用户名: 密码: 验证码:
工程陶瓷回转表面的线切割加工技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程陶瓷材料具有耐高温、抗磨损、刚度高、热变形小等优良性能,但由于其硬度高、脆性大,难以对其进行切削加工,回转表面则更难加工。本文受线电极放电磨削加工中工件与电极之间相对运动关系的启发,提出了在线切割机上利用放电蚀除加工导电工程陶瓷回转表面的新型工艺方法。
     论文首先对数控快速走丝线切割机进行了改造,在机床上加装带动工件回转、并能传递加工电流的主轴装置,实现了对工程陶瓷回转表面的放电加工。在加工长径比较大的工件时,由于陶瓷材料的电阻率较高,随着放电加工部位的变化、放电能量将发生明显变化。本文从提高工件表面质量和加工稳定性的角度出发,创新提出了在线切割机床上加装回转表面自适应跟踪电极的方法。设计了一个安装在丝架上的在工件回转表面上滑动的辅助电极,辅助电极与电极丝的距离、亦即火花放电点的距离保持不变,使放电回路中工件的电阻值保持不变,放电能量均匀,进而保证工件表面加工质量均匀。同时辅助电极能适应工件直径变化并能自动越过阶梯轴阶梯,保持了对变径工件或阶梯回转工件的加工能力。
     对工程陶瓷回转表面线切割加工机理进行了研究。在理论分析的基础上,建立了线切割加工区域的有限元分析模型,用MSC.MARC有限元软件,对工程陶瓷回转表面线切割加工过程的温度场进行了数值模拟,得出了不同脉冲宽度和功率密度对放电凹坑形状和放电加工工件表面粗糙度的影响规律。通过单因素实验分析了主要放电参数和机械参数对加工工件表面质量的影响规律,采用正交多项式非线性回归设计,对线切割放电加工工程陶瓷回转表面的工艺参数进行了优化,提高了工件的表面质量,验证了线切割放电加工导电工程陶瓷回转表面新工艺的可行性。
     本文的研究工作,为工程陶瓷的加工提供了新型工艺方法,并且拓展了线切割加工机床的工艺范围,对促进工程陶瓷材料的应用具有重要意义。
With the development of technology, the engineering materials are widely applied to the mechanical science, chemical technology and aviation technology. The traditional metal materials have already been more incompetent for the demand of the engineering application.The advanced ceramics have many good properties that the metals don't have, such as the high hardness, high intensity, high wear resistance , high temperature resistance, low density, low thermal expansivity and low thermal conductivity. So the advanced ceramics have broad applications in modern engineering materials. Although the advanced ceramics have so many good properties, the sintered ceramic products are different from the metal powder products, its percentage reduction of size is more than 10%, and the latter is less than 0.2%. Because of the low dimensional accuracy of the ceramic products, it is very difficult to apply to the engineering. The control of dimensional makes more difficult for the complex shape products. So the sintered ceramic materials will need further process in many fields.
     At present, the process of ceramic include the Diamond Grinding, Superhard Cutting, Ultrasonic Machining, Laser Processing, Plasma Arc Cutting and High Pressure Water Jet Cutter. It is difficult to process the complex shape ceramic products because of the disadvantages and the limitations of various processing methods. Wire Electrical Discharge Grinding is an effective mean of the micro-axis parts processing. The mechanism of WEDG is basically the same as the technology of WEDM in essence. WEDM is a special processing method which has been widely used in the metal processing field. It achieves the technological breakthroughs that the material of high hardness can be processed the metal cutting tool of the soft materials. WEDM is an ideal processing method of the conductive engineering ceramic because it can achieve non-contact processing; the processing procedure cannot be affected by the mechanical stress; the residual stress of products doesn't increase its mechanical property. The experiments show that WEDM can process the engineering ceramic materials of the resistivity of less than 100Ω·cm.
