用户名: 密码: 验证码:
面向仿人机器人的人工肌肉与关节研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仿人机器人是机器人领域的一个研究热点。与大多数机器人不同,仿人机器人对机械结构以及驱动装置有许多特殊的要求。其中,设计和实现可以满足使用要求的关节及其驱动装置是仿人机器人研究的一项主要任务。目前,机器人关节的驱动方式主要有液压、气动、电磁电机驱动等几种。将这些驱动方式用于仿人机器人时存在一定的不足。本文以两足仿人机器人的人工肌肉与关节为研究对象,提出了一种新型的仿人机器人驱动结构。该结构由大力矩自锁回转关节和人工肌肉所构成。与传统关节型机器人中的回转动力驱动部件不同,我们所设计的大力矩自锁回转关节主要用于完成对机器人本体的支撑和位姿保持功能,而对臂、肢的回转驱动以及对手爪或末端操作器负载的夹持驱动则主要由人工肌肉来完成。
     为了使得所设计的人工肌肉和关节满足仿人机器人的驱动要求,本文开展了以下几个方面的研究:
     (1)总结和归纳了压电陶瓷堆的基本工作特性;分析了超声波电机和尺蠖电机在原理上的本质差别,并对箝位端的运动轨迹做了详细的分析,比较了各种箝位端运行轨迹对摩擦的建立以及对系统性能的影响;在尺蠖驱动的基本形式的基础上,提出了一种改进的尺蠖驱动形式,并将其用于人工关节(尺蠖型旋转驱动器)的设计中。
     (2)基于逆压电效应和尺蠖运动的基本形式,提出了一种新型的人工肌肉驱动器。一体化的设计方案和独特的柔性铰链结构提高了系统的工作频率和工作速度;此外,所引入的箝位中心调节装置,放松了对驱动器的加工要求,也增加了系统的稳定性。
     (3)构建了人工肌肉驱动器中压电陶瓷堆的仿真模型,并通过对箝位系统、伸缩系统的动力学分析,建立了相应的动力学方程和仿真模型。此外,对经典库仑摩擦模型、状态转换模型以及复位积分模型等三种摩擦模型进行了比较研究,并用复位积分模型法建立了人工肌肉系统的摩擦模型。在此基础上,利用仿真对人工肌肉的工作特性进行了分析,得到了人工肌肉的运行方式、运行频率、负载和系统工作速度的关系等。仿真结果表明,系统具有良好的输出性能。
     (4)基于逆压电效应和尺蠖运动的基本形式,提出了另外一种人工肌肉的结构设计。这种人工肌肉与前面介绍的人工肌肉主要存在结构上的不同,驱动原理一样。同时,基于逆压电效应和尺蠖运动的改进形式,也提出了一种新型的人工关节,对人工关节的结构和驱动原理都做了详细的介绍和分析。研究表明这种人工关节具有大力矩和自锁的特性,为仿人机器人的位姿保持提供了研究的基础。
     从研究的结果来看,所设计的人工肌肉和关节驱动器在性能指标上能够满足仿人机器人的驱动要求,为今后从事仿人机器人的研究打下了良好的基础。
Recently, humanoid robot has become the focus of robot research. Humanoid robot imposed rigorous requests on mechanic and drivers. The designs of joint and its driver are the key problems. Traditional drivers for robot's joint include fluid drive, pneumatic drive, and electromagnetic motor, etc, but there are many limits when they are applied on humanoid robots. This paper has proposed a new drive structure for humanoid robots. The drive structure includes artificial muscle and artificial joint which has large torque. The muscle and the joint were designed independently while cooperated with each other. The artificial joint was not as the rotary part as in traditional robot but worked for supporting and maintaining the gesture. The drivers of limb and end operator were fulfilled by the artificial muscle.
     In order to satisfy the requests of large force/velocity output and high precision of robots' actuator, this research mainly concludes the following studies.
     The basic working characteristics of piezoelectric pile were summarized and induced. The essential differences between piezoelectric ultrasonic motor and inchworm actuators were analyzed. The motion trajectories of the end of clamping structure were exploited, and the effects of the motion trajectories to friction were compared. The basic principle of inchworm, which was applied in artificial muscle, was concluded and a new model of inchworm motion, which was applied in artificial joint, was proposed.
