用户名: 密码: 验证码:
增强型地热系统人工压裂机理研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对增强型地热系统中的温度-渗流-应力-断裂、损伤(THMD)多场耦合问题,在原有程序TOUGHREACT-FALC3D的基础上,依据国内外水力压裂相关理论,利用FISH+FORTRAN语言,开发了断裂、损伤的模块、渗流模块,实现干热岩工程中的压裂及水热交换过程。程序较全面的考虑了水力压裂的张拉、剪切破坏及裂缝扩展、连通规律,通过各个参数之间调整传递,比较真实的反映了实际模型的客观物理过程。此外做了大量的室内试验,为模型模拟提供了数据参考。利用开发的程序,建立了室内模型试验及大庆徐家围子场地模型,通过与试验检测结果对比及场地模型模拟,验证了程序的准确性及适用性、可移植性,并且通过商业软件进行了并对干热岩(EGS)项目压裂扩展规律及水热产出进行了分析。为以后相关领域实际工程中(THMD)多场耦合数值模拟计算提供理论依据及方法支持。
Enhanced geothermal system (EGS), also known as hot dry rock (HDR), is the projectthat obtaining a lot of hot is extracted energy from a low porosity and permeability rock layers.Its study and development has more than30years history, which is confined to United States,Britain, France, Germany, Switzerland, Japan, Australia, and so on. In our country, theresearch of HDR is late start, and these study found that these problems has a very significantimpact for the normal operation and safety of engineering, which is the multi-physics coupledproblems of the temperature-seepage-stress-damage and fracture (THMD) in the process ofdesign, construction and operation.
     This study mainly relies on the National High Technology Research and DevelopmentProgram (863Program)(No.2012AA052801): Engineering Test of HDR Target and Study ofArtificial Fracturing Technology. In the EGS system, coupled effect of liquid and stress ismainly considered in the fracturing process. When the system is running, the injection of coldwater would result in a significant reduction of fracturing layer temperature surrounding well,and energy exchange would also happen by the hydrothermal convection within the cracksand pores, meanwhile, heat exchange continue to occur between liquid, rocks. Theseprocesses exist not only thermal conduction, but also thermal convection and need to considerthe local change of stress field caused by temperature stress. Therefore, for the effectevaluation and prediction after fracturing, this paper established fractured water flow–heattransfer model and multi-field coupled model to assess the reasonableness and applicability oftarget and fracturing technology; then, the paper proposed optimal fracturing method that bothconsiders permeability and thermal conductivity based on field conditions and rock mechanictests of laboratory to evaluate the effect of fracture and hot water output. In this paper, mainlyresearch works are as following:
     1. The paper studied the rules of compression, shear and tension fracture, propagation and coalescence of rock cracks under the action of seepage-temperature-stress. The damageand fracture mechanic model subjected to seepage-temperature-stress had been firstlyestablished and numerical simulating validation is also demonstrated. The plasticity failurecriterion of artificial rock geothermal reservoir structure had been established for thehydrothermal exchange. Theoretically, they were revealed for the crack propagation becauseof the rock hydraulic fracturing and the rules of second thermal cracking of artificial rockgeothermal reservoir structure.
     2. Comparing and analyzing numerical simulating model and laboratory test, and basedon the existing calculation module of FLAC3D, the paper developed the coupled calculatingprocedures of the temperature-seepage-stress-damage and fracture through FISH langragewith TOUGHREACT-FLAC3Dsoftware (extended FLAC3Dmodel). The procedures havepowerful numerical features, including damage and fracture mechanics module, seepagecalculation module, temperature calculation module and multi-fields coupled analysis module.Laboratory testing model of hydraulic fracturing was performed, which verified the rationalityand accuracy of the software applied in hydraulic fracturing.
     3. The properties of rock material were tested. The paper carried on many experiments,including rock mechanics properties, permeability and porosity, thermal physical parameters,fracture toughness, scanning electron microscopy and acoustic emission, with the samples ofXujiaweizi region in the Daqing. These tests provide the basis for choosing the granite,sandstone, rhyolite layers as the fracturing layer and covering layer (sealing layer) in the site.The paper also explored the rules of rock mechanics properties and generalizes therelationship between rock strength and every parameter after making the large rock triaxialstress test and fracture toughness test.
