用户名: 密码: 验证码:
二氧化碳泡沫压裂理论及工艺技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
常规水力压裂技术对低压、低渗、水敏性地层的增产增注效果不是很理想,甚至会失败。由于CO_2泡沫液具有降粘、防膨、降阻、助排及携砂能力强、滤失量低、返排快、对地层伤害小等多种特性,所以适合低压、低渗、水敏性等复杂岩层的压裂,而对油层污染严重,含水率较低,相对稠油的新井或初压层,其压裂效果比常规压裂效果要好。
     关于二氧化碳泡沫压裂方面研究在我国还处于探索阶段,还存在许多问题和差距。主要表现在:机理研究相对薄弱,特别是对常温常压下的泡沫压裂液的流变模式还没有一个统一的认识,对高温高压下的泡沫压裂液的流变性更是没有研究;没有关于泡沫压裂较完整的裂缝延伸模型报道;泡沫压裂技术也有待尽快发展和完善。因而有必要对二氧化碳泡沫压裂的理论及工艺技术进行研究。
     在前人研究的基础上,本文主要对以下几个方面进行了研究并得到了相应的结论:
     1.利用大型高参数泡沫压裂液流动回路研究了高温高压下CO_2泡沫压裂液的流变模式;研究了剪切速率、泡沫质量、温度、压力等参数对CO_2泡沫压裂液的流变参数的影响规律;拟合了CO_2胍胶泡沫压裂液的流变参数计算式。并取得了以下结论:(1)当泡沫质量小于0.9时,CO_2泡沫压裂液的流变模型可用幂律模型描述;在泡沫质量大于0.9时,CO_2泡沫压裂液的流变模型可用宾汉模型描述。(2)CO_2泡沫压裂液是一种剪切变稀和温度变稀流体。(3)泡沫质量和温度以指数规律影响着CO_2泡沫压裂液流变参数,而压力的影响不是很大。(4)随着泡沫质量的增大,流变指数减小,稠度系数增大;随着温度的升高,稠度系数减小,流变指数增加。
     2.研究了CO_2泡沫压裂液在井筒中的流动,根据CO_2泡沫压裂液的特点建立了泡沫压裂液在井筒中流动时的静液柱和摩阻模型,并进行了实例计算。计算表明:随着泡沫质量的增大,油管中的摩擦压降增大,但在泡沫质量较大时,增大速度是逐渐减小的;在泡沫质量较低时,增大速度是逐渐增加的。泡沫质量越大,泡沫的重位压降就越小,重位压降的变化趋势减小。
     3、在井筒温度场的计算中考虑了由摩擦产生的热量的影响。并分析了泡沫质量、排量等参数对裂缝尺寸的影响规律。计算表明,温度对CO_2在井筒中的状态有显著影响。泡沫压裂设计中,泡沫压裂液的压缩性不可忽略。
     4.根据泡沫压裂的特殊性,建立了泡沫压裂液表现为幂律流体时的拟三维裂缝延伸模型,该模型主要由缝中流体流动的压降方程、裂缝宽度方程、裂缝高度方程、连续性方程、状态方程组成。
     5.推导了CO_2泡沫压裂液表现为赫巴流体时在缝内的压降方程,建立了CO_2泡沫压裂液表现为赫巴流体时的二维裂缝延伸模型,给出了详细的解法,并进行了实例计算。
     6、评价分析了压裂常用支撑剂性能及其工程应用工艺方法,开展了储层岩心的岩石力学试验与岩心微观物性研究,建立了泡沫压裂工程实验方法;模拟分析了压裂液敏感参数对泡沫压裂设计的影响,建立泡沫压裂设计方法和现场质量控制系统;形成了增产机理清楚、选井选层原则明确,工艺完善、适应性强的二氧化碳泡沫压裂工艺技术
     7、形成的二氧化碳泡沫压裂工艺技术分别在吉林油田低渗油藏、辽河高凝油藏及中石化东北局气藏等油气藏得到应用,共试验了22口井26层,成功率95%以上,增产效果明显。
     8、利用建立的二氧化碳泡沫压裂模型和设计方法,编制了界面友好、操作简单易行的二氧化碳泡沫压裂工程设计软件。
For the low pressure, low permeability and water sensitive formations, the stimulation performance of common hydraulic fracturing technology is not ideal, even may fails. Due to the following properties: visbreaking, antiswelling, friction reducing, cleanup and high carrying capacity, small filter loss, swift flowback, low damage, carbon dioxide foam liquid is fit for fracturing these formations, while for the heavy damage oil layer, low water ratio, heavy oil well or primary fracturing layer, the performances are better than that of common fracturing.