     A new artificial muscle was proposed based on basic inchworm motion and converse piezoelectric effects. The actuator designed has unique flexible hinge and can adjust the center of anchoring/loosening. The principle, mechanical realization, and finite element analysis for the major parts were introduced. The actuator can work at high frequency and possess high speed, large travel, and high load. It also has high operation stability and practical value.
     In order to get and optimize the performance of the actuator, the kinetics models were founded for the clamping system, the driving system, and friction system, etc. Three friction models, including classical (coulomb) friction model, the karnopp model, and the reset integrator model, were compared. As the reset integrator modal is the most precise model, it was applied in the friction system model. The simulation was processed and the relationships between the velocity and load, the signal's frequency, and work style, were also analyzed. As an actuator, the artificial muscle has favorable performance.
     Another artificial muscle and a new artificial joint were designed. The principle, mechanical realization was introduced. This artificial muscle had different mechanic structure but the same driving principle with the muscle introduced in the front of this paper. The new artificial joint was designed based on the new model of inchworm motion. According to the research, the joint has large torque and self-locking characteristic.
     As a result, the performance of the artificial muscle and joint which were designed in this paper could satisfy the humanoid robot well. It established the foundation for the further humanoid driver research.
引文
Bizzigotti R A.1975.Electromechanical Translation Apparatus.USA,3,902,085[P].
    Brisbane A D.1968.Position Control Device.USA,3,377,489[P].
    Burleigh Instruments Ltd.2000.Company technical literature[EB/OL],www.burleigh.com.
    迟冬祥,颜国正,丁国清.2001.基于惯性-摩擦原理的PZT驱动四自由度微驱动器的研究[J].光学精密工程,9(2):135-138.
    Caldwell D G,Tsagarakis N,Artrit P,Canderle J.,Davis S,Medrano-Cerda G A.2001.
    Biomimetic and smart technology principles of humanoid design[C].IEEE/ASME International Conference on Advanced Intelligent Mechatronics,AIM,2:965-970.
    Claeyssen F,Lhermet N,Maillard T.2003.Magnetostrictive actuators compared to piezoelectric actuators[J].Proceedings SPIE,4763:194-200.
    Chang S H,Wang H C.1990.A high speed impact actuator using multilayer piezoelectric ceramics[J].SENSORS ACTUATORS,3:239-244.
    Chou C.1996.Measurement and modeling of McKibben pneumatic artificial muscles[J].IEEE Transactions on Robotics,12(1),90-102.
    Daum,Wolfgang R(Schwerin,D E),2002.Shapeable elastic body with master unit and method of controlling.USA,6,408,289[P]
    Dembele S,Rochdi K.2006.A three DOF linear ultrasonic motor for transport and micropositioning[J].Sensors and Actuators A,125:486-493.
    Docbclin E D.1998.System dynamics[M].NEW YORK:Marcel Dekker,Inc.
    Eda H,Onoma T,Sahasi M,Kobayasi T.1991.Development of device with high power and ultra precise positioning[J].Journal of the Japan Society of Precision Engineering,57(3):532-537
    Frank J E,Koopmann G H,Chen W C,Lesieutre G A.1999.Design and performance of a high force piezoelectric inchworm motor[J].Proceedings of SPIE 1999,3668:717-723.
    Fujimoto T.1988.Linear Motor Driving Device.USA,4,736,131[P].
    Frank J E,Koopmann G H,Chen W C Lesieutre G A,2005.Design,modeling,and performance of a high force piezoelectric inchworm motor[J].Journal of Intelligent Material Systems and Structures,10(2):962-972.
    Fukaya N,Toyama S,Asfour T,Dillmann R.2000.Design of the TUAT/Karlsruhe humanoid hand[C].IEEE/RSJ International Conference on Intelligent Robots and Systems,Takamatsu,Japan,October 30-November 5,2000.
    Furukawa E,Mizino M.1990.Displacement amplification and reduction by means of linkage[J].International Journal of Japanese Society of Precision Engineering,24:285-290.