     4. Based on currently grasping the theory of fracture and hydrothermal coupled exchangethermal simulation, the paper simulated the fracture morphology and propagation rules ofhydraulic fracturing and mechanics effect of artificial thermal reservoir structure in theprocess of coupling hydrothermal exchange with the software of Stimplan, TOUGHREACTand the paper developed. Combined target geological model, dynamic reserve was evaluatedduring the mining and operation of HDR, including the assessment of the dynamic heatextraction and system contributed to the life. These aspects also were studied, namely determining technology of geostress and layer mechanical parameters, spatial expansion rulesunder the action of stress and porosity pressure and optimized fracturing parameters to formthe best distribution of fracture.
     5. As the high cost of forming single horizontal well with the traditionally fracturing wayof single pair well, the dual fracturing way of horizontal well was adopted to maximizeutilization and improve production efficiency and reduce the total cost without increasing thedifficulty of the fracture. Therefore, twice fracture was considered forming cracks to add thearea of exchanging heat according to the above research, simulating thermal reservoir afterstimulation. Based on the experience of oil fracturing aspects, it is high economiccost-effective of horizontal well fracturing double fracture to improve the hot water output. Inorder to analyze the problems of interaction and mutual coupling of temperature and seepagefields between the multi-channels of diversion, the paper established water flow and heattransfer model of artificial thermal reservoir structure. Multi-fields coupled rule andinfluencing factors were revealed by analyzing simulation results of the distribution andevolution trend of seepage and temperature fields, providing a theoretical basis for theapplication of the method in engineering.
引文
[1] BARIA R, BAUMGARTNER J, GERARD A. Status of the European hot dryrock geothermal programmer[J]. Geothermal Engineering,1994,19(1/2):33-48.
    [2] PIERCE K G. An estimate of the cost of electricity production from hot dryrock[J]. Geothermal Resources Council Bulletin,1993,(9):197-203.
    [3]赵阳升,万志军,康建荣.高温岩体地热开发导论.北京:科学出版社,2004.
    [4]蒋林,季建清,徐芹芹.渤海湾盆地应用增强型地热系统(EGS)的地质分析[J].地质与勘探,2013,49(1):167-178.
    [5] Gupta K., Roy S.2007. Geothermal energy: An alternative energy for the21stcentury [M]. Ed.1. Amsterdam: Elsevier,207-209.
    [6]陈墨香,汪集旸,邓孝.中国地热系统类型图及其简要说明[J].地质科学,1996,31(2):114-121.
    [7]徐世光,郭远生.地热学基础[M].北京:科学出版社,2009.
    [8]冯晓燕.沈阳地区利用干热岩资源供暖技术研究[D].2012.
    [9]王贵玲.我国地热资源勘查评价战略研究[A].中国地热能:成就与展望—李四光倡导中国地热能开发利用40周年纪念大会暨中国地热发展研讨会论文集[C],2010.
    [10]高学伟,李楠,康慧.地热发电技术的发展现状[J].电力勘测设计,2008,3:59-63.
    [11]冯增朝,赵阳升.高温岩体地热开采中出力与寿命的数值模拟研究[C].自主创新与持续增长第十一届中国科协年会论文集(1),2009.9,中国重庆.
    [12]郭进京,周安朝,赵阳升.高温岩体地热资源特征与开发问题探讨[J].天津城市建设学院学报,2010,16(2):77-84.
    [13]王晓星,吴能友,苏正等.增强型地热系统开发技术研究进展[J].地球物理学进展,2012,27(1):355-362.
    [14]李虞庚,蒋其垲,杨伍林.关于高温岩体地热能及其开发利用问题.石油科技论坛,2007,(1):28-40.
    [15]郑克棪,潘小平.中国地热发电开发现状与前景.中外能源,2009,14(2):45-48.
    [16]李登伟,张烈辉,郭了萍等.中国21世纪可替代能源和可再生能源.天然气工业,2006,26(5):1-4.
    [17] N.A.Tellier, D.V.Duchane,沈敏了.干热岩一一个高温地热概念[A].中国西藏高温地热开发利用国际研讨会论文选[C],1992.
    [18]张建英.增强型地热系统_EGS_资源开发利用研究[J].中国能源,2011,33(1):29-37.
    [19] Zhao Jianbin et al.The key technical analysis on the hot dry rock in northeastcold in china [J]. Applied Mechanics and Materials,2011.8.
    [20]冯晓燕,赵俭斌.浅析干热岩资源的开发与利用[C].第八届全国土木工程研究生学术论坛论文集,2010.11.