     However, the study on carbon dioxide foam fracturing is being in exploration stage in the domestic, and still has many problems. It mainly displays as follows: lacking of theory research, especially there is no agreement on the reheology model of foam fracturing fluids under the circumstances of room temperature and pressure, not to mention the case of high pressure/high temperature; no report of fracture propagation model for the foam fracturing. It needs developing and improving the relevant theories quickly. For these reasons, it's necessary for us to study the theory and technics of carbon dioxide foam fracturing.
     Based on the formers' researches, we studied the following aspects and draw the corresponding conclusions in this paper:
     1. Studied the reheology model of foam fracturing fluids under the circumstances of high temperature and pressure by virtue of the large-scale, high-parameter foam fracturing fluids flow loop; Studied the influence law of the parameters such as shear rate, foam quality, temperature, pressure et al on the rheological parameters and fitted the rheological parameters expressions for the carbon dioxide foam fracturing fluid based on guar fluid. The following conclusions were concluded: (1)When the foam quality is smaller than 0.9, the reheology model of foam fracturing can be depicted by the power law model; When the foam quality is larger than 0.9, it can be depicted by the Bingham model. (2)Carbon dioxide fracturing fluid is a shear thinning and temperature thinning fluid. (3)The effect of the foam quality and temperature on the rheological parameters is in index law, while the effect of the pressure is little. (4)As the foam quality increases, n decreases and k increases; As the temperature increases, k decreases and n increases.
     2. Studied the flow of carbon dioxide foam fluids in the wellbore and established the hydrostatic column model and the friction calculation model for the carbon dioxide foam fluids. The case calculation showed that: as the foam quality increases, the friction loss along the tubing increases, but the larger the foam quality is, the smaller the increment is; the smaller the foam quality is, the larger the increment is. As the foam quality increases, the gravity pressure drawdown diminishes the variation trend of the gravity pressure drawdown diminished.
     3. Considering the effect of friction energy, we calculated the wellbore temperature field, and analyzed the effect of foam quality and discharge rate on fracture. The results indicated that temperature obviously influences carbon dioxide state in the wellbore. The compressibility of foam fracturing fluid shouldn't be omitted in the foam fracturing design.
     4. Established a pseudo-3D fracture propagation model for the foam fracturing fluid behaved as power law fluid on the basis of special attributes of foam fracturing. The model is mainly made up of pressure drawdown equation, fracture width equation, fracture height equation, continuing equation, and state equation which depict the fluid flowing in the fracture.
     5. Deduced the pressure drawdown equation in the fracture when carbon dioxide foam fracturing fluid behaves as Hershel-Bulkley fluid, and established 2D fracture propagation model. The concrete solution was given, and the field instance calculation was conducted.
     6. Assessed the performance of common proppant and technology, launched rockcore mechanical test and studied core microproperty, established the experimental method of foam fracturing, simulated and analyzed the effect of fracturing fluid sensitive parameters on foam fracturing design, established foam fracturing design method and quality control system in the field, formed carbon dioxide foam fracturing technology whose traits are as follows: clear stimulation mechanics, definite well & layer selecting principle, perfect technique, high adaptability.
     7. Carbon dioxide foam fracturing technology was used in low permeability oilfield of Jilin, high condensate pool of Liaohe, and gas reservoir of Sinopec Northeast bureau. It was used in 26 layers of 22 wells; the success ratio was higher than 95%, and with obvious stimulation performance.
     8. Based on the carbon dioxide foam fracturing model and design methods, we compiled a convenient operating and friendly interface engineering design soft of carbon dioxide foam fracturing.
引文
[1]李道品著.低渗透油田高效开发决策论.石油工业出版社.北京:2003.6.3-5
    [2]曾雨辰等.中原低渗透油气藏CO_2泡沫压裂工艺技术试验及应用.水力压裂技术学术研讨会论文集(2004)北京:中国石化出版社
    [3]Grundmann,S.R.and Lord,D.L.:"Foam Stimulation," JPT(March 1983)597-602.
