用户名: 密码: 验证码:
并联调姿机构运动学、动力学分析及虚拟样机技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代制造技术的发展,自动化技术已经应用到各种复杂的装配领域,逐步降低了对人工技能和经验的依赖程度,提高了生产效率和装配质量。
     中国工程物理研究院的“特殊装配装置研究项目”就是解决薄壁异型零件的自动装配问题。由于装配时零件的姿态误差较大,在主轴和末端执行器之间需要设计一个手腕来精密调节零件的姿态,并要求调整机构性能可靠、承载力大、体积小。本文作为项目中的一项重要内容,采用三自由度并联机构实现调姿功能。并联调姿机构存在支撑约束和运动闭环,是复杂的多刚体系统,本文主要研究调姿机构的结构设计与优化,并对之进行运动学分析及仿真、动力学分析及仿真,并建立了并联调姿机构虚拟样机。
     首先,论文系统总结了国内外并联机器人特别是并联手腕机构的发展和研究现状,对用于并联调姿机构仿真的虚拟样机技术的研究方法进行了探讨。
     第二,对特种装配装置的整体结构和调姿机构要求做了详细分析,设计了具有被动链的三自由度并联调姿机构。
     第三,在对尺蠖机构仿生研究的基础上,设计了并联调姿机构尺蠖支链结构,研究了压电微位移驱动器的结构性能,分析了其动态响应及相位滞后等影响因素。
     第四,应用并联机构理论对三自由度并联调姿机构进行了分析,建立了相应的运动学方程,获得了一阶影响系数和二阶影响系数;结合拉格朗日方法和并联理论建立了完整的三自由度并联调姿机构的动力学方程,并对分析结果通过仿真进行了验证。
     最后,本文对基于“虚拟样机”的仿真技术进行了深入的探讨,将基于“虚拟样机”的仿真技术应用于并联调姿机构的方案设计中。借助“虚拟样机”技术,在并联调姿机构设计的初期阶段仿真真实环境中并联调姿机构的动力学行为,在第一台并联凋姿机构原理样机研制之前对设计方案进行了优化。
With the development of the modern technology in our country, automatization technology has been applied in the field of the complex manipulation based on the skills and sense of manipulators in order to improve the efficiency and assure quality.
    The CAEP (China Academy of Engineering Physics) project of "Special Assemble Mechanism Study" is presented for the flimsy and curve parts to be assembled. On account of error of accessory's gesture ,a wrist that installed between principal axis and handle adjusts accessory's gesture. The 3-DOF adjusting parallel mechanism is the key mechanism that has reliable capability and cabinet cubage.
    The 3-DOF adjusting parallel mechanism that possesses support restriction and closed loop of locomotion is complex multi-solid-body system. The kinematics and dynamics analysis of adjusting parallel mechanism and study of virtual prototyping in this thesis are important content which mainly study the structure design and optimization of adjusting parallel mechanism, modeling and simulation of kinematics, modeling and simulation of dynamics, simulation of control system and development of virtual prototyping of adjusting parallel mechanism.
    First, the study actuality of parallel robot especially adjusting parallel mechanism in home and abroad is summarized, and the development and study method of virtual prototyping technology used for simulation study of adjusting parallel mechanism is introduced in this thesis.
    Second, based on particular analysis of special assemble mechanism and adjusting mechanism, the initial structure model of 3-DOF adjusting parallel mechanism with passive link is established.
    Third, based on studies of inchworm mechanism, he structure of inchworm mechanism is established. At the same time, the structure and capability of piezoceramic actuator are researched and effects of dynamic response and phasic lagging are analyzed.
    Forth, The kinematics equation of the 3-DOF adjusting parallel mechanism is established based on parallel mechanism theory. The effect coefficients are getted. The dynamics equation is established based on Lagrange theory.
    Lastly, the simulation technology based on virtual prototyping is discussed deeply, and the simulation technology based on virtual prototyping is applied to the project study of adjusting parallel mechanism. The dynamics action of adjusting parallel mechanism could be
    
    
    
    simulated in the initial stage of design of adjusting parallel mechanism, so the design project could be compared and optimized before the manufacturing of the first principal prototyping of adjusting parallel mechanism, which could shorten the design period and promote the reliability of the system.
