用户名: 密码: 验证码:
Co-salen型仿酶体系的脱木素机理及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了发展新型无(少)污染漂白技术及造纸废水处理新技术,越来越多的研究者开始用微生物、生物酶和仿酶等方法来解决纸浆漂白过程中的污染问题,并开发对环境友好的新型纸浆漂白技术。仿酶催化不仅具有酶催化与化学催化两者的优点,而且是实现绿色化学有效而直接的途径。由Co-salen、吡啶、H_2O_2、O_2构成的一种Co-salen型仿酶降解体系是模拟木素过氧化物酶的仿酶体系之一。为了揭示Co-salen型仿酶降解体系脱木素的反应机理,本文围绕β-O-4型木素模型化合物即愈创木基丙三醇-β-愈创木基醚在仿酶体系中的变化为研究核心,研究了β-O-4型木素模型化合物、三倍体毛白杨磨木木素(MWL)在仿酶体系中的降解机理以及Co-salen型仿酶体系在纸浆漂白和造纸综合废水处理中的应用,分析得到了β-O-4型木素模型化合物在仿酶体系中的反应机理,为实现该Co-salen型仿酶体系在纸浆漂白工艺中的应用提供了理论依据。
     本文首先合成了一种酚型木素模型化合物即愈创木基丙三醇-β-愈创木基醚。对关键的中间产物中间产物4-(α-(2-甲氧基苯氧基)-乙酰基)-愈创木酚(Ⅳ)的合成方法进行了改良,缩短了减压蒸馏的时间。利用红外光谱、核磁共振谱(1H-NMR)等手段对其化学结构进行了分析。
     本文利用合成出来的愈创木基丙三醇-β-愈创木基醚作为木素模型化合物。在采用由Co-salen、吡啶、H_2O_2、O_2构成的Co-salen型仿酶体系对其进行仿酶降解处理后,利用GC-MS分析手段对反应的产物进行了分析。研究发现:Co-salen型仿酶体系对β-O-4型木素模型化合物有较强的氧化降解能力,降解后的羧基和羟基明显增多。本研究阐明了这种β-O-4型木素模型化合物的结构在Co-salen型仿酶体系中的降解反应机理,推断出该仿酶体系能有效导致酚型的β-O-4型木素模型化合物氧化裂解反应类型有:β-O-4醚键断裂、Cα-Cβ键断裂、烷基-芳基键的断裂和苯环开环反应等。Co-salen型仿酶体系对三倍体毛白杨MWL的降解能力较强,降解后的羧基和羟基明显增多。木素被降解后一部分成为香草酸、紫丁香酸及其衍生物等低分子芳香族化合物,说明木素结构在侧链Cα的位置受到氧化作用而使结构单元之间的连接键断裂。
     本文采用由Co-salen、吡啶、H_2O_2、O_2组成的Co-salen型仿酶体系进行了硫酸盐木浆的漂白研究,讨论了Co-salen仿酶预处理过程中预处理温度、预处理时间、NaOH用量,H_2O_2用量、吡啶用量、Co-salen用量、氧压等对终漂纸浆白度和粘度的影响,优化了Co-salen型仿酶体系预漂硫酸盐木浆的最佳条件。研究发现Co-salen仿酶预漂硫酸盐木浆比较适宜的条件为:Co-salen用量0.03%,吡啶与Co-salen摩尔比1:1,NaOH用量3%,H_2O_2用量1.5%,氧压0.2MPa,浆浓5%,温度90℃,反应时间5h。仿酶漂白使硫酸盐木浆卡伯值下降4.1,经过碱处理后卡伯值可以进一步降低5.2。经Co-salen仿酶处理白度提高10.3%ISO。经过碱抽提段纸浆白度进一步提高18.1%ISO。根据木素模型化合物实验所得结论,Co-salen仿酶漂白预处理过程中将木素氧化成香草酸、紫丁香酸等含羧基化合物,这些产物在仿酶处理段和碱抽提段被溶解出来,表现在仿酶处理段和碱抽提段有较大的白度升高值。
     本文采用Co-salen—仿酶混凝法处理造纸综合废水,讨论温度、H_2O_2加入量、混凝剂种类和加入量、沉淀时间对废水处理效果的影响。优化了Co-salen—仿酶混凝法处理造纸综合废水的实验条件。研究发现,Co-salen—仿酶混凝法处理造纸综合废水的最佳条件为温度25℃,H_2O_2用量0.15g/L,硫酸铝加入量0.4g/L,沉降时间4h。Co-salen仿酶—混凝法处理造纸废水有效地提高了废水处理效果,在同样条件下,采用Co-salen仿酶—混凝法处理造纸综合废水,配合硫酸铝,CODCr去除率可以达到55.2%。由于仿酶—混凝除去了废水中的大部分木素,提高了废水的可生化性,使得废水的后续处理变得容易。
For the requirement of developing low impact bleaching technology and new technology of pulp and paper effluent treatment, many researchers try to use microorganisms, their enzymes and biomimetic system in pulp bleaching process to reduce the pollution and develop new environmental friendly bleaching technology. Biomimetic catalyst has characteristics of both enzymatic catalyst and chemical catalyst. Therefore, it is an efficient approach of green chemistry. The