    Galante T,Frank J,Bernard J,et al.1999.Design,modeling,and performance of a high force piezoelectric inchworm motor[J].Journal of Intellegent Materal Systems And Structures,10(12):962-972.
    Galutva G V.1972.Device for precision displacement of a solid body.USA,3,684,904[P].
    Goldfarb M(Vanderbilt Univ).Celanovic N.1997.Modeling piezoelectric stack actuators for control of micromanipulation[J].IEEE Transactions on Control Systems Technology,17:69-79.
    Guillot F M,Balizer E.2003.Electrostrictive effect in polyurethanes,Jour2nal of App lied Polymer Science,89:399-404.
    华亮,李宪章,吴晓.2007,基于行波超声电机直接驱动的机械臂精密定位系统研制[J],电机与控制应用,34(11):23-40.
    贺红林,赵淳生.2005.机器人的超声电机驱动及其控制研究[J].压电与声光,27(6):964-697.
    Haessig D A,Jr.(GEC-Marconi Electronic Systems Corp),Friedland B.1991.On the modeling and simulation of friction[J].Journal of Dynamic Systems,Measurement and Control,Transactions of the ASME,113(3):354-362.
    Hara A,Horinchi T,Yamada K,Takahashi S,Nakamura K.1986.Electomechanical translation device comprising an electrostrictive driver of a stacked ceremic capacitor type.USA,4,570,096[P].
    Henderson D,Fasick JC.Inchworm motor developments for the next generation space telescope. Curr Develop Opt Des Engng Ⅶ 1998;3429:252-6.
    Higuchi T,Furutani K,Yamagata Y,Kudoh K,Ogawa M.1993.Improvement of velocity of impact drive mechanism by controlling friction[J].Adv.Automat.Technol,5(2):71-76.
    Hong J K,Park CH,Lee J S.et al.1999.The trial fabrication and characteristics of linear ultrasonic motor for application to X-Y table[J],Ultrasonic symposium,683-686.
    Hsu S,Arbor A,Blatter A.1966.Transducer.USA,3,292,019[P].
    Huang K Y,Lee C J.2007.Design and development of a piezoelectric actuator for the scanning probe microscope used in ultrahigh vacuum[J].Journal of Mechanics,23(2):117-126.
    Ishikawa T,Nakada T,Nihon K,Gakkai R.2005.Shape memory alloy actuator for artificial muscle(proposition of rolled film tube method)[J].C Hen/Transactions of the Japan Society of Mechanical Engineers,Part C,71(3):944-950.
    江南大学,2005.9.14.螺旋弹簧式人工肌肉的柔性关节.中国,2005 10038743.9[P].
    江南大学,2005.10.5.组合肌肉式多方向弯曲的柔性关节.中国,200510037889.1[P].
    江南大学,2006.7.12.直线膨胀人工肌肉驱动的弯曲关节.中国,200610037765.8[P].
    节德刚.2006.宏/微驱动高速高精度定位系统的研究[D]:[博士].哈尔滨:哈尔滨工业大学.
    Jie D G,Liu Y J,Sun L N,et al.2006.Design research of a novel high speed nanometer positioning system on macro/micro driven for MEMS[C].Proceedings of the IEEE/ICMA2006International Conference on Mechatronics and Automation,Luoyang,China,June,843-847.
    Jouaneh M,Yang R.2003.Modeling of flexure-hinge type lever mechanisms[J].Precision Engineering,27:407-418.
    Kajita S,Nagasaki T,Yokoi K,Kaneko K,Tanie K.2002.Running pattern generation for a humanoid robot[C].Robotics and Automation,2002.Proceedings.ICRA 02.IEEE International Conference on Robotics and Automation,May 2002,3:2755-2761.
    Karnopp D.1985.Computer simulation of stick-slip friction in mechanical dynamic system[J].ASME Journal of Dynamic System,Measurement,and Control,107(11):100-103.
