心.中国有机肥料养分志[M].北京:中国农业出版社,1999,32-35.
    [8]国家环境保护总局自然生态司.全国规模化畜禽养殖业污染情况调查及防治对策[M].北京:中国环境科学出版社,2002,16-23.
    [9]王晓明,高其双.现代畜禽养殖业的公害问题及对策[J].饲料工业,2002,21(4):40-41.
    [10]中国环境年鉴编辑委员会.中国环境年鉴[M].北京:中国环境年鉴社, 2003,44-46.
    [11]彭奎.试论农业养分的非点源污染与管理[J].环境保护,2001,15:15-17.
    [12]刘卫东.鸡场粪污的综合治理[J].畜牧兽医,2004,19(1):25-27.
    [13]朱文转,李传红.南方农村集约化养殖场污染及其防治[J].重庆环境科学,1999,21(6):33-35.
    [14]李淑芹,胡玖坤.畜禽粪便污染及治理技术[J].可再生能源,2003,1:21-23.
    [15]杨朝飞.加强畜禽粪便污染防治迫在眉睫[J].环境保护,2001,2:32-35.
    [16]刘芳.畜牧产业发展对环境的影响[J].农业环境与发展,2000,17(1):30-33.
    [17]季明,吴长征.集约化养殖对环境的危害与预防措施[J].环境科学与技术,1999,85(2):32-34.
    [18]Jeyaseelan S..A simple mathematical model for anaerobic digestion process[J].Water Science and Technology,1997,35(8):185-191.
    [19]Michaud S.,Bernet N.,Buffi(?)re P.,et al.Methane yield as a monitoring parameter for the start-up of anaerobic fixed film reactors[J].Water Research,2002,36(5):1385-1391.
    [20]Boopathy R..Biological treatment of swine waste using anaerobic baffled reactors[J].Bioresource Technology,1998,64(1):1-6.
    [21]Sacks J.,Buckley C.A..Anaerobic treatment of textile size effluent[J].Water Science and Technology,1999,40(1):177-182.
    [22]Wang Q.,Kuninobu M.,Ogawa H.I..Degradation of volatile fatty acids in highly efficient anaerobic digestion[J].Biomass and Bioenergy,1999,16(6):407-416.
    [23]Lallai A.,Mura G.,Onnis N..The effects of certain antibiotics on biogas production in the anaerobic digestion of pig waste slurry[J].Bioresource Technology,2002,82(2):205-208.
    [24]Berardino S.,Costa S.,Converti A..Semi-continuous anaerobic digestion of a food industry wastewater in an anaerobic filter[J].Bioresource Technology,2000,71(3):261-266.
    [25]邓良伟.规模化畜禽养殖废水处理技术现状探析[Jr].中国生态农业学报,2006,14(2):23-27.
    [26]Zhao Y.Q.,Sun G.,Allen S.J..Anti-sized reed bed system for animal wastewater treatment:a comparative study[J].Water Research,2004,38(12):2907-2917.
    [27]沈瑾,路旭,孙瑜等.规模化猪场粪污水处理固液分离工艺及设备[J].中国沼气,1999,17(4):18-20.
    [28]于金莲,阎宁.畜禽养殖废水处理方法探讨[J].给水排水,2000,26(9):44-47.
    [29]成文.养猪场废水的化学混凝后处理[J].华南师范大学学报(自然科学版),2000,1:82-86.
    [30]胡纪萃,顾夏声.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社,2003,6-10.
    [31]邓良伟,陈铬铭.IC工艺处理猪场废水试验研究[J].中国沼气,2001,19(2):12-15.
    [32]张国治,姚爱莉.藻类对猪粪厌氧废液的净化作用[J].西南农业学报,2000,13(增刊):105-112.
    [33]赵晨红.ASBR-SBR工艺处理养猪场废水[J].重庆环境科学,2003,25(4):36-38.
    [34]田宁宁,王凯军,李宝林等.畜禽养殖场粪污的治理技术[J].中国给水排水,2002,18(2):71-73.