Co-salen biomimetic delignification system which is composed of Co(Ⅱ)-salen, pyridine, sodium hydroxide, hydrogen peroxide, oxygen is one of the most promising biomimetic system of lignin peroxidase. In order to understand the reaction mechanism of lignin with Co-salen biomimetic delignification system, a lignin model compound of phenolicβ-O-4 type, i.e. guaiacylglycerol-β-guaiacyl ether and milled wood lignin (MWL) from triploid clones of Populus tomentosa wood were treated with Co-salen biomimetic delignification system. In the present research, we have carried out many researches about the mechanism of the degradation ofβ-O-4 type lignin model compound and milled wood lignin (MWL). The application of bleaching softwood kraft pulp and paper effluent treatment by Co-salen biomimetic system. These results could help us to apply Co-salen biomimetic system in industrial non-pollution bleaching.
     In this paper, a model compound of phenolicβ-O-4 type, i.e. guaiacylglycerol-β-guaiacyl ether was synthesized. The synthesis method of an impant intermediate, i.e. 4-[α-(2-methoxylphenoxy)-acetyl]-guaiacol was improved. The time of reduced pressure distillation shorten. The combination of infrared spectra, 1H-NMR analysis was used to identify the chemical structure of the product and related precursors.
     The lignin model compound of guaiacylglycerol-β-guaiacyl ether was treated with Co-salen biomimetic system. The reaction products were analyzed by GC-MS. The mechanism of the biomimetic degradation of thisβ-O-4 structure was also explored. Results showed that Co-salen type biomimetic system had strong ability in degradation of phenolicβ-O-4 type model compound. It was found there were a lot of carbonyl and hydroxyl groups in the degraded products. It is suggested that the following reactions were caused by the Co-salen system: ether-bond cleavage, Cα-Cβcleavage, alkyl-aryl cleavage and aromatic ring opening. Co-salen type biomimetic system had strong ability in degradation of MWL. After MWL was treated, the content of hydroxyl and carboxyl groups increased. Some low molecule compounds as syringic acid and vanillic acid were produced. The results could prove that the oxidation of side chain lead to the cleavage of the linkage between the units of lignin substructure.