    Kato A,Kondo N.1999.Compliance control of direct drive manipulator using ultrasonic motor[C].Tokyo:Proc of IEEE IECON,1999,125-130
    Kawano H,Hirahara T.2003.Three-DOF angular positioning control using a multi-DOF ultrasonic motor in the proloaded condition[C].Proceedings of the 2003 IEEE/RSJ,Intl Conference on intelligent Robots and Systems.Lasvegas,2247-2253.
    Kim J,Lee I H.2005.Self-moving cell linear motor using piezoelectric stack actuators[J].Smart Materials and Structures,14(5):934-940.
    Kim J H,Kim S H,Kwak Y K.2004.Development and optimization of 3-D bridge-type hinge mechanisms[J].Sensors and Actuators,A116:530-538.
    Kim S C,Kim S H.1999.Precise rotary motor by inchworm motion using dual wrap belts[J].Review of Scientific Instruments,70(5):2546-2550.
    Klute G K,Czerniecki J M,Hannaford B.1999.McKibben Artificial Muscles:PneumaticActuators with Biomechanical Intelligence[C].Proceedings of IEEE/ASME 1999International Conference on Advanced Intelligent Mechatronics.Atlanta,USA.1999:1-6
    Kornbluh R,Pelrine R,Eckerle J,Joseph J.1998.Electrostrictive polymer artificial muscle actuators[C].Proceedings-IEEE International Conference on Robotics and Automation,3:2147-2154.
    Kuroki Y,Fukushima T.Nagasaka K,Moridaira T,Doi T T,Yamaguchi.2003.A small biped entertainment robot exploring human-robot interactive applications[C].J.Robot and Human Interactive Communication,2003.Proceedings ROMAN 2003.The 12th IEEE International Workshop on,Oct.31,2:303-308.
    Kwon K,Cho N,Jang W.2004.The design and characterization of a piezo-driven inchworm linear motor with a reduction-lever mechanism[J].JSME International Journal,Series C,47(3):803-811.
    李勇,胡敏,周兆英,王显军.1999.提高输出推力的蠕动式微进给定位机构[J].压电与声光,21(5):407-410.
    刘华,颜国正,丁国清.2001.惯性式压电陶瓷驱动器的研究[J].压电与声光,23(4):275-278.
    刘建芳,杨志刚,程光明等.2004.压电驱动精密直线步进电机研究[J].中国电机工程学报,24(4):102-107.
    刘建芳,杨志刚,曾平,范尊强.2007.内箝位/外驱动型压电精密步进旋转驱动电机研究[J].中国电机工程学报,27(15):100-105.
    刘泳,万德安.1999.新型双脚步推式微型进给机构的研究[J].宇航计测技术. 19(2):11-15.
    刘泳,万德安.1999.双脚步进式微型进给机构的研制[J].中国机械工程,10(8):856-858.
    刘一声.1998.压电超声波电机及其应用[J].压电与声光,10(6):60-71.
    Li Jian,Ramin S,Javad D,et al.2005 Design and development of a new piezoelectric linear inchworm actuator[J].Mechatronics,15(6):651-681.
    Lobontiu N,Paine J,Garcia E,et al.2001.Corner-filleted flexure hinges[J].ASME J of Mechanical Design,123(3):346-352.
    Lobontiu N,Garcia E,Hardau M,Bal N.2004.Stiffness characterization of comer-filleted flexure hinges[J].Review of Scientific Instruments,75(11):4896-4905.
    Locher G L.1967.Micrometric Linear Actuator.USA,3,296,467[P].
    Mavroidis C.2002.Development of advanced Actuators Using Shape Memory Alloys and Eleetrorheological Fluids[J].Research in Nondestructive Evaluation,14(1):1-32.evaluation,14(1)
    May W G Jr.1975.Piezoelectric Electromechanical Translation Apparatus.USA,3,902,084[P].
    Miesner J E,Teter J P.1994.Piezoelectric/magnetostrictive resonant inchworm motor[C].Preceedings of SPIE:Smart Structure and Intelligent Systems,USA:Florida,2190:520-527.
    Mori S,Tada H,Naganawa A,Obinata G,Ouchi K.2005.Damping effect on precise track following for nano-motion actuator[J].IEEE Transactions on Magnetics,41(2):842-848.