    [4]Philips A m,Wike J G..Successful field application of high-temperature rheology of CO_2 foam fracturing fluid.SPE16316,1987
    [5]Harris,P.C.,Klebenow O.E.and Kundert,D.P.:"Constant-Internal-Phase Design Improves Stimulation Results," SPEPE(Feburary 1991)15-19.
    [6]Watkins,E.K.,Wendorff,C.L.and Ainley,B.R:"A New Crosslinked Foamed Fracturing Fluid," paper SPE 12027 presented at the 1983 SPE Annual Technical Conference and Exhibition,San Francisco,October 5-8.
    [7]Craighead,M.S.,Hossaini,M.and Freeman,E.R.:" Foam Fracturing Utilizing Delayed Crosslinked Gels," paper SPE 14437 presented at the 1985 SPE Annual Technical Conference and Exhibition,Las Vegas,September 22-25.
    [8]Sudhaker D.Khade and Subhash N.Shah:"New Rheological Correlations for Guar Foam Fluids" SPE Production & Facilities.May,2004
    [9]Raze,S.H.and Marsden,S.S.:"The Streaming Potential and the Rheology of Foam," SPEJ,December 1967,Vol7,pp359-368
    [10]Wordoff,C.L.,and Ainley,B.R."Massive Hydraulic Fracturing of High Temperature wells With Stable Frac Foams," SPE paper10257,presented at the 56~(th) Annual Fall Technical Conference and Exhibition of the Society of Petroleum Enginneer of AIME,held in San Antonio,Texas,October5-7,1984
    [11]Saintpere,S et el.:"Rheological Properties of Aqueous Foams for Underbanlanced Drilling," paper SPE56633 presented at the 1999 SPE Annual Techical Conference and Exhibition,Houston,3-6 October.
    [12]Patton,J.T.,Holbrook,S.T,and Hsu,W.:"Rheologyof Mobility Control Foams,"(SPEJ,1983) 456
    [13]Reidenbach.V.G.et el.:"Rheological Study of Foam Fracturing Fluids Using Nitrogen and Carbon Dioxide",SPE Production & Facilities.January,1986
    [14]Harris.P.C.and Reidenbach.V.G.:"High-Temperature Rheological Study of Foam Fracturing Fluids," SPE13177
    [15]Harris.P.C.and Reidenbach.V.G:"High-Temperature Rheological Study of Foam Fracturing Fluids," JPT(May,1987) 613
    [16]Harris,P.C.:"A Comparison of Mixed Gas Foams with N_2 and CO_2 Foam Fracturing Fluids on a Flow Loop Viscometer," paper SPE 20642 presented at the 1990 SPE Annual Technical Conference and Exhibition,New Orleans,September 23-26.
    [17]Phillips,A.M.andCouchman,D.D.:"Successful Field Application of High Temperature Rheology of CO_2 Foam Fracturing Fluids," paper16416 presented at the 1987SPE/DOE Low Permeability Reserviors Symposium,Denver,18-19,May.
    [18]C.Enzendorfer,R.A.Harris,P.Valko and M.J.Econmides:"Pipe viscometry of foams"J.Rheology 39(2) March/April 1995,345-358
    [19]江体乾、褚家瑛等.泡沫流体的流变特性的研究报告(第Ⅰ、Ⅱ部分).华东工学院化工所流变室,北京石油勘探开发研究院钻井所.1990.8-9
    [20]王树众、王志刚、林宗虎等人.CO_2泡沫压裂液两相流动流动特性的试验研究.西安交通大学学报 37(9),2003
    [21]王志刚、王树众、林宗虎等人.超临界CO_2/胍胶泡沫压裂液流变特性研究.石油与天然气化工.32(1),2003
    [22]王树众、王斌等.竖管中CO_2泡沫压裂液的管流阻力特性.工程热物理学报.25(6),2004
    [23]王树众、王斌、林宗虎等.施工条件下CO_2泡沫压裂液的对流换热特性.化工学报.55(3),2004.3
    [24]卢拥军、方波等人.CO_2泡沫压裂液粘弹性与触变性的表征研究 天然气工业 2005.7
    [25]李文魁、张杰、张新庆.压裂液流变性研究的新进展.西安石油大学(自然科学版),15(2),2000.3:33-37
    [26]Holditch,S.A.and Plammer,S.A.:"The Design of Stable Foam Fracturing Treatments,"Proc.,23rd Annual Southwestern Petroleum Short Course,Lubbock,TX(1976) 135-142.