     In this paper, unbleached softwood kraft pulp was treated with a biomimetic bleaching system, i.e. Co-salen system comprised of Co(Ⅱ) -salen, pyridine,hydrogen peroxide, oxygen. The effect of temperature, time, NaOH dosage, hydrogen peroxide dosage, pyridine dosage, Co-salen dosage and oxygen pressure on brightness and viscosity of the pulp after biomimetic treatment followed by EP bleaching were analyzed. The experimental condition was improved. The study found that optimum conditions are as follows: Co-salen 0.03%, molar ratio of Co-salen to pyridine 1:1, NaOH 3%, H_2O_2 1.5%, oxygen pressure 0.2 MPa, pulp consistency 5%, temperature 90℃, time 5h. Kappa number of softwood kraft pulp declined by 4.1 atter treated by Co-salen biomimetic system. Brightness was improved 10.3%ISO. After alkali treatment, Kappa number can further reduce 5.2, pulp brightness increased 18.1%ISO. According to the conclusion of lignin model compound experiment, lignin was oxidized and some low molecule compounds as syringic acid and vanillic acid were produced. These products were dissolved during biomimetic bleaching and alkali extraction. It was manifested mainly in improving brightness during biomimetic bleaching and alkali extraction.
     In this paper, Co-salen biomimetic flocculation was used to treat the mixed wastewater treatment of a paper mill. The effect of temperature, hydrogen peroxide dosage, the kind and dosage of flocculant, sedimentation time were analyzed. The experimental conditions was optimized. The study found that optimum conditions are as follows: temperature 90℃, H_2O_2 dosage 0.15g/L, aluminium sulfate dosage 0.4g/L, sedimentation time 4h. The study found that CODCr can be improved 19.6% by using Co-salen biomimetic flocculation. Through lignin massive removing, the effect of subsequent biochemical was also enhanced. It made it easier for the following treatment.
引文
[1]郭彩云,冯文英,邝仕均.废纸浆漂白技术[J].中国造纸,2006,25(8):44-47
    [2]刘起源.从低氯漂白到无氯漂白—纸浆漂白的必由之路[J].天津造纸,1998,13(3):14-15
    [3]刘秉钺,韩颖.再生纤维与废纸脱墨技术[M].化学工业出版社,2005
    [4]杨骐铭,唐凤化,张运展.过氧乙酸用于杨木NS-AQ浆漂白[J].中国造纸,2003,22(12):5-8
    [5]孙冬冬,徐立新,温雪梅等.过氧乙酸用于硫酸盐麦草浆多段漂白[J].中国造纸,2007,26(7):66-68
    [6] Patt R, Gehr V, Matzke W, et al. New approaches in bleaching of recycled fibers [J]. Tappi J.,1996,79(12):143-145
    [7] Muguet M, Kogan J. Ozone bleaching of recycled paper[J]. Tappi J.,1993, 76(11):141-143
    [8]王海燕,薛国新,李忠正.低卡伯值麦草浆强化臭氧-TCF漂白工艺比较[J] .中国造纸,2003,22(8):9-12
    [9]谢来苏,詹怀宇.制浆原理与工程[M].中国轻工业出版社,2001
    [10] Pakerinen H. Recycled Fiber and Deinking[M]. Finland: Fapet Oy,2002
    [11]高玉杰.废纸再生实用技术[M].化学工业出版社,2003
    [12] Barton D H R,Doller D. Relevance of GIF chemistry to enzyme mechanisms. In:IUCCP Symposium on Applications of Enzyme Biotechnology.1991, Plenum Publ Corp,1991:87
    [13] Bharat L, Jeffrey R, Fabrizi B, et al. Synthesis, reactivity, and catalytic behavior of iron/zinc-containing species involved in oxidation of hydrocarbons under GIF-type conditions singh[J]. Journal of the American Chemical Society, 1997,119(30):7030