     The research on the WEDM of ceramic materials is based on the plane at home and abroad. The specialized WEDM can process the rotary surface; the equipment is limited to process the micro-axis with high expensive and low efficiency. A novel technology of Wire Electrical Discharge Machining rotary surface of engineering ceramic is presented in this paper. The common High-speed WEDM is advanced, and the current can be transmitted by the workpiece spindle machining device to achieve the engineering ceramic rotary surface. It is the key technology of improving the roughness of the machined surface that the discharge energy of pulse generator is micronized. The circuit of transistor pulse generator is analyzed in this paper, the experiments show that the discharge circuit between the anode and the negative pole can be changed by the change of the resistance. The method can decrease the discharge energy of single pulse and the roughness of machined surface. The vibratility of wire electrode would affect the roughness of the machined surface, so the shortening the length of wire electrode and the adding the limit apparent of wire electrode can be adopted in this paper. The methods can get higher surface quality.
     Following the worktable auto-feeding, the discharging station, the resistance between the discharging point and the sending end and the discharging parmeters are continous changing, because the resistance rate of long ceramics workpiece is bigger than metal material When it is being cut on the common high speed WEDM with the sprindle slewer, The changes results in the surface roughness of the cut ceramics workpiece uneven and the machining process unstable as well. A kind of self-adaptive tracking electode was designed innovative. The tracking electode installed on the wire shelf may slide on the rotary surface of workpiece, adapt the change of workpiece diameter and leapfrog the steps of step-shaft. So the resistance between the workpiece fixturing position and sending end and the peak current of the circuit cosist by wire,workpiece and tracking electode. In this paper, the structure design and the virtual prototype analysis were carried out. Firstly, the dimension of machine tool and the rotary equipment of principal axis were analyzed, the model of tracking-electrode is designed and dynamics simulation analysis of the processing procedure was presented by the ADAMS, The fact that tracking-electrode can meet the needs of the power is verified. The structural designs of tracking-electrode are done by the CATIA software. The whole tracking-electrode device was manufactured by the Aluminum Alloys, sliding electrode was done with graphite, the processing experiments were done by the presented equipment. The experiments show that the equipment with tracking-electrode can improve stability of the processing procedure and improve the surface quality of the workpiece.
     The processing mechanism of WEDM with rotary surface of engineering ceramic is researched. The processing mechanism are discussed from the following aspects, such as the WEDM discharge form of the engineering ceramics, the micro process of the materials removal, the process of distribution and conversion and the influencing factors of the materials removal.
     Based on the analysis of theory, the finite element models of the processing region is established using finite element analysis software MSC.MARC and the numerical simulation of temperature field for the WEDM process with the rotary surface of engineering ceramics are analyzed. The single-pulse discharge processing distribution of the temperature field is analyzed in the various power situations. The impact laws of various pulse-width and power density to the shape of the discharge pits and surface roughness. The theoretical basis of the engineering ceramics rotary surface characteristics of WEDM process is provided to the further study.
     Many experiments about the effect of discharging parameters to cutting surface roughness are carried out by the reformed WEDM device. The single factor experiments show that their function between the rotary surface roughness of engineering ceramic and main cutting parameters is nonlinear. So the regression experiment project of WEDM the rotary surface of B.C ceramics is designed by the orthogonal polynomial regression experiment method, about the surface roughness as experiment aim and the peak current, impulse width and workpiece speed as experimental factors. The optimum regression equation is obtained while the significant index is up to 99%. Based on this, the optimum technological parameters are determined to decrease the workpiece surface roughness under the paper's experiment conditions. The better experimental result is achieved that the roughness value of Ra is equal to 0.75μm by using these optimum technological parameters ,and the results verifies the feasibility of the new technology on WEDM the rotary surface of engineering ceramics.
引文
[1]江东亮等.中国材料工程大典,第8卷,无机非金属材料工程[M].北京:化学工业出版社,2005.
    [2]B.Mohan,A.Rajadurai,K.G.tyanarayana.Electric discharge machining of Al-SiC metal matrix composites using rotary tube electrode[J].Journal of Materials Processing Technology,2004(153):978-985.
    [3]Feng-Tsai Weng,R.F.Shyu,Chen-Siang Hsu.Fabrication of micro-electrodes by multi-EDM grinding process[J].Journal of Materials Processing Technology,2003,140(1-3):332-334.