    [35]Bernet N.,Delgenes J.P..SBR as a relevant technology to combine anaerobic digestion and denitrification in a single reactor[J].Water Science and Technology,2001,42(3):209-214.
    [36]何连生,朱迎波,席北斗等.集约化猪场废水SBR法脱氮除磷的研究[J].中国环境科学,2004,24(2):224-228.
    [37]杨朝晖,高峰,曾光明等.短程硝化反硝化去除高氨氮猪场废水中的氮[J].中国环境科学,2005,25(B06):43-46.
    [38]冯叶成,王建龙,钱易.生物脱氮新工艺研究进展[J].微生物学通报,2001,28(4):88-91.
    [39]邓良伟.水解-SBR工艺处理规模化猪场粪污研究[J].中国给水排水,2001,17(3):8-11.
    [40]杨朝晖,曾光明,高锋等.固液分离-UASB-SBR工艺处理养猪场废水的试验研究[J].湖南大学学报(自然科学版),2002,29(6):95-99.
    [41]Tilche A.,Malaspina F..Biological phosphorus and nitrogen removal in a full scale SBR treating piggery wastewater[J].Water Science and Technology,2001, 43(3):363-371.
    [42]Jung J.S.,Cheng M.K.,Jing L.,et al.Utilization of sequencing batch reactor for piggery wastewater treatment[J].Journal of Environmental Science and Health,PartA:1997,32(2):391-405.
    [43]邓良伟,蔡昌达,陈铬铭等.猪场废水厌氧消化液后处理技术研究及工程应用[J].农业工程学报,2002,18(3):92-94.
    [44]Obaja D.,Mace S.,Costa J.,et al.Nitrification,denitrification and biological phosphorus removal in piggery wastewater using a sequencing batch reactor[J].Bioresource Technology.2003,87(1):103-111.
    [45]邓良伟.厌氧消化出水好氧后处理新工艺(P).中国专利:03117922.2004-11-24.
    [46]高越晗,戚文娟.西子生态农场的综合开发利用研究[J].环境污染与防治,1998,20(4):26-29.
    [47]邓喜红.规模化养殖场粪污治理概述[J].农业环境与发展,1999,2:42-46.
    [48]李秀金,董仁杰.ASBR-SBR组合反应器用于高浓度有机污水处理[J].中国农业大学学报,2002,7(2):110-116.
    [1]高廷耀,顾国维.水污染控制工程[M].北京:高等教育出版社,2002,76-80.
    [2]陈坚.环境生物技术[M].北京:中国轻工业出版社,1999,127-128.
    [3]马溪平.厌氧微生物学与污水处理[M].北京:化学工业出版社,2005,66-73.
    [4]蒋展鹏.环境工程学[M],第二版.北京:高等教育出版社,2005,106-110.
    [5]Keshtkar A.,Ghaforian H.,Bolhamd G.A.,Meyssami B..Dynamic simulation of cyclic batch anaerobic digestion of cattle manure[J].Bioresource Technology,2001,80(1):9-17.
    [6]胡纪翠,顾夏声.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社,2003,201-205.
    [7]李绍衡.厌氧生物处理技术的原理及其在城市污水处理中的应用[J].湖南大学学报(自然科学版),2001,28(3):16-23.
    [8]Harned M.,Mashad.E.,Zeeman G.,et al.Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure[J].Bioresource Technology,2004,95(2):191-201.
    [9]左剑恶,胡纪翠,陆正禹等.厌氧消化过程中的酸碱平衡及pH控制的研究[J].中国沼气,1998,16(1):3-7.
    [10]Viyssides A.G.,Klarlis P.K..Thermal-alkaline solubilization of waste activated sludge as a pre-treatment stage for anaerobic digestion[J].Bioresource Technology,2004,91(2):201-206.
    [11]苑宏英,张华星,陈银广等.pH对剩余污泥厌氧发酵产生的COD、磷及氨氮的影响[J].环境科学,2006,27(7):1358-1362.
    [12]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998,205-211.
    [13]申立贤.高浓有机废水的厌氧处理技术[M].北京:中国环境出版社,1992,45-60.