    [14] Taqui M M, Chatterjee D, Bajaj H C. Selective oxidation of cyclohexane by a Ru(Ⅲ) analogue of the GIF-system. Ru(Ⅲ) acetic acid-pyridine-KHSO5. Reaction Kinetics and Catalysis Letters,1993,49(1):81
    [15] Long S B, Jeffrey F, et al. Pericles on the reduction of basic iron acetate: Isolation of ferrous species mediation GIF-type oxidation of hydrocarbons[J]. Journal of the American Chemical Society,1996,118(24):5824
    [16] Young R A,Gierer J. Degradation of native lignin under oxygen-alkali conditions[J]. Applied Polymer Symjposia,1975,3(28):1213
    [17] Barton D H, Delanghe N C, Patin H. The Selective Functionalization of Saturated Hydrocarbons. Part 41. The Use of Cu(Ⅱ)/H2O2 and Cu(Ⅰ)/ H2O2 Systems in Pyridine[J]. Tetrahedron,1997,53(47):16017
    [18] Shimada M., Shigemoto T., et al. A new biomimetic kraft pulp bleaching with Mn and peracetic acid, 10th International Symposium on Wood and Pulping Chemistry, Main Symposium, Yokohama, Japan, June 7-10,1999:562-565
    [19] Noboru Kondo, Takefumi Hattori and Mikio Shimada. A new oxidative degradation of a bio-recalcitrantα-carbonylβ-O-4 lignin model compound with Mn(Ⅲ)/oxalate system. Wood Research-Bulletin of the Wood Research Institute, Kyoto University, Sept.1997,84:19-21
    [20] Watanabe T, Koller K, Messner K. Delignification of 14C-Labeled pulp by copper/coordination compound/peroxide reaction. In: Vol. B of 7th International Conference on Biotechnology in the Pulp and Paper Industry,1999:207
    [21] Watanabe T, Koller K, Messner K. Depolymerization of phenolic and non-phenolic lignins by copper/ coordination compound/peroxide reaction. In: Vol. A of 7th International Conference on Biotechnology in the Pulp and Paper Industry,1999:157
    [22] Watanabe T, Koller K, Messner K. Messner K. Copper-dependent depolymerization of lignin in the presence of fungal metabolite, pyridine[J]. Journal of Biotechnology,1998,62:221
    [23]谢益民,杨海涛,胡周建等.针叶木硫酸盐浆GIF仿酶漂白研究[J].中国造纸,2004,23(4):5-7
    [24]朱正良,周学飞等.竹浆GIF仿酶漂白(Ⅱ)-仿酶预处理全无氯漂白[J].造纸科学与技术,2007,26(1):26-31
    [25]贾艳迪,周学飞.竹浆Co-salen仿酶预处理TCF漂白的研究[J].中国造纸,2008,27(1):4-8
    [26] Viikari, L., Ranua, M., Kantelinen, A., et al., Bleaching with enzymes, Biotechnology in the Pulp and Paper Industry. In:proceedings of 3rd ICBBPPI Conference, Stockholm,1986:67-72
    [27] Viikari, L., Ranua, M., Kantelinen, A., et al., Application of enzymes on bleaching, Proceedings Fourth International Symposium on Wood and Pulping Chemistry, Paris, April,1987,1:151
    [28]林鹿,詹怀宇编著.生物制浆化学[M].华南理工大学出版社,2001
    [29] Fischer, K. Pitch. Reduction with white rot fungus Ceriporiopsis subvermispora. Proceedings of 6th ICBPPI. Vienna, Austria,1995:151
    [30] Wariishi,H., Valli, K. and Renganathan, V. and Gold, M. H. Thiol-mediated oxidation of nonphenolic lignin model compounds by manganese peroxidase of phanerochaete chrysosporium. J. Biol. Chem.1983,274:14185-14191
    [31] Wariishi,H., Valli, K. and Renganathan, V. and Gold, M. H. Manganese(Ⅱ) oxidation by manganese peroxidase from the basidiomycete phanerochaete chrysosporium. J. Biol. Chem.1992,267:23688-23695