    [21] U.S.Massachusetts Institute of Technology. The Future of Geothermal Energy.2007, http://geothermal, inel, gov.
    [22] Brown D W. Hot dry rock geothermal energy: important lessons from FentonHill. Proceedings of the Thirty-Fourth Workshop on Ueothermal ReservoirEngineering, Stanford, February,11,2009.
    [23] Gerard A, Genter A, Kohl T, et al. The deep EGS (Enhanced GeothermalSystem) project at Soultz-sous-Forets(Alsace, France). Geothermics,2006,35(5-6):473-483.
    [24]热干岩过程法—新地热发电方法[J].电站辅机,2004,(03).
    [25] Center A., Guillou Frottier L, et al.Typology of potential of Hot FracturedeRock resources in Europe [J]. Geothermics,32:701-710.
    [26] Pruess K. Enhanced geothermal systems (EGS) using CO2as working fluid-Anovel approach for generating renewable energy with simultaneoussequestration of carbon [J].Geothermics,2006,35:351-367.
    [27] Sanyal S.,Butler S.An analysis of power generation prospects from enhancedgeothermal systems[A].Proceedings of World Geothermal Congress,2005.:2-102.
    [28] Legarth B., Huenges E., Zimmermann G. Hydraulic fracturing in asedimentary geothermal reservoir: Results and implications[J].InternationalJournal of Rock Mechanics and Mining Sciences,2005,42(7-8):1028-1041.
    [29] Zimmermann G.,Moeck I.Cyclic waterfrac stimulation to develop anEnhanced Geothermal System (EGS)-Conceptual design and experimental resul[J] Geothermics,2010,39:59-69.
    [30] MacDermott C.,Randriamanjatosoa A.,Tenzer H.,Kolditz O.Simulation ofheat extraction from crystalline rocks: The influence of coupled processes ondifferential reservoir cooling[J].Geothermics,2006,35:321-344.
    [31] Fritz B.,Jacquot E.,Jacquemont B.,Baldeyrou-Bailly A.,RosenerM.,Vidal O.Geochemical modelling of fluid–rock inter-actions in the context ofthe Soultz-sous-Fores ts geothermal system[J]. Comptes Rendus Geoscience,2010,(342):653-667.
    [32] Brown,D.Hot Dry Rock geothermal energy concept utilizing supercritical CO2instead of water [A]. Proceedings of the Twenty-Fifth Workshop onGeothermal Reservoir Engineering,2000,Stanford University:233-238.
    [33] Fu Ming-xi,Hu Sheng-biao,Wang Ji-yang. Mesozoic transition of geothermalconfiguration in North China and its significance[J].Science in China Ser. DEarth Sciences,2004,34(6):514-250.
    [34] Atrens A.,Gurgenci H.,Rudolph V. Electricity generation using acarbon-dioxide thermosiphon[J]. Geothermic,2010,(31):161-169.
    [35] Fard M.,Hooman K.,Chua H.Numerical simulation of a supercritical CO2geothermosiphon [J]. International Communications in Heat and MassTransfer,2010,(37):1447-1451.
    [36] Majer E.,Baria R.,Stark M.,Oates S.,Bommere J.,Smith B.,AsanumagH.Induced seismicity associated with enhanced geothermal systems[J].Geothermics,2007,36:185-222.
    [37] Evans K.,Zappone A.,Kraft T.,Deichmannb N.,Moiac F. A survey ofthe induced seismic responses to fluid injection in geothermal andCO2reservoirs in Europe[J]. Geothermics,2011.(41):30-54.
    [38] MIT-led Interdisciplinary Panel. The future of geothermal energy: Impact ofenhanced geothermal systems (EGS) on the United States in the21st Century[M]. Ed.1.Idaho: Idaho National Libarary,2006:1-255.
    [39]汪洋.中国及邻区大地热流分布特征[J].地球学报,1999,20(增刊):51-53.
    [40]孙爱群,牛树银.地幔热柱演化及其地热效应—华北地热异常的深部构造背景[J].地球学报,2000,21(2):182-188.
    [41]邵济安,张长厚,张履桥,张水北.关于华北盆山体系动力学模式的思考[J].自然科学进展,2003,13(2):218-224.