    [14]Elsen V.,Van A.F.M..Adaption of methanogenic sludge to high ammonia-nitrogen concentrations[J].Water Resources,1979,1(13):995-999.
    [15]Sterling M.C.,Lacey R.E.,Engler C.R.,et al.Effects of ammonia nitrogen on H_2 and CH_4 production during anaerobic digestion of dairy cattle manure[J].Bioresource Technology,2001,77(1):9-18.
    [16]潘安君,佛苟·卡拉汉.高浓度氨氮对牛粪厌氧消化反应的影响[J].北京水利,1997,4:443-48.
    [17]Song Y.C.,Kwon S.J.,Woo J.H..Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic and thermophilic digestion of sewage sludge[J].Water Research,2004,38(7):1653-1662.
    [18]Zabranska J.,Stepova J.,Wachtl R.,et al.The activity of anaerobic biomass in thermophilic and mesophilic digesters at different loading rates[J].Water Science and Technology,2000,32(9):49-56.
    [19]Yu H.Q.,Fang H.H.P.,Gu G.W..Comparative performance of mesophilic and thermophilic acidogenic upflow reactor[J].Process Biochemistry,2002,38(3):447-54.
    [20]Linke B..Kinetic study of thermophilic anaerobic digestion of solid wastes from potato processing[J].Biomass and Bioenergy,2006,30(10):892-896.
    [21]Siegrist H.,Vogt D.,Garcia-Heras J.L.,et al.Mathematical model for meso-and thermophilic anaerobic sewage sludge digestion[J].Environmental Science &Technology,2002,36(5):1113-1123.
    [22]王向东,谢嘉,杨靖霞.制酒废水高温厌氧消化动力学研究[J].成都科技大学学报,1996,3:43-48.
    [23]张洪林,李春富.高温厌氧法处理炼厂浮洗渣运行状态研究[J].石油化工高等学校学报,2000,13(3):19-22.
    [24]吴静,盛飞,陆正禹.生产性UASB反应器的中温高温交替启动运行过程[J].环境科学,2001,22(5):50-54.
    [25]季民,陈红,余坚等.厌氧-好氧串联系统对慢速可生物降解COD的去除(Ⅱ)-高温厌氧升流式污泥床的反应机制[J].农业环境保护,2002,21(2):159-162.
    [26]杜兵,齐文钰,申立贤等.UASB处理酒精废水生产运行研究[J].中国沼气,1999,17(2):14-17.
    [27]张庆椿,徐玉玲.鸡粪厌氧消化接种物对沼气产气率的影响[J].环境导报,1998,2:17-19.
    [28]Wilton S.L.,Valderi D.L.,Shiva P..Influence of inoculum on performance of anaerobic reactors for treating municipal solid waste[J].Bioresource Technology,2004,94(3):261-266.
    [29]潘云霞,潘云锋,李文哲.不同阶段沼液作发酵接种物对牛粪产气的影响[J].农机化研究,2005,1:202-204.
    [30]Bindelle J.,Buldgen A.,Boudry C.,et al.Effect of inoculum and pepsin-panereatin hydrolysis on fibre fermentation measured by the gas production technique in pigs[J].Animal Feed Science and Technology,2007,132(1-2):111-122.
    [31]任南琪,秦智,李建政.不同产酸发酵菌群产氢能力的对比与分析[J].环境科学,4(1):70-74.
    [32]R.E.斯皮思.工业废水的厌氧生物技术[M].李亚新译.北京:中国建筑工业出版社,2001,28-47.
    [33]Hamed M.,Wilko K.P.,Zeeman G.,et al.Effect of inoculum addition modes and leachate recirculation on anaerobic digestion of solid cattle manure in an accumulation system[J].Biosystems Engineering,2006,95(2):245-254.
    [34]胡纪萃,顾夏声.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社,2003,19-23,1-3.
    [35]Neves L.,Goncalo E.,Oliveira R.,et al.Influence of composition on the biomethanation potential of restaurant waste at mesophilic temperatures[J].Waste Management,2008,28(6):965-972.