    [32] Forrester, I.T., Grabski, A.C., Burgess, R. R. And Leatham, G. Manganese. Mn-dependent peroxidases and the biodegradation of lignin. Biochem. Biophys. Res. Commun. 1988,157:992-999
    [33] Bao, W., Fukushima, Y., Jesen Jr. K. A. Et al., Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS lett. 1994,353:297-300
    [34] Jeffrey, F. D. and Eriksson, K.E.L. Process for chlorine-free bleaching of pulp. Holzforschung,48(1994):21-33
    [35] Pomilio U. The use of electrolytic chlorine for the manufacture of cellulose [J].Electrochemical Society-Transactions,1983,73(5):153-154
    [36] Reinado R, Antonio E H. Photoreactivity of lignin model compounds in the photobleaching of chemical pulps 1, Irradiation of 1-(3,4-dimethoxyphenyl)-2- (3-methoxyphenoxy)-1,3-dihydropane in the presence of singlet oxygen sensitizer or hydrogen peroxide in basic methanol solution[J]. Journal of Photochemistry and Photobiology A: Chemistry,1997,110(3):91-93
    [37]惠岚峰,钱学人.纸浆光化学漂白的研究进展[J].中国造纸学报,2002,17(2):116-119
    [38] Fujishma A, Tata N R, Donald A T. Titanium dioxide photocatalysis[J]. Journal of Photochemistry and Photobiology C: Photochemistry Review,2000,15(1):1-3
    [39] Machado A. Photochemical bleaching of chemical pulps catalyzed by titanium dioxide[J]. Journal of Photochemistry and Photobiology A: Chemistry,1998,115(4):73-75
    [40]邓宇,冯建敏,李兰青子.微波在植物纤维漂白中的应用研究[J].辐射研究与辐射工艺学报,2005,14(6):351-353
    [41]李建颖,邵青,邓宇.微波技术在植物纤维漂白中的应用研究[J].中国造纸,2004,23(7):1-3
    [42]江红光,梅荣武.高效浅层气浮技术在造纸废水处理中的应用[J].环境污染与防治,2003(4):180-181
    [43]刘振预,赵水泉,张凉.处理造纸废水的涡凹式气浮装置[J].纸和造纸,2000(6):58-59
    [44]曹姝文,唐艳青,袁启顺等.EWP高效污水净化器在造纸废水治理中的应用[J].工业水处理,2001,21(8):45-46
    [45]周珊,陆晓华,吴晓晖等.超声技术降解造纸黒液[J].湖北师范学院学报,2002,22(2):21-24
    [46]刘全校,安郁琴.臭氧用于治理制浆造纸废水[J].纸和造纸,2000,22(4):44-44
    [47]帅兴华,谢益民等.中段废水仿酶处理的研究[J].中华纸业,2007,28(7):61-63
    [48]王松,谢益民等.仿酶-混凝法处理造纸厂综合废水的工厂实践[J].中国造纸,2007,26(8):67-68
    [49]李锦,杨海涛,谢益民等.仿酶絮凝法处理制浆造纸废水的应用研究[J].黑龙江造纸,2007,(3):1-2
    [50] Artaud I,Ben-Aziza K , Mansuy D.Iron porphyrin—catalyzed oxidation of 1,2-dimethoxyarenes:a discussion of the diferent reactions involved and the competition between the formation of methoxyquinones or muconic dimethyl esters[J].J Org Chem,1993,58(12):3373-3380
    [51] Shimada M, HABE T,UMEZAWA T,et a1.The C-C bond cleavage of a lignin model compound,1,2-diarylpropane-1,3一diol,with a heme-enzyme model catalyst tetraphenylporphyrination(Ⅲ)chloride in the present of tert-butylhydroper oxide [J].Biochem Biophys Res Commun,1984,122(3): 1247-1252
    [52] Habe T, Shimada M, et a1. Biomimetic approach to lignin degradation I, H2O2-dependent c—c bond cleavage of the 1ignin model compounds with a natural iron porphyrin and imidazole complex[J].Mokuzai Gakkaishi,1985,31(1): 54-55
    [53] HabeT. Shimada M. Okamoto T. Incorporation of dioxygen into the hydroxylated product dining the C—C bond cleavage of 1,2-bis-(p—methoxyphenyl)propane-1,3-diol catalysed by heroin. A novel model system for the hemoprotein ligninase[J]. J Chem Soc Chem Commun,1985:l323-1324