    [42] Cloetingh S.,Van Wees J.,Ziegler P.,et al. Lithosphere tectonics andthermo-mechanical properties: An integrated modeling approach for EnhancedGeothermal Systems exploration in Europe[J].Earth-Science Reviews,2010,(102):159-206.
    [43]杨吉龙,胡克.干热岩(HDR)资源研究与开发技术综述[J].世界地质,2001,20(1):43-51.
    [44] Wan Z.,Zhao Y.,Kang J.Forecast and evaluation of Hot Dry Rock geothermalresource in China [J].Renewable Energy,2005,30(12):1831-1846.
    [45]康玲,王时龙,李川.增强型地热系统的人工热储技术[J].地热能,2009,(2):13-16.
    [46] Chen,H.Y.Teufel,L.W,andLee,R:"Coupled Fluid Flow and Geomechanics inReservoir Study-1.Theory and Governing Equations,"paper SPE30752presented at the SPE Annual Technical Conference&Exhibition.Dallas, TX,22~25Oct.1995.
    [47]何艳青,王鸿勋.用数值模拟方法预测压裂井的生产动态[J].石油大学学报,1990,16~25.
    [48]闫建文,王群嶷,张士诚.低渗透油田压裂注水采油整体优化方法[J].大庆石油地质与开发,2000年第5期,50~52.
    [49]王鸿勋,张士诚,水力压裂设计数值计算方法[M].石油工业出版社,1998年第1版,342~353.
    [50] Harrison E, Kieschnick WF, McGuire WJ. The mechanics of fracture inductionand extension.Petroleum Trans AIME1954;(201):252–63.
    [51] Khristianovic SA, Zheltov YP. Formation of vertical fractures by means ofhighly viscous liquid. In: Proceedings of the fourth world petroleum congress,Rome,1955. p.579–86.
    [52] Sneddon IN, Elliot HA. The opening of a Griffith crack under internal pressure.Q Appl Math1946;4:262–7.
    [53] Perkins TK, Kern LR. Widths of hydraulic fractures. J Pet Tech1961;13(9):937-49[SPE89].
    [54] Nordren RP. Propagation of a vertical hydraulic fracture. SPE J1972;12(8):306–14SPE7834.
    [55] Detournay E. Propagation regimes of fluid-driven fractures in impermeablerocks. Int J Geomech2004;4:1–11.
    [56]美米卡尔J.埃克诺米德斯,肯尼斯G.诺尔特编著;张保平,蒋阗,张汝生等译.油藏增产措施[M].第三版,北京石油工业出版社,2002,230~310.
    [57]李兆霞.损伤力学及其应用[M].北京:科学出版社:2002.
    [58] Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of freeboundaries. J Comput Phys1981;39:201–25.
    [59] Osher S, Sethian J. Fronts propagating with curvature-dependent speed:algorithms based on Hamilton–Jacobi formulations. J Comput Phys1988;79:12–49.
    [60] Green AE, Sneddon IN. The distribution of stress in the neighbourhood of a flatelliptical crack in an elastic solid. Proc Cambridge Philos Soc1950;46:159–63.
    [61] Daneshy AA. On the design of vertical hydraulic fractures. J Pet Tech1973;(January):83–97[SPE3654].
    [62] Spence DA, Sharp P. Self-similar solutions for elastohydrodynamic cavity flow.Proc R Soc London A1985;400:289–313.
    [63] Simonson ER, Abou-Sayed AS, Clifton RJ. Containment of massive hydraulicfractures. SPE J1978;18(1):27–32[SPE6089].
    [64] Fung RL, Vilajakumar S, Cormack DE. Calculation of vertical fracturecontainment in layered formations. SPE Formation Eval1987;2(4):518–23[SPE14707].
    [65] Mack MG, Warpinski NR. Mechanics of hydraulic fracturing. In: Economides,Nolte, editors. Reservoir stimulation.3rd ed.Chichester; Wiley:2000[Chapter6].
    [66] Advani SH, Lee TS, Lee JK. Three-dimensional modeling of hydraulic fracturesin layered media: part I—finite element formulations. J Energy Resour Tech1990;112:1–9.
    [67] Vandamme L, Curran JH. A three-dimensional hydraulic fracturing simulator.Int J Numer Meth Eng1989;28:909–27.
    [68] Barree RD. A practical numerical simulator for three-dimensional fracturepropagation in heterogenous media. In: Proceedings of the SPE symposiumreservoir simulation, SanFrancisco, November15–18. Richardson: Society ofPetroleum Engineers;1983. p.403–13.SPE12273.