    [36]Elango D.,Pulikesi M.,Baskaralingam P.,et al.Production of biogas from municipal solid waste with domestic sewage[J].Journal of Hazardous Materials,2007,141(1,6):301-304.
    [37]Liu C.F.,Yuan X.Z.,Zeng G.M.,et al.Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste[J].Bioresource Technology,2008,99(4):882-888.
    [38]Wang J.L.,Wei W..Effect of Fe~(2+) concentration on fermentative hydrogen production by mixed cultures[J].International Journal of Hydrogen Energy,2008,33(4):1215-1220.
    [39]Chen Y.,Jay J.,Kurt S.,et al.Inhibition of anaerobic digestion process:A review [J].Bioresource Technology,2008,99(10):4044-4064.
    [40]Yang P.,Zhang R.H.,Jeffery A.,et al.Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities[J].International Journal of Hydrogen Energy,2007,32(18):4761-4771.
    [41]A(?)da(?),O.N.,Sponza D.T..C.o-digestion of mixed industrial sludge with municipal solid wastes in anaerobic simulated landfilling bioreactors[J].Journal of Hazardous Materials,2007,140(1-2):75-85.
    [42]国家环境保护局.水和废水监测分析方法[M],第三版.北京:中国环境科学出版社,1997,133-150.
    [43]马放,任南琪,杨先基.污染控制微生物学实验[M].哈尔滨:哈尔滨工业大学出版社,2002,17-19,167-190.
    [44]Schmidt J.E.,Ahring B.R..Granular sludge formation in upflow anaerobic sludge blanket(UASB) reactors[J].Biotechnology and bioengineering,1996,49(3):229.
    [45]郭养浩.UASB反应器中影响污泥颗粒化的工程因素[J].生物工程学报,1997,13(1):76-82.
    [46]任南琪,王爱杰.厌氧生物发术原理与应用[M].北京:化学工业出版社,2004,88-89.
    [47]Savant D.V.,Shouche Y.S.,Prakash S..Methanobrevib acter acidi durans sp.nov.,a novel methanogen from a sour anaerobic digester[J].International Journal of systematic and evolutionary microbiology,2002,52(4):1081-1087.
    [48]Rea S.,Bowman J.P.Popovski S.,et al.Methanobrevibacter millerae sp.nov.and Methanobrevibacter olleyae sp.nov.,methanogens from the ovine and bovine rumen that can utilize formate for growth[J].International Journal of systematic and evolutionary microbiology,2007,57(3):450-456.
    [49]邵丕红.废水高效水解酸化试验研究[J].长春工程学报(自然科学版),2004,5(1):15-17,38.
    [50]陈华林,周江敏.非木材纤维纸浆中杂细胞的沼气发酵[J].中国沼气,2001,19(4):11-14.
    [51]陈庆今,刘焕彬,胡勇有.瘤胃微生物对纤维素降解机理[J].微生物学, 2002,22(2):44-47.
    [52]申欢,金奇庭.高氨氮对厌氧生物法处理城市垃圾渗沥液的影响[J].环境污染治理技术与设备,2005,6(7):40-43.
    [53]何仕均,王建龙,赵璇.氨氮对厌氧颗粒污泥产甲烷活性的影响[J].清华大学学报(自然科学版),2005,45(9):1294-1296.
    [54]Sterling M.C.,Lacey R.E.,Engler C.R.,et al.Effects of ammonia nitrogen on H_2 and CH_4 production during anaerobic digestion of dairy cattle manure[J].Bioresource Technology,2001,77(1):9-18.
    [55]胡锋平.氨氮对中温厌氧处理抑制作用的试验研究[J].中国给水排水,1997,13(增刊):19-21.
    [56]董春娟,潘青业.工业废水厌氧生物处理中的无机和有机毒性物质[J].化工环保,2001,21(4):213-216.
    [57]Borja R.,Sanchez E.,Weiland P..Influence of ammonia concentration on thermophilic anaerobic digestion of cattle manure in upflow anaerobic sludge blanket(UASB) reactors[J].Process Biochemistry,1996,31(5):477-483.