    [54] Walker, C.C., Dimus,R,J.,McDonough. T.J.. et al. Evaluating three iron-based biomimetic compounds for their selectivity in a polymeric model system for pulp.Tappi J.,1995.78(6):103-109
    [55] Cuif, Dolphin D. The biomimetic oxidation ofβ-1,β-0-4,β-5, and bipheny1 lignin model compounds by synthetic iron porphyrins[J]. Bioorganic & Medicinal Chemistry. 1994,2(7):735-742
    [56] Cui F, Dolphin D. Meta11ophtha1ocyanines as possible lignin peroxidase models[J]. Bioorganic&Medicinal Chemistry.1995,3(5):471-477
    [57] Santosm M, Schuchardt U. The synergetic effects in oxidative lignin degradation by the biomimetic Gif reactions[J]. J Braz Chem Soc.1995,(6) :257-260
    [58]欧国隆,谢益民,胡周健等.阔叶木木素和木素-碳水化合物复合体的仿酶降解[J].广东造纸,2000,(3):1-6,28
    [59]欧国隆,谢益民,伍红等,马尾松磨木木素以及LCC的仿酶降解[J],中国造纸学报,2000,15(增刊):68-74
    [60] Take Hira K,ShimizuM, Wwtanabe Y, et a1.A novel synthesis of trimethyl- p-benzoquinone:copper(Ⅱ)-hydroxylamine catalysed oxygenation of 2,3,6- trimethylphenol with dioxygen[J]. J Chem Soc Chem Commun,1989:1705-1706
    [61] Kawai S, Ohsshi H. Degradation of lignin substructure model compounds by Copper(Ⅱ)-Amine complex as a model catalyst of fungal laccase [J]. Holzforschung,1993,47(2):97-102
    [62] Haikara Ainen A, Sipila J, Pietikainen P, et a1.Salen complexes with bulky s-ubstituents as usefu1 tols for biomimetic phenol oxidation research [J].Bio-organic&Medicinal Chemistry,2001,(9):1633-1638
    [63]周智明,李连友,徐巧等.仿生催化剂-Salen金属络合物催化不对称环氧化烯烃的基础[J].有机化学,2005,25(4):347
    [64] T.P.Yoon, E.N.Jacobsen. Privileged chiral catalysts. Science, 2003, 299(3):1691
    [65] J.J.Bozell, D.R.Dimmel, B.R.Hames. Cobalt-schiff base complex catalyzed oxidation ofpara-substituted phenolics.Preparation of benzoquinones[J]. The Journal of Organic Chemistry, 1995,60(8):2398
    [66]刘君,上官国强,李晶.模型化合物[CoⅡ(salen)]的合成及其载氧作用[J].济宁医学院学报,1991,14(4):19
    [67] K. Kervinen, H. Korpi, M. Leskel? ,et al. Oxidation of veratryl alcohol by molecular oxygen in aqueous solution catalyzed by cobalt salen-type complexes:the effect of reaction conditions[J]. Journal of Molecular Catalysis A: Chemical,2003,203(12):9
    [68] W.K.Wilmarth, S.Aranoff, M.Calvin. The Oxygen-carrying Synthetic Chelate Compounds.Ⅲ.Cycling Properties and Oxygen Production[J]. Journal of the American Chemical Society, 1946,68(11):2263
    [69] C.H.Barkelew, M.Calvin. Oxygen-carrying Synthetic Chelate Compounds.Ⅱ. The Rates of Oxygenation of the Solid Compounds[J]. Journal of the American Chemical Society,1946,68(11):2257
    [70]孙伟,夏春谷.手性金属Salen配合物在不对称催化中的应用[J].化学进展,2002,14(1):8
    [71] S.E. Schaus, J. Branalt, E.N.Jacobsen. Total synthesis of muconin by efficient assembly of chiral building block[J]. Journal of organic chemistry,1998, 63(15):4876
    [72] K.Kervinen, P.Lahtinen, T.Repo. The effect of reaction conditions on the oxidation of veratryl alcohol catalyzed by cobalt salen-complexes[J]. Catalysis Today, 2002, 75(1):183