    [4]Chen Chen,Zhang Zu-pei,Lu Wen-ge,Jia Dong.The application of engineering ceramics and special graphite in construction design of subterrene drills[J].Journal of Jilin University Engineering and Technology Edition,2004,23(4):643-647.
    [5]Changshui Gao,Zhengxun Liu.A study of ultrasonically aidedmicro-elect rical-discharge machining by the application of workpiece vibration[J].Journal of Materials Processing Technology,2003,139(1-3):226-228.
    [6]Fleischer J,Masuzawa T,Schmidt J.et al.New applications for micro-EDM[J].Journalof Materials Processing Technology,2004(149):246-249.
    [7]高长水,宋小中,刘正埙.电火花线电极磨削机构设计研究[J].电加工,1997(3):17-19.
    [8]赵万生,韦红雨,栗岩等.应用线电极电火花磨削法加工微细轴[J].机械工艺师,1998(1):22-23.
    [9]Masuzawa T,Fujino M,Kobayashi K.Wire electro-discharge Grinding for micro -machining[M].Annals of the CIRP,1985,34(1):431-434.
    [10]Pham D T,Dimov S S,Bigot S,etal.Micro-EDM-recent developments and research issues[J].Journal of Materials Processing Technology,2004,149(1-3):50-57.
    [11]樊新民,张骋,蒋丹宇编著.工程陶瓷及其应用[M].机械工业出版社,2006.
    [12][波]R·帕姆普奇著,杨字乾,庄柄群,陈秀琴译.陶瓷材料性能导论[M].中国建筑工业出版社,1984.
    [13][联邦德国]H·萨尔满,H·舒尔兹著,黄照柏译.陶瓷学[M].轻工业出版社,1989.
    [14]杨瑞成.机械工程材料[M].重庆大学出版社,2004.
    [15]郭瑞松,蔡舒,季惠明等.工程结构陶瓷[M].天津大学出版社,2002.
    [16]陈利.跟踪式火花加工长碳化硼陶瓷回转表面的研究[D].吉林大学硕士学位论文,2007.
    [17]Thevenot F.A review on boron carbide[J].Key Engineer in Materials,1991(56/57):59-88.
    [18]蔡作乾,王琏,杨根.陶瓷材料词典[M].化学工业出版社,2002.
    [19]周玉.陶瓷材料学[M].科学出版社,2004.
    [20]康善存.硬脆材料的精密切割及发展趋势[J].制造技术与机床,1997(6):11-13.
    [21]郭春丽.陶瓷零件的加工方法[J].陶瓷,2006(3):21-24.
    [22]曹毅.基于线切割机床的碳化硼工程陶瓷回转表面放电加工技术研究[D].吉林大学硕士学位论文,2006.
    [23]赵波,郑玉歌.超声珩磨难加工材料精密表面的高效性研究[J].中国机械工程,1998,9(8):19-22.
    [24]贾志新,艾冬梅,张勤河,张建华.工程陶瓷材料加工技术现状[J].机械工程材料,2000,24(1):2-4.
    [25]张学仁.数控电火花线切割加工技术[M].哈尔滨工业大学出版社,2004.
    [26]中国机械工程学会电加工学会.电火花线切割加工[M].哈尔滨工业大学出版社,1989.
    [27]邢世凯,屈玲玲,王静.工程陶瓷材料及其与金属连接工艺的研究发展[J].陶瓷,2003(6):9-12.
    [28]李淑华,王建江,李树堂.陶瓷与金属的连接[J].特种铸造及有色合金,2000(2):51-53.
    [29]李淑玉.工程陶瓷电火花加工工艺[J].机械工程师,2000(4):16-17
    [30]华子乐等.结构陶瓷放电加工过程的蚀除机理[J].陶瓷工程,1998,2(5):42-44.
    [31]Chien-Cheng Liu,Jow-Lay Huang.Effect of the electricaldischarge machining on strength and reliability of TiN/Si3N4 composites[J].Ceramics International,2003(29):679-687.