    [58]Sossa K.,Alarcon M.,Aspe E.,et al.Effect of ammonia on the methanogenic activity of methylaminotrophic methane producing archaea enriched biofilm[J].Anaerobe,2004,10(1):13-18.
    [59]Koster I.W.,Lettinga G..Anaerobic digestion at extreme-ammonia concentrations[J].Biological Wastes,1998,25(1):51-59.
    [60]Wilkie A.C..Anaerobic Digestion:Holistic bioprocessing of animal manures[R].Proceedings of the Animal Residuals Management Conference,2000:1-12.
    [61]Li Y.X..Stimulation effect of trace metals on anaerobic digestion of high sodium content substrate[J].Water Treatment,1995,4(10):145-154.
    [1]Annop N.,Pratap C.,William P..Kinetics and dynamic modeling of batch anaerobic digestion of municipal solid waste in a stirred reactor[J].Waste Management,2007,27(5):595-603.
    [2]许晓箐,闻建平,董文明.高温厌氧生物技术处理有机废水[J].现代化工,2003,23(9):50-53.
    [3]Jeyaseelan S..A simple mathematical model for anaerobic digestion process[J].Water Science and Technology,1997,35(8):185-191.
    [4]王向东,谢嘉,杨靖侠.制酒废水高温厌氧消化动力学研究[J].成都科技大学学报,1996,3:43-48.
    [5]Perez M.,Romero L.I.,Sales D..Organic matter degradation kinetics in an anaerobic thermophilic fluidised bed bioreactor[J].Anaerobe,2001,7(1):25-35.
    [6]顾夏声.废水处理数学模式[M],第二版.北京:清华大学出版社,1993,35-42.
    [7]李亚新.活性污泥法理论与技术[M].北京:中国建筑工业出版社,2007,127-130.
    [8]李彦春.当代厌氧处理废水动力学模式研究评述[J].环境保护科学,1989,15(2):9-17.
    [9]Heinzle E.,Dunn I.J.,Ryhiner G..B..Advances in Biochemical Engineering/Biotechnology[M].Springer Berlin/Heidelberg,1993,48:79-114.
    [10]蒋青.厌氧动力学的研究[D].北京:清华大学,1984,41-49.
    [11]Garc(?)a-Ochoa F.,Santos E.,Naval L.,et al.Kinetic model for anaerobic digestion of livestock manure[J].Enzyme and Microbial Technology,1999,25(1-2):55-60.
    [12]Simeonov I.,Momchev V.,Grancharov D..Dynamic modeling of mesophilicanaerobic digestion of animal waste[J].Water Research,1996,30(5):1087-1094.
    [13]Merkel W.,Schwarz A.,Fritz S.,et al.New strategies for estimating kinetic parameters in anaerobic wastewater treatment plants[J].Water Science and Technology.1996,34(5-6):393-401.
    [14]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998,502-560.
    [15]唐受印,汪大翠.废水处理工程[M].北京:化学工业出版社,1998,233-236.
    [16]高廷耀,顾国维.水污染控制工程[M].北京:高等教育出版社,2003,66-68.
    [17]Erg(u|¨)der T.H.,Tezel U.,G(u|¨)ver E.,et al.Anaerobic biotransformation and methane generation potential of cheese whey in batch and UASB reactors[J].Waste Management,2001(7),21:643-650.
    [18]Angelidaki I.,Ahring B.K..Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure[J].Water Science and Technology,2000,41(3):189-194.
    [19]Michaud S.,Bernet N.,Buff(?)re P.,et al.Methane yield as a monitoring parameter for the start-up of anaerobic fixed film reactors[J].Water Research,2002,36(5):1385-1391.
    [20]蒋展鹏.环境工程学[M].北京:高等教育出版社,2002,160-162.
    [1]张自杰,周机.活性污泥生物学与反应动力学[M].北京:中国建筑工业出版社,1989,16-17.