    [27]Krug,J.A.and Mitchell,B.J.:"Charts Help Find Volume,Pressure Needed for Foam Drilling," Oil and Gas Journal(Feb.7,1972)61-64.
    [28]Beyer,A.H.,Millhone,R.S.and Foote,R.W.:"Flow Behavior of Foam as a Well Circulating Fluid," paper SPE 3986 presented at the SPE 47th Annual Fall Meeting,San Antonio,Oct.2-5,1972.
    [29]Blauer,R.E.,Mitchell,B.J.and Kohlhaas,C.A.:"Determination of Laminar,Turbulent and Transitional Foam-Flow Friction Losses in Pipes," paper SPE 4885 presented at the SPE 44th Annual California Regional Meeting,San Francisco,April 4-5,1974.
    [30]Blauer,R.E.and Kohlhaas,C.A.:"Formation Fracturing with Foam," paper SPE 5003presented at the SPE 49th Annual Fall Meeting,Houston,Oct.6-9,1974.
    [31]Tan H C and McGowan J M.friction pressure correlation for CO2 foam fluid[J].SPE,1991
    [32]Tan H C and Shan S N.:"Field application of Laboratory friction pressure correlations of borate crosslinked fluids[J].SPE21034,1991.
    [33]Lord,D.L.:"Analysis of Dynamic and Static Foam Behavior," JPT(January)1981,39-45.
    [34]Kuru.E and Miska.S et al:"New Directions in Foam and Aerated Mud Research and Development," SPE53963,Presented at 1999 SPE Latin American and Caribbean Petroleum Enginneer conference held in Caracas,Venezuela,21-23 April,1999
    [35]Guo,B.,Miska,S.,Hareland,G.,:"A Simple Approach to Determination of Bottom Hole Pressure in Directional Foam Drilling," ASME Drilling Technology,February,1988,PD-Vol.65,pp.329-338.
    [36]Lord,D.L.:"Mathematical Analysis of Dynamic and Static Foam Behavior," paper SPE 7927 presented at the 1979 SPE symposium on Low Permeability Gas Reservoirs",Denver,May 20-22.
    [37]Spoerker H.F.,Trepess,P.,Valko,P.,Economides,M.J.:"System Design For The Measurement of Downhole Dynamic Rheology For Foam Fracturing Fluids," SPE22840,presented at the 66th Annual SPE Technical Conference,Dallas,November 6-9,1991.
    [38]Liu.G and Medley G.H.JR:"Foam Computer Model Helps In Analysis of Underbalanced Drilling".Oil Gas J V1996,94,No 27,P114-119.
    [39]Gardiner,B.S.,Dlugogorski,B.Z.,and Jameson,G.J.,"Rheology of Fire Fighting Foams," accepted for publication,Fire Safety Journal,1998.
    [40]王鸿勋、张士诚.水力压裂设计数值计算方法.北京:石油工业出版社,1998
    [41]Abou-Sayed,Clifton:Evaluation of the Influence of In-Situ Reservoir Conditions on the Geometry of Hydraulic Fractures Using a 3D Simulator:Part Ⅰ—Technical Approach.SPE12877
    [42]Abou-Sayed,Clifton:Evaluation of the Influence of In-Situ Reservoir Conditions on the Geometry of Hydraulic Fractures Using a 3D Simulator:Part Ⅱ—Case Studies.SPE12878
    [43]Cleary,Lam.:A Complete Three-Dimensional Stimulator for Analysis and Design of Hydraulic Fracturing.SPE/DOE15266
    [44]陈勉.水力裂缝几何形态研究进展.油气藏改造技术论文集.中国石油油气藏改造重点实验室.石油工业出版社.北京.2001
    [45]Clifton R.J.and Abou-Sayed A.S.:A Varational Approach to the Three-Dimensional Geometry of Hydraulic Fractures.SPE/DOE 9879