    Murata T.1990.Drive Apparatus and Motor Unit Using The Same.USA,4,947,077[P]..
    Nagasaka K,Kuroki Y.Suzuki S,Itoh Y,Yamaguchi J.2004.Integrated motion control for walking,jumping and running on a small bipedal entertainment robotiC].Robotics and Automation,2004.Proceedings.ICRA '04.2004 IEEE International Conference on,4:3189-3194.
    Nakamura K,et al.,1998,Designs of an Ultrasonic Actuator with Multi-degree of freedom using Bending and Longitudinal Vibrations(Ⅱ)[J](in Japanese).Journal of the Acoustical Society of Japan.page 376-377.
    Newton D,Garcia E,Hornel G C.1998.A linear piezoelectric motor[J].Smart Materials and Structures,7(3):295-304.
    O'Neill C G,Foster C E.1980.Electromotive Actuator.USA,4,219,755[P].
    Otokawa K(Dept.of Mechanical Engineering,Keio University),Maeno T 2004.Development of an arrayed-type multi-degree-of-freedom ultrasonic motor based on a selection of reciprocating vibration modes[C].Proceedings-IEEE Ultrasonics Symposium,v 2,Proceedings-2004 IEEE Ultrasonics Symposium:A Conference of the IEEE International Ultrasonics,Ferroelectrics,and Frequency Control Society,UFFC-S,2004,2:1181-1184.
    彭光正,王毅枫,孙海默.2007.一种气动人工肌肉驱动的七自由度仿人手臂的设计[J].液压与气动,1:1-3.
    Pandell T,Garcia E.1996.Design of a piezoelectric caterpillar motor[J].Preceedings of the ASME Aerospace Division,52:627-648.
    Park S R,Yang S H.2005.Amathematical approach for analyzing ultra precision positioning system with compliant mechanism[J].Journal of Materials Processing Technology,164/165:1584-1589.
    Paros J M,Weisbord L.1989.How to design flexure hinges[J].Machine Design,1989,37:151-156.
    Pons J L,Rodriguez H,Fernandez J F,Villegas M,Seco F.2003.Parametrical optimization of ultrasonic motors[J].Sensors and Actuators A,2003,107:169-182.
    Price A(Department of Mechanical Engineering,University of Ottawa),Jnifene A,Naguib H E.2006.Biologically inspired anthropomorphic arm and dextrous robot hand actuated by smart material based artificial muscles[J]Proceedings of SPIE-The International Society for Optical Engineering,v 6173,Smart Structures and Materials 2006-Smart Structures and Integrated Systems,page 61730X
    Prior S D,Warner P R.1991.A New Development in Low Cost Pneumatic Actuators[C].Proceedings of Fifth International Conference on Advanced Robotics.Pisa,Italy,2:1590-1593.
    Pritts M B,Rahn C D.2004.Design of an artificial muscle continuum robot[C].Robotics and Automation,2004.Proceedings.ICRA 04.2004 IEEE International Conference on,26 April-1May 2004,5:4742-4746.
    秦效慈,余尚银.1996.电致伸缩材料研究的新进展[J].压电与声光,18(2):129-133.
    Rashid M K,Khalil Z A.2004.Configuration design and intelligent stepping of a spherical motor in robotic joint[J].Journal of Intelligent and Robotic Systems,40(2):165-181.
    Repperger D W,Phillips C A.2000.Developing intelligent control from a biological perspective to examine paradigms for activation utilizing pneumatic muscle actuators[C].Proceedings of the 15th IEEE International Symposium on Intelligent Control.Rio,Patras,Greece.,2000:205-210.
    Ryu J W.1997.6-Axis Ultraprecision Positioning Mechanism Design and Positioning Control[D].Daejeon,Korea:KAIST.
    商跃进.2005.有限元原理与ANSYS应用指南[M].北京:清华大学出版社.
    隋立明,王祖温,包刚.2004.气动肌肉驱动仿人臂的设计[J].液压与气动,9:7-8.
    孙立宁,安辉等.1994.仿生型超精密平面驱动器及控制器的研究和应用[J].高技术通讯,4(3):14-16.