    [2]曹占峰,何品晶,邵立明等.SBR法处理垃圾填埋场新鲜渗滤液的实验研究[J].环境污染治理技术与设备,2005,6(2):33-37.
    [3]张建中.一种污水处理反应器(P).中国专利:03262235,2004-07-21.
    [4]黄玉峰,张丽丽,郝薇等.SBR中好氧颗粒污泥的培养与除污效能[J].中国给水排水,2005,21(2):53-56.
    [5]Kapdan I.K.,Ozturk R..Effect of operating parameters on color and COD removal performance of SBR:Sludge age and initial dyestuff concentration[J].Journal of Hazardous Materials,2005,B123(1-3):217-222.
    [6]Klimiuk E.,Kulikowska D..Organics removal from landfill leachate and activated sludge production in SBR reactors[J].Waste Management,2006,26(10):1140-1147.
    [7]彭永臻,王淑莹,曾薇.SBR工艺模糊控制方法及控制装置(P).中国专利:1387099.2002-12-25.
    [8]王凯军,宋英豪.SBR工艺的发展类型及其应用特征[J].中国给水排水,2002,18(7):23-26.
    [9]沈耀良,赵丹.强化SBR工艺脱氮除磷效果的若干对策[J].中国给水排水,2000,16(7):23-25.
    [10]陈红,李昊翔.强化序批式活性污泥工艺脱氮除磷的实验研究[J].浙江大学学报(工学版),2004,38(9):1235-1238.
    [11]贾峰,王增长.SBR工艺在污水回用中的应用与发展[J].科技情报开发与经济,2007,17(1):150-154.
    [12]Lin S.H.,Cheng K.W..A new sequencing batch reactor for treatment of municipal sewage wastewater for agricultural reuse[J].Desalination,2001,133(1):41-45.
    [13]李凌云,周利,彭永臻等.SBR法在难降解废水处理中的研究及应用.工业水处理,2007,27(2):1-5.
    [14]彭永臻.SBR法的五大优点[J].中国给水排水,1993,9(2):29-31.
    [15]陈坚.环境生物技术[M].北京:中国轻工业出版社,1999,50-51.
    [16]国家环境保护总局.水和废水监测分析方法[M],第三版.北京:中国环境科学出版社,1997,250.
    [17]唐受印,戴友芝.废水处理工程[M].北京:化学工业出版社,2005,230-233.
    [18]张宝军.水污染控制技术[M].北京:中国环境科学出版社,2007,87-91.
    [19]王磊,付永胜,宋炜.SBR处理养猪场废水研究[J].西华大学学报(自然科学版),2005,24(6):43-45.
    [20]金颖,费庆志.SBR法处理豆制品废水工艺条件的研究[J].环境污染治理技术,2006,7(2):116-121.
    [21]曾薇,王淑莹,彭永臻.SBR法好氧曝气时间的模糊控制[J].水处理技术,2005,31(1):65-68.
    [22]程晓如,魏娜.SBR工艺研究进展[J].工业水处理,2002,25(5):10-13.
    [23]高廷耀,顾国维.水污染控制工程[M].北京:高等教育出版社,2007,135-140.
    [24]Hu L.L.,Wang J.L.,Xiang H.,et al.Study on performance characteristics of SBR under limited dissolved oxygen[J].Process Biochemistry,2005,40(1):293-296.
    [25]王淑莹.用溶解氧浓度作为SBR法过程和反应时间控制参数[J].中国环境科学,1998,18(5):415-418.
    [26]崔延瑞,崔凤灵,孙剑辉.进水方式对SBR系统处理废水的影响[J].水处理技术,2006,32(8):50-53,77.
    [27]孙剑辉,艾涤非,高健磊等.厌氧折流板反应器处理邻硝基苯胺废水的研究[J].郑州大学学报(工学版),2005,26(2):60-62.
    [28]Liu Y.,Tay J.H..State of the art of biogranulation technology for wastewater treatment[J].Biotechnology Advances,2004,22(7):533-563.
    [29]周律,钱易.好氧颗粒污泥的形成条件[J].给水排水,1995,21(4):11-13.