    [69] Siebrits E, Peirce AP. An efficient multi-layer planar3D fracture growthalgorithm using a fixed mesh approach. Int J Numer Meth Eng2002;53:691–717.
    [70] Clifton R.J,Abou-Sayed A. S. On the computation of three-dimensionalgeometry of hydraulic fractures [R].SPE7943.
    [71] Clifton R. J,Abou-Sayed A. S. A variation approach to the three-dimensionalgeometry of hydraulic fractures [R].SPE/DOE9879.
    [72] Cleary M.P.,Kavvadas M.,Lam K.Y.A fully three-dimensional hydraulic fracturesimulator[R].SPE11631.
    [73] Cleary M. P.,Development of a fully three-dimensional hydraulic fracturesimulator of analysis and design of hydraulic fractures [R].SPE/DOE11631.
    [74] LeVeque RJ. Finite volume methods for hyperbolic problems. Cambridge:Cambridge University Press;2002.
    [75]陈勉,陈治喜,黄荣樽,等.非均质地层水力压裂研究[J].石油大学学报(自然科学版),Vol.15,采矿专辑,1994,309–312.
    [76]依同春,王鸿勋.水平裂缝压裂设计数值方法的研究[J].华东石油学报,1986.
    [77]吴迪祥,赵孟学,郭恩昌.水力压裂裂缝几何形态的数值模拟[J].石油钻采工艺,1986(6):59–65.
    [78]刘翔颚.水力压裂裂缝垂向延伸机理研究报告[C].1988.
    [79]仇伟德,鲁连军.用于预测水力裂缝缝高的新拟三维流场模型[J].石油大学学报(自然科学版),2002,26(5).48–52.
    [80]姚飞,翁定为,李阳,等.重复压裂前地应力场预测软件研究及现场应用[J].石油学报,vol(28)2007年第4期.
    [81]杨能宇,张士诚,王鸿勋.整体压裂水力裂缝参数对采收率的影响[J].石油学报,1995年第3期.
    [82]王江,王玉英.水力压裂裂缝方向对油井含水动态的影响[J].钻采工艺,2004年第1期,54–57.
    [83]王鸿勋.重复压裂技术的几项最新进展[J].世界石油工业,2000,7(9):41–45.
    [84]赵金洲,郭建春.水力压裂效果动态预测[J].石油钻采工艺,1995第6期,55–61.
    [85]曾雨辰.转向重复压裂技术研究与应用[J].西南石油学院博士学位论文[D],2005
    [86] E.Siebrits, and J.L.Elbel:Refractors Reorientation Enhances Gas Production inBarnett Shale Tight Gas Welts.SPE63030,2000.
    [87]张义堂,刘慈群.垂直裂缝井椭圆流模型近似解的进一步研究[J].石油学报,1996年,73~77.
    [88]王永辉,蒋阗,路勇.低渗层重复压裂的油藏数值模拟研究[J].石油勘探与开发,1997年第1期,47–49,72.
    [89]赵金洲,郭建春,陈汉斌.裂缝性低渗透油藏整体压裂数值模拟技术及应用[C].1998年9月,西安,会议论文,1–12.
    [90]张磊,王文军,张红军.低渗透油田注水井压裂数值模拟研究[J].大庆石油地质与开发,2003年第2期,41–43.
    [91]李勇明,郭建春,赵金洲.油藏整体压裂数值模拟软件的研制与应用[J].断块油气田,2004年第5期,37–39.
    [92]范学平,徐向荣等.用流固耦合方法研究油藏压裂后应力应变和孔渗特性变化[J].岩土力学,2001,22(1):47–50.
    [93] R. R. McDaniel, D. V. Holmes, and J. F. Borges,etc. DeterminingPropped Fracture Width From a New Tracer Technology[C].2009,SPE119545-MS.
    [94] C. L. Cipolla, E. P. Lolon, and M. J. Mayerhofer. Resolving Created, Propped,and Effective Hydraulic Fracture Length[C].2008, SPE12147-MS.
    [95] Y. N. Wei, and S. A. Holditch. Computing Estimated Values of Optimal FractureHalf Length in the Tight Gas Sand Advisor Program[C].2009, SPE119374-MS.