    [32]王斌修.结构陶瓷电火花加工蚀除机理分析[J].电加工与模具,2000(3):18-20.
    [33]骆志高.陶瓷材料电加工表面质量的研究[J].机械工程学报,2000,11,36(11):75-79.
    [34]马宁.具有跟踪电极的放电磨削氧化铝—碳化钛陶瓷回转表面的研究[D].吉林大学硕士学位论文,2008.
    [35]K.H.Ho,S.T.Newman,S.Rahimifard,R.D.Allen.State of the art in wire electrical discharge machining(WEDM)[J].International Journal of Machine Tools &Manufacture,2004(44):1247-1259.
    [36]W.Konig,R.Aachen,D.F.Dauw.EDM2Future Steps towards the Machining of Ceramics.Annals of the CIRP,1988,37(2).
    [37]华子乐,严松浩,林广涌,饶平根.工程陶瓷放电加工的蚀除机理[J]材料导报,1998(05):41-43,53.
    [38]C.S.Trueman,J.Huddleston.Material removal by spalling during EDM of ceramics[J].Journal of the European Ceramic Society,2000(20):1629-1635
    [39]B.Lauwers,J.P.Kruth.Investigation of material removal mechanisms in EDM of composite ceramic materials[J].Journal of Materials Processing Technology,2004(149):347-352.
    [40]Vinod Yadav,Vijay K.Jain.Thermal stresses due to electrical discharge machining[J].International Journal of Machine Tools & Manufacture,2002(42)877-888.
    [41]K.L.Bhondwe,Vinod Yadava.Finite element prediction of material removal rate due to electro-chemical spark machining[J].International Journal of Machine Tools & Manufacture,2006(46) 1699-1706.
    [42]Philip Allen,Xiaolin Chen.Process simulation of micro electro-discharge machining on molybdenum[J].Journal of Materials Processing Technology 2007(186):346-355.
    [43]尚歌,金柏冬,崔景芝,王振龙.基于ANSYS的气中微细电火花沉积工艺参数的研究[J].电加工与模具,2007(3):20-23.
    [44]徐明刚,张建华,任升峰,段彩云,张勤河.气体介质电火花加工单脉冲放电温度场分析[J].电加工与模具,2006(5):14-16、21.
    [45]崔景芝,王振龙.放电通道的微观模拟及其物理性能研究[J].电加工与模具,2007(1):13-16.
    [46]Shoichi Shimada,Hiroaki Tanaka,Naotake Mohri.Molecular dynamics analysis of self-sharpening phenomenon of thin electrode in single discharge[J].Journal of Materials Processing Technology,2004(149):358-362.
    [47]Mohri Naotake,Fukuzawa Yasushi,et al.Assisting electrode method for machining insulating ceramics[M].Annals of the CIRP,1996,45(1):201-204.
    [48]Takayuki Tani,Yasushi Fukuzawa,Naotake Mohri,Nagao Saito.Masaaki Okada Machining phenomena in WEDM of insulating ceramics[J].Journal of Materials Processing Technology,2004(149):124-128.
    [49]Jerzy Kozak,Kamlakar P.Rajurkar,Niraj Chandarana.Machining of low electrical conductive materials by wire electrical discharge machining(WEDM)[J].Journal of Materials Processing Technology,2004(149):266-271.
    [50]郭中杰,贾志新,洪卫.电火花线切割加工氮化硅陶瓷表面粗糙度的研究[J].电加工与模具,2004(5):15-17.
    [51]贾志新,王志勇,郭中杰.电火花线切割加工氮化硅陶瓷表面质量的研究[J].冶金设备,2005(2):1-3,7.
    [52]C.J.Luis,I.Puertas Methodology for developing technological tables used in EDM processes of conductive ceramics[J].Journal of Materials Processing Technology,2007(189):301-309.
    [53]许能峰,高阳,郭常宁.石墨电极电火花加工非导电陶瓷SiO_2实验研究[J].电加工与模具,2007(2):13-16.
    [54]徐小兵.绝缘性陶瓷电火花加工中生成导电膜的特性分析[J].电加工与模具,2003(2):25-26.