    [30]白晓慧.利用好氧颗粒污泥实现同步硝化反硝化[J].中国给水排水,2002,18(2):26-28.
    [31]Tay J.H.,Liu Q.S.,Liu Y..Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor[J].Journal of Applied Microbiology,2001,91(1):168-175.
    [32]Campos J.L.,Garrido-Femandez J.M.,Mendez R..et al.Nitrification at high ammonia loading rates in an activated sludge unit[J].Bioresource Technology,1999,68(2):141-148.
    [33]高春娣,彭永臻,高凯等.SBR法中耗氧速率的在线检测及误差分析[J].工业用水与废水,2001,32(2):4-7.
    [34]张蓉蓉,任洪强,魏翔.好氧颗粒污泥处理高浓度氨氮废水的研究[J].环境污染与防治,2006,28(10):788-791.
    [35]Jang A.,Yoon Y.H.,Kim S.I.,et al.Characterization and evaluation of aerobic granules in sequencing batch reactor[J].Journal of Biotechnology,2003,105(1-2):71-82.
    [36]竺建荣,刘纯新.好氧颗粒污泥的培养及理化特性的研究[J].环境科学,1999,2(3):38-41.
    [1]国家环境保护总局.水和废水监测分析方法[M],第三版.北京:中国环境科学出版社,1997,133-150.
    [2]高宝玉,岳钦艳,王占生等.聚硅氯化铝(PASC)混凝剂的混凝性能[J].环境科学,2000,21(2):46-49.
    [3]刘红,梁晶,邵俊等.造纸中断水的絮凝-吸附处理[J].化学工程师,2006,129(6):13-15.
    [4]游晓宏.混凝技术及其发展[J].工业水处理,2002,22(11):9-11.
    [5]陆柱.水处理药剂[M].北京:化学工业出版社,2002,3-5.
    [6]陈钦安,林春绵,徐明先等.混凝法处理洗浴废水的实验研究[J].水处理技术,2004,30(5):303-306.
    [7]常青.水处理絮凝学[M].北京:化学工业出版社,2003,4.
    [8]李义久,张静,唐文伟等.SBR-混凝沉淀处理织棉漂白废水研究[J].重庆环境科学,2001,23(1):40-42.
    [9]林海.混凝法在硫酸软骨素废水后处理中的应用[J].工业水处理,2004,24(2):40-42.
    [10]高廷耀,顾国维.水污染控制工程[M].北京:高等教育出版社,2002,20-27.
    [11]国家环境保护总局,国家质量技术监督检验检疫总局.中华人民共和国国家标准,畜禽养殖业污染物排放标准.GB 18596-2001,1-3.
    [1]Demirel B.,Yenigun O.,Turgut T..Anaerobic treatment of dairy wastewaters:a review[J].Process Biochemistry,2005,40(8):2583-2595.
    [2]Michaud S.,Bernet N.,Buffiere P.,et al.Methane yield as a monitoring parameter for the start-up of anaerobic fixed film reactors[J].Water Research,2002,36(5):1385-1391.
    [3]吉林化学工业公司研究院.气相色谱实用手册[M].北京:化学工业出版社,1983,375-377.
    [4]刘约权.现代仪器分析[M].北京:高等教育出版社,2001,235-240,375-377.
    [5]戴树桂.仪器分析[M].北京:高等教育出版社,1984,209-213.
    [6]曾泳淮,闫吉昌,江崇球等.仪器分析[M].北京:高等教育出版社.2002:383-393.
    [7]许国旺.现代实用气相色谱法[M].北京:化学工业出版社,2004,18-20.
    [8]刘虎威.气相色谱方法及应用[M].北京:化学工业出版社,2000,35-38.
    [9]国家环境保护总局,水和废水监测分析方法编委会.水和废水检测分析方法[M],第四版.北京:中国环境科学出版社,2002,24-25.
    [10]李广才.分析测试质量控制[M].北京:中国医药科技出版社,1991,272.
    [11]张广强,黄世德.分析化学[M],第三版.北京:学苑出版社,2001,12-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700