    [73] M.Tenkanen, T.Tamminen, B.Hortling. Investgation of lignin-carbohy drate co- mplexes in kraft pulps by selective enzymatic treatments, Appl Microbiol Biotechnol,(1999)51:241-248
    [74]中野准三编,高洁,鲍禾,李中正泽.《木质素的化学》[M].轻工业出版社,1988:519
    [75] L.Caroll.King, G.Kenneth Ostrum. Selective.Bromination with cop per(Ⅱ) Bromide,J.Org.Chem.,1964,29:3459-3461
    [76]欧国隆.GIF型防酶体系脱木素机理的研究.华南理工大学硕士论文.2002
    [77] Alain castellan, et al. Photodegradation of Lignin:A Photochemical Study of a Phenolicα-Carbonylβ-O-4 Lignin Model Dimer 4-Hydroxy-3-Methoxy-α-(2’-Methoxyphenoxy)-Acetophenone[J]. Holzforschung, 1989 , 43:179-185
    [78] Rui Katahira, Fumiaki Nakatsubo,“The chemical reactivity ofαether structure in lignin in the TIZ degradation method”, Proceedings of the 44th Lignin Symposium[C] , Gifu , Japan : Oct.7-8,1999:33-36
    [79] Jussi Sipil?, et al.“Synthesis and 13C-NMR Spectroscopic Charact erisation of Six Dimeric Arylglycerol-β-aryl Ether Model Compounds Representative of Syringyl and p-Hydroxyphenyl Structures in Lignins. On the Aldol Reaction inβ-Ether Preparation”, Holzfor schung [J] 1995,49:325-331
    [80] Huynh V B. Biomimetic oxidation of lignin model compounds by simple inorganic complexes[J]. Biochem Biophys Res Commun,1986,139(3):1104-1110
    [81] Labat G, Meunnier B. Factors controlling the reactivity of a ligninase model based on the association of potassium monopersulfate to manganese and iron porphyrin complexes[J]. J Org Chem,1989,54(21):5008-5011
    [82] Artaud I,Ben-Aziza K,Mansuy D.Iron porphyrin—catalyzed oxidation of 1,2-dimethoxyarenes:a discussion of the diferent reactions involved and the competition between the formation of methoxyquinones or muconic dimethyl esters[J].J Org Chem,1993,58(12):3373-3380
    [83]欧国隆,谢益民,赵华平等.β-O-4型木素模型化合物的合成及其在GIF型仿酶降解体系中的变化(Ⅰ).中国造纸学报,2001(2):29-35
    [84] Kaisa Kervinen. Studies on Veratryl Alcohol Oxidation Catalyzed by Co(salen) Type Complexes and Molecular Oxygen in Aqueous Solution[D]. University of Helsinki, Finland,2005:8-11
    [85] A.Blgotto, G.Costa, G.Mestroni, et al. Extension of the model approach to the study of coordination chemistry of vit.B12 group compounds[J]. Inorganica Chimica Acta Reviews,1970,4(12):41-42
    [86] A.Haikarainen, J.Sipila, P.Pietikainen, et al. Salen complexes with bulky substituents as useful tools for biomimetic phenol oxidation research[J]. Bioorganic & Medicinal Chemistry,2001,(9):1633-1638
    [87] Bj?kman A.,“Studies on Finely Divided Wood. PartⅠ-Extraction of Lignin with Neutral Solvent”,Svensk Papperstidning,1956,59:477-485
    [88] Bj?kman A.,“Studies on Finely Divided Wood. PartⅢ-Extraction of Lignin-carbohydrate Complexes with Neutral Solvent”, Svensk Papperstding, 1957,60:243-251
    [89]陈耀祖.《有机质谱原理及应用》[M].2002:141-157
    [90] Miyata S., Umezawa T, et al. The degradation ofβ-O-4 type lignin model compounds by lignin peroxidase, in”Proceedings of the 41st Lignin Symposium”, Nagoya, Japan,1996:175-176
    [91]石淑兰,何福望.制浆造纸分析与检测[M].北京:中国轻工业出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700