引文
1 黄真,孔令富,方跃法著.并联机器人机构学理论及控制.北京:机械工业出版社,1997
    2 张曙,U.Heisel著.并联运动机床.北京:机械工业出版社,2003
    3 Masao Tanka.Truss-type Mechanism. Advanced Robotics. 1994,8(6): 599-600P
    4 Jacobsen S, Wood J, Biger K, Iverson E. The Utah/MIT Hand: Work in Progress. International Journal of Robotics Research, 1984.4(3):21-50P
    5 Okada T. Computer Control of Multi-jointed Finger System for Precise Object-Handing. IEEE Transactions on System Man and Cybernetics, 1982(3):289-299P
    6 Masaru Uchiyama, A 6-DOF Parallel Robot HEXA. Advanced Robotics. 1994, 8(6): 601-602P
    7 Satoshi Tadokoro. A 6-DOF Parallel Robot Wrist Joint by A Pneumatic Actuator Drive. Advanced Robotics. 1994, 8(6): 603-604P
    8 Kazuo Machida. Space-borne Smart End Effector. Advanced Robotics. 1994, 8(6): 605-606P
    9 Koichi Suzumori. FMA Hand. Advanced Robotics. 1994, 8(6): 607-608页
    10 Katsumi Nakashima. A Six-axis Motion Base and A Study of A parallel Manipulstors. Advanced Robotics. 1994, 8(6): 609-610P
    11 H. Liu J, Butterfass S, Knoch P, Meusel G. Hirzinger. A New Control Strategy for DLR's Multisensory Articulated Hand. http://www.robotic.dlr.de/
    12 http://world.honda.corn/robot/
    13 顾锋,汪通悦,康志军,刘远伟.并联机床的研究与技术进展.机床与液压,2002(6):14-16
    14 刘文涛.并联机床性能与分析与研究.哈尔滨工业火学博士学位论文.,2000:5-8页
    15 安辉.压电陶瓷驱动六自由度并联微动机器人的研究.哈尔滨工业大学博士学位论文,1995:15-16页
    16 孔令富.六自由度并联机器人运动控制系统的研究.哈尔滨工业大学博士学位论文,1995:1-17页
    17 Michael R Fielding. Exponential fields to establish inter-leg influences for omnidirectional hexapod gait. www.hamlet.canterbury.ac.nz
    18 Michael R Fielding, Reg Dunlop. Hamlet:Force/Position Controlled Hexapod Walker Design and System. www.hamlet.canterbury.ac.nz
    19 Hamlet: Hexapod walking robot, www.hamlet.canterbury.ac.nz
    20 Joseph Ayers, Jan Witting, Cricket Wilbur. Biomimetic robot for shallow water mine countermeasures. Proceedings of the International Symposium of Robotics and Automation, 2000
    21 M-850 HEXAPOD Six-Axis parallel kinematics robot. Physik Instumente(PI). http://www.physikinstrumente.com
    22 The National Institute of Standards and Technology of United states. Sandia Hexapod
    
    Project-Technical Plan. 1996: 1-6P
    23 Nabil Simaan. Analysis and Synthesis of Parallel Robot for Medical Applications. M. Sc. Thesis-Technion-lsrael Institute of Technology. 1999
    24 http://www.hia.rwth-aachen, de/Ww/CHT/Crigos.html.日本学
    25 Hunt K H. Kinematics Geometry of Mechanisms. Oxford: Clardon Press, 1978
    26 Hunt K H. Structural Kinematics of In-Parallel-Actuatd Robot Arms J.Mech. Trans and Aut. in Des. 1993, 105: 705-712P
    27 O. Y. Wang, H, Zou, M.Y. Zhao, Q. M. Li. Design and kinematics of a Parallel Manipulator for Manufacturing. Annals of the CIRP. 1997, 1(46): 29-30P
    28 Charles W, Wampler. Forwart Displacement Analysis of General Six-in-Parallel SPS(Stewart) Platform Manipulators Using Soma Coorinates Mech .Theory. 1996,31 (3): 331-337P
    29 Katsushi Furutani, Kazuhiro Shibatani, Naoki Itoh, and Naotake Mohri.A parallel link end effector for scanning electrical discharge machining process. Precision Engineering 1998(22): 131-140,
    30 郑建荣.ADAMS虚拟样机技术入门与提高.机械工业出版社,2002
    31 宁汝新,项飞.基于Internet的虚拟制造技术研究.中国机械工程,2001(3):257-258P
    32 王玉新,邰晓梅,姜杉.维虚拟设计环境下的机械产品概念设计.中国机械工程,2001(3):256-258P
    33 陈龙,黄文华.浅谈ADAMS在汽车中的应用.ADAMS软件中国地区用户年会论文集,1998:13-17P
    34 马香峰.机器人机构学.机械工业出版社,1991
    35 蔡自兴.机器人学.清华大学出版社,2000.9
    36 张启先.空间机构的分析与综合(上册).北京:机械工业出版社,1984:71-114P
    37 谢存禧、郑时雄等.空间机构设计.上海:上海科学技术出版社,1996:253-275P
    38 刘延龙.薄壁异型零件装配机器人的并联手腕设计与研究.华中科技大学硕士论文,2000
    39 吴生富.并联式机器人位置诸问题的研究.东北重型机械学院硕士论文,1988
    40 钱晋武.地壁两用六足步行机器人步态运动学研究.北京航空航天大学博士论文,1993.10
    41 孙立宁,安辉,蔡鹤皋.压电陶瓷驱动并联微动机器人的研究.高技术通讯,1997(3):29-30
    42 哈尔滨工业大学博实精密测控有限责任公司.压电陶瓷微动机器人控制系统的研究.