    [46]Cleary,Lam.:Development of a Fully Three-Dimensional Stimulator for Analysis and Design of Hydraulic Fracturing.SPE/DOE11631
    [47]赵金洲、杨兆中等.裂缝三维延伸的数值模拟.“油气藏地质及开发工程”国际学术研讨会论文,1995-08
    [48]郭大立、纪禄军、赵金洲、刘慈群.煤层压裂裂缝三维延伸模拟及产量预测研究.应用数学和力学,2001,22(4):337-344
    [49]张平等.水力压裂裂缝三维延伸数值模拟研究.石油钻采工艺,1997,19(3):53-59
    [50]赵金洲、任书泉.考虑温度影响时裂缝几何尺寸的数值计算模型和方法.石油学报,1987,8 (1):71-82
    [51]B.Herzhaft:"Rheology of Aqueous Foams:A Literature Review of some Experimental Works" Oil & Gas Science and Technology Rev.IFP.54(3),1999,587-596
    [52]J.L.吉德利等著,蒋阗等译.水力压裂技术新发展.北京:石油工业出版社,1995
    [53]W.Winkler,P.P.Valko and M.J.Econmides:"A Rheological Model for Polymer Foams"SPE27013
    [54]P.P.Valko and M.J.Econmides:"Volume equalized constitutive equations for foamed polymer solutions" J.Rheology 36(6) August 1992 1033-1055
    [55]W.Winkler,P.P.Valko and M.J.Econmides:"Laminar and drag-reduced polymeric foam flow" J.Rheology 38(1) August 1994 111-127
    [56]Peter Valko and M.J.Econmides:"The Rheological Properties of Carbon Dioxide and Nitrogen Foams" SPE23778
    [57]H.F.Sporker,P.Trepess,P.Valko and M.J.Econmides:"System Design for the Measurement of Downhole Dynamic Rheology for Foam Fracturing Fluids" SPE22840
    [58]Peter Valko and M.J.Econmides:"Foam Proppant Transport" SPE27897
    [59]Peter Valko and Michael.J.Economides.Hydraulic Fracture Mechanics
    [60]韩布兴等编著.超临界流体科学与技术.北京:中国石化出版社,2004 2
    [61]许卫、李勇明、郭建春、赵金洲等.氮气泡沫压裂液体系的研究与应用.西南石油学院学报,2002,(03)
    [62]荣光迪、杨胜来、强会彬等.CO_2泡沫压裂的技术关键.2004油气藏改造技术新进展.中国石油油气藏改造重点实验室.石油工业出版社.北京.2004,117-123
    [63]刘晓燕、支恒等.泡沫流变模型试验研究.煤田地质与勘探.24(8),1996.8
    [64]黄逸仁编.非牛顿流体流动及流变测量.成都:成都科技大学出版社,1993
    [65]李玉魁、吴佩芳等.CO_2增产技术改造煤层的可行性探讨.中国煤层气1(2)2004.11
    [66]Kamphuis,Davies,Roodhart.A New Simulator for the Calculation of the In-SituTemperature Profile during Well Stimulation Fracturing Treatments.J.Can.Pet.Tech,1993,32(5),38-47
    [67]N.S.Deshpande,Barigou:"The flow of gas-liquid foams in vertical pipes" Chemical Engineering Science 55(2000) 4297-4309
    [68]John.P.Heller and Murty S.Kuntamukkula:"Critical Review of the Foam Rheology Literature" Ind.Eng.Chem.Res 1987,26,318-325
    [69]E.Kuru,S.Miska et al.:"New Directions in Foam and Aerated Mud Research and Development" SPE53963
    [70]Christopher N.Fredd,Matthew J.Miller et al.:"Impact of Water-Based Polymer Fluid Characteristics on CO_2 Foam Rheology" SPE86493
    [71]刘从彪、彭松良等人.泡沫压裂设计中的计算公式.石油钻采工艺.19(3),1997
    [72]M.Evren Ozbayoglu,Ergun Kuru et al."A Comparative Study of Hydraulic Models for Foam Drilling" SPE65489
    [73]Peter.Valko and Michael J.Economides.Hydraulic Fracture Mechanics
    [74]P.C.Harris:"Effects of Texture on Rheology of Foam Fracturing Fluids" SPE14257