    [55]徐小兵,莫易敏,陈蔚红.绝缘性陶瓷电火花加工过程监测和加工稳定性分析[J].长江大学学报(自然科学版),2005,2(10):362-363.
    [56]郭永丰,白基成.绝缘陶瓷电火花磨削加工的研究[J].电加工与模具,2006(1):54-57,64.
    [57]骆志高,徐小青,王海涵.基于GA-神经网络的工程陶瓷材料电加工参数优化研究[J].机床与液压,2006(10):52-54.
    [58]Chiang,Ko-Ta;Chang,Fu-Ping.Applying grey forecasting method for fitting and predicting the performance characteristics of an electro-conductive ceramic(Al2O 3+30%TiC) during electrical discharge ac hining[J].International Journal of Advanced Manufacturing Technology,2007(33):480-488.
    [59]Song Xiaozhong,Reynaerts Dominiek,Meeusen Wim,Brussl Hendrik.Investigation of micro-EDM for silicon microstructure fabrication[J].Society of Photo-Optical Instrumentation Engineers,1999,3(3680):792-799.
    [60]杨瑞成.机械工程材料[M].重庆大学出版社,2004.
    [61]王至尧.中国材料工程大典[M].化学工业出版社,2005.
    [62]沈洪.电火花加工技术发展的里程碑[J].电加工,1995(4):37-38.
    [63]孔庆华.特种加工[M].同济大学出版社,1997.
    [64]赵万生,袁松梅,刘维东.一种小型微位移超稳定直线压电驱动器[J].压电与声光,1999,21(6):439-441.
    [65]Ikuta K,Ogata T,Tsubio M,Kojima S.Development of mass productive micro stereo lithography(Mass-IH process)[C].Proceedings of IEEE Micro Electro Mechanical Systems,1996:301-306.
    [66]Hideki Takezawa,Hiroaki Hamamatsu,Naotake Mohri,et al.Development of micro-EDM-center with rapidly sharpened electrode[J].Journal of Materials Processing Technology,2004,149(1-3):112-116.
    [67]Chow H M,Yan B H,Huang F Y.Micro Slit Machining Using Electro-Discharge Machining with a Modified Disk Electrode(RDM)[J].Journal of Materials Processing Technology,1999(91):161-166.
    [68]李勇,王显军,郭敏等.微细电火花加工关键技术研究[J].清华大学学报(自然科学版),1999,39(8):45-48.
    [69]Heeren Paul-Henris,ReynaertsDominiek,Van Brussel Hendrik.Micro-structuring of silicon by lectron-discharge machining(EDM)-part Ⅰ:theory[J].Sensors and actuators,A:Physical.1997,60(5):212-218.
    [70]T.Masuzawa,M.Fujino,K.Kobabyashi.Wire Electro-Discharge Grinding for Micro-Machining[M].Annals of theCIRP.1985,34(1):431-434.
    [71]Pham D T,Dimov S S,Bigot S,etal.Micro-EDM-recent developments and research issues[J].Journal of Materials Processing Technology,2004,149(1-3):50-57.
    [72]Fan L S,et al.IC-processed electrostatic micro-motors[J].Sensors and Actuators,1989,20(1/2):112-126
    [73]北京市《金属切削理论与实践》编委会.电火花加工[M].北京:北京出版社,1980.
    [74]郭钟宁,刘志东.高速走丝线切割导轮动态特性及定位方式对加工的影响[J].电加工与模具,1991(1):8-12,42.
    [75]M.Suda,K.Nakajima,K.Furuta,Y.Mitsuoka.Electrochemical and optical processing of micro structures by scanning probe microscopy(SPM)[C].Proceeding of IEEE Micro Electro Mechanical Systems,11-15 Feb 1996:296-300.
    [76]Arunachalam C,Aulia M,Bozkurt B,et al.Wire vibration bowing and breakage in Wire EDM[C].12th International Symposium for Electro-machining(ISEM-12),1998:109-118.
    [77]曹凤.倾斜式可调电极丝恒张力机构的研究[J].电加工与模具,2003(5):23-25.