    孙涛,潭永彬,董申.1999.压电陶瓷微驱动器用于超精定位的技术研究[J].压电与声光,21(6):493-497.
    Saito Y,Matsuoka T,Negoto H.2005.Study on designing a biped robot with bi-articular muscle type bilateral servo systemiC].Robot and Human Interactive Communication,2005.ROMAN 2005.IEEE International Workshop on,13-15 Aug,Page(s):496-499.
    Salisbury S P,Waechter D F,Mrad RB,et al.2006.Design considerations for complementary inchworm actuators[J],IEEE-ASME Transactions on Mechatronics,11(3):265-272.
    Sekine K,Shibayama Y,Iwasawa N,Tagawa N,Sunahara S,Yoshida S,Arikabe T.1990.Identification and adaptive control of flexible truss structures[C].In:First Joint US/Japan Conference on Adaptive Structures,Maui,HI,November 13-15,458-484.
    Shibuta S,Morino Y,Shibayama Y,Sekine K.1992.Adaptive control of space truss structures by piezoeletric actuator[J].Journal of Intelligent Material Systems and Structures,3:697-718.
    Stibitz G R.1964.Incremental feed mechanisms.USA,3,138,749[P]
    Smith S T,Badami V G,Dale J S,et al.1997.Elliptical flexure hinges[J].Review of Scientific Instruments,68:1474-1483.
    唐志峰.2006.超磁致伸缩执行器的基础理论与实验研究[D]:[博士].杭州:浙江大学.
    Takahara K,Kuwao F,Shigehara M,Katoh T,Motohashi S.1989.Piezo linear actuators for adaptive truss structures,adaptive structures[C].Proceedings of the ASME Winter Annual Meeting,San Francisco,CA,December 10-15,83-88.
    Tenzer P E,MRAD R B.2004.On amplification in inchworm precision positioners[J].Mechatronics,14:515-531.
    Tenzer P E,Mrad R B.2004.A systematic procedure for the design of piezoelectric inchworm precision positoners,Source:IEEE/ASME Transactions on Mechatronics,9(2):427-435.
    Tomikawa Y,Takano T.1989.Same Phase Drive Type Ultrasonic motor[C].Proc.7th Meeting on Ferroelectric Materials and Their Applications,Kyoto 1989,Japanese Journal of Applied Physics,28(2):198-201.
    Toyama S,et al,1995.Development of an Actuator for a Robotic Manipulator with Ultrasonic Motor-2nd.Development of Prototypal Spherical Ultrasonic Motor[J](in Japanese).Journal of the Robotics Society of Japan,13(2):235-241.
    Uchino K.1992.Recent development of piezoelectric actuators for adaptive structure[C].Proceedings of The Third International Conference on Adaptive Structures and Technologies,San Diego,California,USA,November 1992,page 245-257.
    Vanderborght B,Verrelst B,Van Ham R,Vermeulen J,Lefeber D.2005.Dynamic control of a biped walking robot actuated with pneumatic artificial muscles[C].Robotics and Automation,2005,Proceedings of the 2005 IEEE International Conference on,18-22 April 2005,page 1-6.Vanderborght B,Verrelst B,van Ham R,Vermeulen J,Lefeber D.2006.Controlling a bipedal walking robot actuated by pleated pneumatic artificial muscles.Robotica,24(4):401-410.
    王宏,2007.用于仿生推进的SMA驱动器研究[D]:[博士].哈尔滨:哈尔滨工业大学.
    王松年,苏诒福,江亲瑜.1990.摩擦学原理与应用[M].北京:中国铁道出版社.
    王雄耀.2002.介绍一种气动新产品-仿生气动肌肉腱[J].液压气动与密封,1:31-35.
    吴博达.2006.摩擦力变化式压电惯性驱动机构的研究[D]:[博士].长春:吉林大学.
    吴鹰飞,周兆英.2002.超精密定位工作台[J].微细加工技术,6(2):41-47.
    www.canno.com
    www.piezomechanik.com
    谢建蔚,陶国良,周洪.2007.气动人工肌肉关节的建模与仿真[J].浙江大学学报(工学版),41(3):450-455.