    [75]P.C.Harris:"A Comparison of Mixed-Gas Foams with N_2 and CO_2 Foam Fracturing Fluids on a Flow-Loop Viscometer" SPE Production & Facilities.August 1995
    [76]P.C.Harris and S.J.Heath:"Rheology of Crosslinked Foams" SPE Production& Facilities.May,1996
    [77]马新仿、黄少云、张士诚.全三维水力压裂过程中裂缝及近缝地层的温度计算模型.石油大学学报.2001,25(5):38-41
    [78]李勇明、郭建春等人.泡沫压裂液在三维缝中流动数值模拟.河南石油.15(2),2001
    [79]K.E.Cawiezel and T.D.Niles:"Rheological Properties of Foam Fracturing Fluids under Downhole Conditions" SPE16191
    [80]S.A.Baumgartner and D.J.Mack:"On-site Computer Monitoring of Foamed Stimulation Fluids" SPE17531
    [81]Abu.M.Sani and Subhash N.Shah:"Experimental Investigation of Xanthan Foam Rheology"SPE67263
    [82]Phil Harris:"Discussion of 'New Rheological Correlations for Guar Foam Fluids'"SPE Production & Facilities.November,2004
    [83]Subhash N.Shah:"Author's Reply to "Discussion of 'New Rheological Correlations for Guar Foam Fluids'" SPE Production & Facilities.November,2004
    [84]George E.King:"Foam and Nitrified Fluid Treatments-Stimulation Techniques and More"SPE14477
    [85]Naudu N.Thondavadi and Robert Lemllch."Flow Properties of Foam with and without Solid Particles" Ind.Eng.Chem.Process Des.Dev.1985,24,748-753
    [86]P.C.Harris and Mike Pippin:"High-Rate Foam Fracturing" SPE39959
    [87]王斌、汪军等.CO_2泡沫压裂裂缝三维延伸及温度场的数值模拟.上海理工大学学报.27(1),2005
    [88]王振铎、王晓泉、卢拥军等.二氧化碳泡沫压裂技术在低渗透低压气藏中的应用.石油学报.25(3),2004
    [89]郑新权、靳志霞等.CO_2泡沫压裂优化设计技术及应用.石油钻采工艺.25(4),2003
    [90]王树众、王斌等.竖管中CO_2泡沫压裂液的管流阻力特性.工程热物理学报.25(6),2004
    [91]刘晓燕、支恒等人.泡沫流变模型试验研究.煤田地质与勘探.24(4),1996
    [92]哈利伯顿公司编,候高文、李玉堂译.油气田CO_2使用手册.石油大学出版社.山东东营.1989
    [93]陈彦东、卢拥军、田助红.CO_2泡沫压裂液的流变特性研究.油气藏改造论文集.中国石油油气藏改造重点实验室.石油工业出版社.北京.2004
    [94]卢拥军、丛连铸、梁利等.压裂用起泡技术与起泡剂FL-36.油气藏改造论文集.中国石油油气藏改造重点实验室.石油工业出版社.北京.2004
    [95]王晓泉、王振铎、卢拥军、陈作等.CO_2泡沫压裂技术理论研究与实践 2004油气藏改造技术新进展.中国石油油气藏改造重点实验室.石油工业出版社.北京.2004,117-123
    [96]Eiclcmeier,Ersoy."Well bore Temperature and Hot Losses During Production or Injection Operations".21st Annual Rech.Meeting of Petroleum Society of C1M,Calgary,1970
    [97]赵金洲等.井筒内液体温度分布规律的数值计算方法.石油钻采工艺,1986.8(3)
    [98]李平,王鸿勋.水力压裂过程中井筒温度的数值计算方法.石油学报.1987,8(2)
    [99]Wheeler."Analytical Calculation of Heat Transfer from Fractures".SPE2494
    [100]Whistt,Dystart."The Effect of Temperature on Stimulation Design".J.P.T,1970
    [101]Setteri,Cleary."Three-Dimensional Simulation of Hydraulic Fracturing".SPE10504
    [102]Blot,Masse,Medlin."Temperature Analysis in Hydraulic Fracturing".SPE13228
    [103]Naceur,Stephenson."Models of neat Transfer in Hydraulic Fracturing" SPE/DOE13865
    [104]Kamphuis,Davies,Roodhart."A New Simulator for the Calculation of the In-Situ Temperature Profile During Well Stimulation Fracturing Treatments".J.Can.Pet.Tech.1993,32(5):38-47
    [105]马新仿等,全三维水力压裂过程中裂缝及近缝地层的温度计算模型.石油大学学报,2001,25(5):38-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700