    [78]狄士春,黄瑞宁,于滨,赵万生.低速走丝电火花线切割加工断丝原因分析及处理[J].电加工与模具,2003(5):12-15.
    [79]王至尧.电火花线切割工艺[M].国防科技出版社,1987.
    [80]熊光耀,李明奇,李明辉.WEDM加工过程中的电极丝形位变化[J].电加工与模具,2002(3):20-22.
    [81]K.Ikuta,et al.Development of mass productive micro stereo lithography(Mass-IH process)[C].Proceedings of IEEE Micro Electro Mechanical Systems,1996:301-306.
    [82]BKDC电火花线切割控制机使用说明书.苏州沙迪克三光机电有限公司,2000.
    [83]王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社,2002.
    [84]李军,邢俊文,覃文浩.ADAMS实例教程[M].北京理工大学出版社,2002.
    [85]郑红,贾志新,郭永丰,刘晋春.电火花加工中方波脉冲电源放电伏安特性及工作状态研究[J].电加工与模具.1997(6):24-28.
    [86]赵万生.先进电火花加工技术[M].国防工业出版社,2003.
    [87]刘晋春,赵家齐.特种加工[M].机械工业出版社,1997.
    [88]R.V.埃克.示波器基本操作与测量实例[M].国防工业出版社,1998.
    [89]W.Konig,U.Panten.An Effective Machining Process Enven for Ceramic Materials [C].Proc.of ISEM—X,1992
    [90]M.Timm,T.Pape.Process-matched Generators for Edmachining of Ceramics[C].Proc.of ISEM—X.1992.
    [91]W.Konig,R.Aachen,D.F.Dauw.EDM-Future Steps towards the Machining of Ceramics[M].Annals of the CIRP,1988,37(2):623-631
    [92]高长水,赵剑锋,陈大为等.特种加工[M].南京:东南大学出版社,2001.
    [93]曹凤国.电火花加工技术[M].北京:化学工业出版社,2005.
    [94]毛利尚武,齊齋长男,成宫久喜,河津俊秀.粉末混入加工液による放電仕上加工[J].電加工学会誌,1991,25(49):47-60.
    [95]孟庆国,王刚,赵万生.混粉电火花加工温度场的计算与分析[J].电加工与模具,2000(2):4-6.
    [96]陈火红等.MSC.Marc/Mentat 2003基础与应用实例—数码工程师系列丛书[M].科学出版社,2004.
    [97]陈火红等.新编Marc有限元实例教程[M].机械工业出版社,2007.
    [98]阚前华,常志宇.MSC.Marc工程应用实例分析与二次开发[M].中国水利水电出版社,2006.
    [99]楼乐明.电火花加工计算机仿真研究[D].上海交通大学博士学位论文,20000401.
    [100]Vinod Yadav,Vijay K.Jain.Thermal stresses due to electrical discharge machining[J].International Journal of Machine Tools & Manufacture,2002(42):877-888.
    [101]K.L.Bhondwe,Vinod Yadava.Finite element prediction of material removal rate due to electro-chemical spark machining[J].International Journal of Machine Tools & Manufacture,2006(46):1699-1706.
    [102]Philip Allen,Xiaolin Chen.Process simulation of micro electro-discharge machining on molybdenum[J].Journal of Materials Processing Technology,2007(186):346-355.
    [103]李明辉.电火花加工理论基础[M].北京:国防工业出版社,1989.
    [104]王晓熙.中厚板焊接过程温度场和应力应变场的三维数值模拟[D].华中科技大学硕士学位论文,20020429.
    [105]Erden A.Effect of materials on the mechanism of electrical discharge machining (EDM),trans of the ASME[J].Journal of Engineering Materials and Technology,1983,105(4):132-138.
    [106]P.Shankar,V.K.Jain,T.Sundarajan,Analysis of spark profiles during EDM process[J].Machining Science and Technology,1997,1(2):195-217.
    [107]薛忠明,顾兰,张彦华.激光焊接温度场数值模拟[J].焊接学报.2003,24(2):79-82.