    Xu W,King T.1996.Flexure hinges for piezoactuator displacement amplifiers:Flexibility,accuracy,and stress considerations[J].Precision Engineering,19:4-10.
    杨大智.2000.智能材料与智能系统[M].天津:天津大学出版社.
    杨钢,李宝仁,刘军.2003.气动人工肌肉:一种新型气动执行元件[J].中国机械工程,14:1347-1349.
    杨宜民.1992.11.18.直线驱动器.中国,1066348[P].
    杨宜民,李传芳,程良伦.1994.仿生步进式直线驱动器的研究[J].机器人,16(1):37-39.
    杨志刚,刘建芳,程光明等.2004.压电型步进旋转精密驱动器研究[J].压电与声光,26(6):454-457.
    叶骞,王祖温,包钢.2000.气动人工肌肉[J].液压气动与密封,2:12-15.
    雍安姣,张大为.2005.超声波直线电机的运行机理[J].机械与电子,(2):25-27.
    Yamakita M(Department of Mechanical and Control Engineering,Tokyo Institute of Technology,Bio-Mimetic Control Research Center),Kamamichi N,Kozuki T,Asaka K,Luo Z W.2005.Control of biped walking robot with IPMC linear actuator[C].IEEE/ASME International Conference on Advanced Intelligent Mechatronics,AIM,v 1,Proceedings of the 2005IEEE/ASME International Conference on Advanced Intelligent Mechatronics,AIM 2005,1:48-53.
    Yan S Z,Zhang F X,Qin Z,et al.2006.A 3-DOFs mobile robot driven by a piezoelectric actuator[J].Smart materials & Structures,15(1):7-13.
    曾平,温建明,程光明,吴博达,杨志刚.2006.新型惯性式压电驱动机构的研究[J].光学精密工程,14(4):623-627.
    赵淳生,李朝东.1999.日本超声电机的产业化、应用和发展[P].振动、测试与诊断,19(1):1-7.
    赵宏伟,刘建芳,华顺明等.2005.压电型步进精密旋转驱动器[J].光学精密工程,13(3):305-310.
    赵宏伟,吴博达,程光明等.2006.基于压电驱动的精密步进旋转电机[J].中国电机工程学报,26(10):166-171.
    赵宏伟,吴博达,程光明等.2006.高精度压电步进直线驱动器[J].吉林大学学报(工学版),36(3):350-354.
    赵美蓉,温丽梅,林玉池,张玉祥.2004.大行程纳米级步进压电电动机[J].机械工程学报,40(8):118-122.
    赵万生,袁松梅.1999.一种小型微位移超稳定直线压电驱动器[J].压电与声光,21(6):139-140.
    张福学,王丽坤.2001.现代压电学[M].北京:科学出版社.
    章海军,黄峰.2000.压电陶瓷冲击驱动机构在微细进给与操作中的应用[J].浙江大学学报,34(5):519-522.
    张宏壮,曾平.2005.压电双晶片型惯性冲击式旋转精密驱动器研究[J].光学精密工程,13(3):298-303.
    浙江工业大学.2005.1.26.气动柔性扭转关节.中国,03141627.6[P]
    指田年生.1985.振动片型和表面波型超声波电机(译)[J].压电与声光,7(1):73-78.
    中国人民解放军89000部队,哈尔滨工业大学机器人研究所.1996.12.4.一种人工关节驱动器.中国,95212409.2[P].
    左雪平,赵万生,袁松梅,李云峰.1999.蠕动式压电驱动微小型电火花加工装置的单片机控制系统[J].电加工与模具,(6):12-16.
    Zhang B,Zhu Z.1994.Design of an inchworm-type linear piezo-motor[J].Smart Structures and Materials1994:Smart Structures and Integrated Systems,2190:528-39.
    Zheng Y F,Sias F R Jr.1988.Design and motion control of practical biped robots[J].International Journal of Robotics & Automation 3(22):70-78.
    Zheng Y F,1989.Acceleration compensation for biped robots to reject external disturbance[J].IEEE Trans on Systems,Man,and Cybernetics,SMC,19(1):74-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700