    43 杜正春,杨建国,姚振强.误差补偿压电微位移作动器动态特性分析.上海交通大学学报,2002(9):1245-1249
    44 王艳菊,刘国华.压电陶瓷微位移器的动态特性的改善.自动化仪表,2000(4):14-16
    45 于云霞,李文卓.一种大推力的蠕动式压电直线电机.微特电机,2001(5):29-31
    46 李俊宝,熊诗波,杨庆佛.压电主动构件机电耦合动力学建模.太原理工大学学报,1998(5):305-314
    47 赵万生,袁松梅,刘维东.一种小型微位移超稳定直线压电驱动器.压电与声光.1999(6):439-441P
    
    
    48 孙世基、黄承绪.机械系统刚柔耦合动力分析及仿真.北京:人民交通出版社,2000:140-179P
    49 E.J.豪格(美)著.机械系统的计算机辅助运动学和动力学.北京:高等教育出版社,1996:217-350P
    50 F.Pfeiffer, H.J. Weidemann, P.Danowski. Dynamics of the walking stick insect. Proc. IEEE International Conference on Robotics and Automation, 1990(3): 1458-1463P
    51 D. E. Whitney. Force feedback control of manipulator fine motions. Journal of Dynamic Systems,Measurement, and Control, 1977:91-97P
    52 M. H. Raibert and J.J.Craig. Hybrid Position/Force control of manipulators. Journal of Dynamic Systems,Measurement, and Control, 1981 (102): 126-133P
    53 廖伟志.Matlab/RTW for ADAMS/Controls R12,2003.7
    54 马履中,尹小琴,杨廷力.新型三平移并联机器人机构动力分析与动态分析.农业机械学报.2002(2):80-83P
    55 许国晖,杨宇航,李会杰,庾红.基于虚拟样机技术的火炮维修仿真系统研究.计算机仿真,2002(5):117-120P
    56 李军,邢文俊,覃文杰.ADAMS实例教程.北京理工大学出版社,2002
    57 刘金琨.先进PID控制及其MATLAB仿真.电子工业出版社,2003
    58 Using ADAMS/View.MDI Inc,1997
    59 熊有伦.机器人技术基础.华中理工大学出版社,1996.8
    60 大熊 繁[日].机器人控制.科学出版社,2000
    61 满洁.基于虚拟样机技术的步行机步态轨迹及仿真.MDI公司2001年中国用户年会论文集,2001:301-305P
    62 薛定宇、陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用.北京:清华大学出版社,2002:311-325P
    63 约翰.F.加德纳.机构动态仿真—使用MATLAB和SIMULINK.西安:西安交通大学出版社,2002:25-58P
    64 谢新民、丁峰.自适应控制系统.北京:清华大学出版社,2002:141-160P
    65 王国强、张进平、马若丁.虚拟样机技术及其在ADAMS上的实践.西安:西北工业大学出版社,2002.
    66 王立权,王晓东,陈德望等.基于虚拟样机的控制系统仿真研究.哈尔滨工程大学学报,2000(6):26-29P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700