    [96] Lujun Ji,A.(Tony) Settari, R. B. Sullivan. A Novel Hydraulic FracturingModel Fully Coupled With Geomechanics and Reservoir Simulator[C].2007,SPE110845-MS.
    [97] Van Dam D.B.Papanastasiou P.de Pater C.J Impact of rock plasticity onhydraulic fracture propagation and closure[R].SPE63172.
    [98] Degue.K.M.and Ladamyi.B.Effect of fluid penetration and pressurizing rate onhydraulic fracturing. Pacific Rocks2000. Girad. Liebman. Breedsand Doe(eds).Balkema.Rotterdam.2000:181~188.
    [99]张士诚,张劲.压裂开发理论与应用[M].石油大学出版社,2003年第1版,27-37.
    [100]杨秀夫,陈勉.国内外水力压裂技术现状及发展趋势[J].钻采工艺,1998,21(4):21-25.
    [101]王鸿勋.水力压裂原理[M].第一版,石油工业出版社,1987.
    [102] L.吉德利等著.水利压裂技术新进展[M].北京:石油工业出版社,1995.
    [103] Pine RJ, Cundall PA. Applications of the Fluid-Rock Interaction Program (FRIP)to the modelling of hot dry rock geothermal energy systems. In: Proceedings ofthe international symposium on fundamentals of rock joints, Bjorkliden,Sweden, September293-302,1985.
    [104] Desroches J. Stress testing with the micro-hydraulic fracturing technique-focuson fracture reopening. In: Daemen JK, Schultz RA, editors. Proceedings of the35th U.S. symposium on rock mechanics. Rotterdam: Balkema;1995. p.217-23.
    [105] Ptolemy (Claudius Ptolem us). c.130. The almagest. Book III.R.C.Taliaferro.1938. Encyclop dia Britannica, Inc. London. Repr.1952.
    [106]张平,赵金洲,郭大立.水力压裂裂缝三维延伸数值模拟研究[J].石油钻采工艺,1997,19(3):53-59.
    [107] B.A dibhatla, K.K.Mohanty Oil Recovery From Fractured Carbonates bySurfactant-Aided Gravity Drainage Laboratory Experiments and MechanisticSimulations[R].SPE.997732008.
    [108] R.Pongratz, M.Stanojcic.V, Martysevich. PinPoint Multistage FracturingStimulation Global Applications and Case Histories from Russia[R].SPE114786.
    [109] Pijush Paul and Mark Zoback,and Peter Hennings,ConovoPhillips,Fluid Flow ina Fractured Reservoir Using a Geomachanically-Constrained Fault ZoneDamage Model for Reservoir Simulation[R].SPE110542.
    [110] Wright,C.A.and Conant,R.A:"Hydraulic Fracture Reorientation in Primary andSecondary Recovery from low-permeability Reservoirs," paper SPE30494presented at the1995SPE Annual and Technical Conference andExhibition,Dallas,Oct.22-25.
    [111]夏海帮,陈刚,韦建伟.苏北地区低渗储层压裂改造工艺技术及效果评价[J].工程论坛,2006,3.
    [112]王群嶷,冯立.大庆低渗透油田薄差油层勘探开发整体压裂优化设计应用与实践[J].中国石油勘探,2005年第6期,56-60.
    [113] Arthur S.Metcalf,and Juan Coronado,A Case Study of Hydraulically FracturedEddy County,New Mexico,Horizontal Wolfcamp Producers[R].SPE116646.
    [114]侯洪涛,邹群.先进的多层压裂技术[J].国外油田工程,2007,2(23),2
    [115] AdibA.Al-Mumen,Mohammedl.Al-Umran and Pradeep Agrawal.UniqueSolution for Fracture Isolation Resolves WaterGas Breakthrough Challenges inHorizontal SlimHole Well[R]. SPE115270.
    [116]姜瑞忠,蒋廷学,汪永利.水力压裂技术的近期发展及展望[J].石油钻采工艺,2004,4,vol26,4.
    [117]刘伟.水力压裂压力动态试井分析与增产效果提高方法研究[D].中国地质大学(北京)博士学位论文,2005,5.
    [118]李凡磊,张志海,刘更新.转向压裂技术在江苏油田的应用[J].油气井测试,922006,2(15),1.
    [119] Liu He,Wang Zhongguo,Wang Qingping,Yao Hongtian,ect-Study andApplication of the Technology of subdivision Controlled Limited entryFracturing in Reservoir with Many Thin Layers[R].SPE115371.