    [108]张春平.异种钢熔焊过程的数值模拟[D].合肥工业大学硕士学位论文.20030301.
    [109]王焊,赵海燕,吴延等.高能束焊接双椭球热源模型参数的确定[J].焊接学报,2003,24(2):67-70.
    [110]刘顺洪,万鹏腾,胡良果等.薄板激光焊接温度场的数值研究[[J].电焊机,2001(8):16-19.
    [111]刘金合,吕寿丹,胡万谦等.CO:激光焊接A3钢时熔池受力及焊缝形貌分析[J].激光与光学电子进展(增刊),1999(9):141-144.
    [112]薛忠明,顾兰,张彦华.激光焊接温度场数值模拟[[J].焊接学报,2003,24(2):79-82.
    [113]李冬青,孟庆国,陶军,王立华.焊接动态位移场的建模与数值模拟[J].焊接,2002(2):13-15.
    [114]陈楚.数值分析在焊接中的应用[M].上海:上海交通大学出版社,1985.
    [115]宗宫重行,池文俊译.近代陶瓷[M].上海:同济大学出版社,1988.
    [116]Beauvy B,Guery M.Physical properties of boroncarbide[R].CEA-Conf -6652,1983.
    [117]Paull TT,Rogakou EP,Yamazaki V,et al.A critical role for histone H2AX in recruitment of repair factors to nuclear oci after DNA damage[J].Curr Biol,2000,10(15):886-895.
    [118]王零森,吴芳,樊毅等.快中子堆用碳化硼材料的成分和性能设计[J].粉末冶金材料科学与工程,1999,4(2):105-112.
    [119]王零森,方寅初,吴芳等.碳化硼在吸收材料中的地位及其与核应用有关的性能[J].粉末冶金材料科学与工程,2000,5(2):113-120.
    [120]长谷川正义.核反应堆材料手册[M].北京:原子能出版社,1987.
    [121]傅永华.有限元分析基础[M].武汉:武汉大学出版社,2003.
    [122]张海畴等.混粉电火花加工在模具制造中的应用[J].机械设计与制造,2005(2):100-101.
    [123]赵万生,孟庆国,刘维东等.混粉电火花镜面加工技术的研究及发展[J].中国机械工程,2001(4):466-469.
    [124]孟庆国,赵万生等.大面积混粉电火花加工机理探讨[J].中国机械工程,2002,13(11):904-906.
    [125](美)格林著,龚江宏译.陶瓷材料力学性能导论[M].清华大学出版社,2003.
    [126]Aveston J,Cooper G A,Kelly A.The Properties if Fiber Composites[C].NPL Conference Proceedings(IPC Publishing Guildford),1971:15-26.
    [127]于复生,艾兴,霍孟友,司书春.电火花加工工程陶瓷表面的微观形貌测量及磨损性能[C].第一届国际机械工程学术会议论文集,2000.
    [128]LO Sywei,LU Yuunghwa.Wire drawing dies with prescribed variations of strain rate[J].Journalof Materials Processing Technology,2002(123):212-218.
    [129]张长瑞,郝元恺.陶瓷基复合材料原理、工艺、性能与设计[M].国防科技大学出版社,2001.
    [130]夏劲武,徐家文,赵建社.电火花加工表面质量的研究及进展[J].电加工与模具,2008(6):11-15.
    [130]李崇豪,赵向东.陶瓷材料电加工后变质层厚度的研究[J].江苏理工大学学报,1996(7):57-60.
    [132]马丽心,董世成,王秀梅.电火花表面状态的研究[J].黑龙江电力技术,1996,18(2):60-80.
    [133]Biing Hwa Yan,Hsien Chung Tsai,Fuang Huang.Long Chorng Lee Examination of wire electrical discharge machining of AL2O3p/6061 Alcomposites[J].International Journal of Machine Tools &Manufactu-Re,2005(45):251-259.
    [134]B.Lauwers,J.P.Kruth,W.Liu,W.Eeraerts,B.Schacht,P.Bleys.Investigationof material removal mechanisms in EDM of composite ceramic materials[J].Journal of Materials Processing Technology,2004(149):347-352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700