    [120]吴月先.国内大型压裂技术再创新记录[J]. Oil FIELD EQUIPMENT,2006,vol35,1.
    [121] E.Artun,T.Ertekin,and R.Watson,ect,Optimized Design of Cyclic PressurePulsing in a Depleted, Naturally Fractured Reservoir[R].SPE117762.
    [122] V.S.Mironov,I.R.Diyashev,and A.V.Brovchuk,ect Determination of FractureAzimuth in Palnikovskoye Field Western Siberia Using TiltmeterTechnology[R]SPE117097
    [123].J.Curtice and Carlson,and M.StahlRelative-Permeability Modifiers Used inConjunction With Hydraulic Fracturing Can Increase Hydrocarbon Productionand Reduce Water Production[R] SPE117603.
    [124]唐庆春.整体压裂垂直裂缝数值模拟方法研究[D].吉林大学硕士学位论文,2006.
    [125]钟显,赵立志,杨旭.生化处理压裂返排液的试验研究[J].石油与天然气化工,2006,35,1.
    [126] Li Sp, Wu D X. Effect of confining pressure, pore pressure and specimendimension on permeability of yinzhuang sandston[J].Int. J. Rock Mech. Min.Sci.1997,34(3/4)435-441.
    [127]李世平,李玉寿,吴振业.岩石全应力应变过程对应的渗透率一应变方程[J].岩石工程学报,1995,17(2):231-235.
    [128]李树刚,徐精彩.软煤样渗透特性的电液伺服试验研究[J].岩石工程学报,2001,23(1)68-70.
    [129]姜振泉,季梁军.岩石全应力应变过程渗透性试验研究[J].岩石工程学报,2001,23(2):153-156.
    [130] Nelson R A. A discussion of the approximation of subsurface stress conditionsin laboratory experiments, in Mechanical Behavior of Crustal rocks[J].TheHandin Volume, Geophys, Monogr. Ser.,V24, Carter N L, FriedmanM, Logan JM et al. AGU, Washington, D. C.,1981,311-322.
    [131] Rhett D W, Twufel L W. Stress path dependence of matrix permeability of NorthSea sandstone reservoir rock[J].Proc. U. S. Rock Mech. Symp.,1992,33:345-354.
    [132] Somertion W H, Soylemezoglu I M, Dudley R C. Effect fo stress onpermeability of cial[J].Int. J. Rock Mech. Min. Sic.,1975,12:129–145.
    [133] Wang K J, Daniel C J. Permeability study of cracked concrete[J].Cement andConcrete Research,1997,27(3):381-393.
    [134] Souley M,Homand F,Pepa S et a1. Damage-induced permeability changes ingranite:a case example at the URL in Canada[J].Int. J. Rock Mech. Min. Sic.,2001(38):297–310.
    [135]杨天鸿,唐春安,朱万成等.岩石破裂过程渗流与应力耦合分析[J].岩石工程学报,2001,23(4):489-493.
    [136]薛柄.均匀岩层水力压裂的数值模拟及机理研究[D].合肥:中国科学技术大学.2007.
    [137]刘建军,裴桂红.裂缝性低渗透油藏流固耦合渗流分析[J].应用力学学报,2004,21(1):36–39.
    [138] Cook NGW. Natural joints in rock mechanical, hydraulic and seismic behaviorand properties under normal stress [J]. International Journal of Rock Mechanicsand Mining Sciences&Geomechanics Abstracts,1992,29(3):198-223.
    [139] Rice J.R. Inelastic constitutive relations for solids: an internal variable theoryand its application to metal plasticity [J]. Journal of the Mechanics and Physicsof Solids,1971,19(6):433-455
    [140] Kemeny J.M., Cook N.G.W. Crack models for the failure of rocks incompression, Constitutive laws for engineering materials: Theory andApplications [M]. New York: Elsevier,1987,879-888
    [141]于子望.多相多组分THCM耦合过程机理研究及其应用.吉林大学[D],2013.
    [142] Itasca Consulting Group Inc. FLAC3Dusers manual[R].Minneapolis: ItascaConsulting Group Inc.,2004.
    [143]孔令珍.中国地热能发展趋势[J].煤炭技术,2006,25(7):107-108.
    [144]许天福,张延军,曾昭发等.增强型地热系统(干热岩)开发技术进展.科技导报,2012,30(32):42-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700