用户名: 密码: 验证码:
基于智能控制算法的压电摩擦阻尼器抗震性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着“智能化”技术的发展,“智能化”已广泛渗入到各个行业中,结构振动控制引入“智能化”技术形成结构智能控制。结构智能控制一般包括两方面内容,一是采用智能控制算法的智能控制,如采用模糊控制、神经网络控制和遗传算法等智能控制算法为标志的结构智能控制;二是采用智能驱动或者智能阻尼装置形成的智能控制系统,如采用压电材料、电/磁流变液体、电/磁致伸缩材料和形状记忆材料等智能驱动材料或器件为标志的结构智能控制。本文主要是将上述两方面内容结合起来,将压电陶瓷驱动器与摩擦阻尼器结合组成智能阻尼装置,研究此类阻尼装置的减振性能。
     本文研究的主要内容有:
     (1)将两种类型的压电陶瓷驱动器分别与普通摩擦阻尼器组合构成压电摩擦阻尼器,进行了相关试验,测试这两种压电陶瓷驱动器和压电摩擦阻尼器的响应时间、响应速度、出力能力等。试验结果表明该两种驱动器响应时间短、响应速度快、出力能力稍差;压电摩擦阻尼器的响应时间滞后于驱动器的响应时间,并分析了造成此种情况的可能原因。
     (2)将T形芯板摩擦阻尼器替代普通摩擦阻尼器与压电陶瓷驱动器结合形成压电摩擦阻尼器,用于钢框架结构中并进行了试验,研究该阻尼器在实际框架中的滞回性能。试验结果表明这种阻尼器滞回曲线稳定饱满,滞回性能良好,拥有较好的耗能能力。
     (3)将该压电摩擦阻尼器与橡胶隔振垫结合组成隔振体系,在不同智能控制算法下进行仿真,研究此隔振体系对结构的减振效果,并比较其在不同算法下的减振效果,本文主要研究模糊控制算法的减振效果。该仿真是以渤海JZ20-2MUQ海洋平台结构为例,仿真结果显示,该隔振体系的减振效果明显,可大大降低海洋平台结构的振动反应。模糊控制算法的减振效果接近于主动控制算法,说明模糊控制力能很好的跟踪主动最优控制力,相比其他控制算法显示出了优越性。
     (4)针对模糊控制的一些缺陷(如,隶属度确定困难问题、控制规则依靠专家经验的问题),提出了优化模糊控制的方法:神经网络技术、遗传算法等。对神经网络技术和遗传算法的基本原理进行了介绍,并对遗传算法优化的模糊控制进行了仿真分析,结果显示优化了的模糊控制效果要优于未经优化的模糊控制。
With the development of‘intelligent’technology,‘intelligent’has been widelyinfiltrated into various sectors.Structural vibration control combining with the‘intelligent’technology forms structural intelligent control.Generally,structuralintelligent control includes two aspects: first, intelligent control uses intelligentcontrol algorithm, marked with the use of control algorithm, such as fuzzy control,neural network control, genetic algorithm, etc; the second is intelligent controlsystems formed by smart drive or intelligent damping device, marked with the use ofintelligent materials or devices, such as piezoelectric materials, electrical/magneticrheological fluid, electric/magnetostrictive materials and shape memory materials, etc.In this paper, these two aspects are combined, that is to say the piezoelectric ceramicactuator combines with the friction damper, to form a smart damping device, andstudy the vibration resistance of this device.
     The main contents of this article have:
     (1) Use two types piezoelectric ceramic actuators separately combining with anordinary friction damper to form piezoelectric friction dampers. Some relatedexperiments are done to test the response time, the speed of response, output ability ofthe two piezoelectric ceramic actuators and the piezoelectric friction damper.Theexperimental result indicates that the response times of the two actuators are short, thespeeds of response are quick, output ability is slightly small; the response time ofpiezoelectric friction damper lags behind the response time of the actuators, and thepossible reasons causing this situation are analyzed.
     (2) The T-shaped core plate friction damper instead of ordinary friction dampercombines with the bigger piezoelectric ceramic actuator to form a piezoelectricfriction damper, which is installed in a steel frame structure. Some experiments aredone to study the hysteretic behavior of the damper in actual framework.Experimental results show that the damper’s hysteresis curve is stable, full andhysteretic behavior is good, which indicates that the damper has a better energy dissipation performance.
     (3) A vibration isolation system is composed by the piezoelectric friction damperand rubber isolation pads, to study its seismic resistance effect on the structure underthe simulation with different intelligent control algorithms. Comparing the seismicresistance effect under different algorithms, the effect of fuzzy control is focused inthis paper. The simulation is based on the Bohai Sea JZ20-2MUQ offshore platformstructure, and the simulation results show the system can greatly reduce the vibrationresponse of offshore platform structures with obvious seismic resistance effect.Theseismic resistance effect of fuzzy control algorithm is close to active control algorithm,which shows the fuzzy control force can track the active optimal control force well,demonstrating the superiority compared with other control algorithm.
     (4) Propose two methods to optimize fuzzy control: neural networks, geneticalgorithms, since fuzzy control has a number of defects(eg. the determination ofmembership is difficult, the control rules rely on experts’experiences). The basicprinciples of neural network technology and genetic algorithm are introduced, andsome simulationes about fuzzy control optimized by genetic algorithm have beendone, the results show the optimized fuzzy control is more effective thannon-optimized fuzzy control.
引文
[1]赵大海.基于压电摩擦阻尼器结构振动控制理论与试验研究.大连理工大学,2007,12
    [2] Soong T T, Spencer B F.Supplemental energy dissipation:state-of-the-art andstate-of-the-practice.Engineering Structures2002,24(3):243-259.
    [3]欧进萍.结构振动控制-主动、半主动和智能控制.北京科学出版社,2003
    [4]李宏男等.结构振动与控制.北京:中国建筑工业出版社,2005.
    [5]周福霖.工程结构减震控制.北京:地震出版社, 1997
    [6]李宏男,阎石.中国结构控制的研究与应用.地震工程与工程振动,1999,19(1):107-112
    [7]李宏男.结构振动控制实践的新进展.世界地震工程,1995,11(2):34-39
    [8]胡卫兵、王骏涛.压电摩擦阻尼器隔震结构地震响应及控制分析.振动与冲击,2007,26(2)
    [9]武田寿.建筑物隔震、防振与控振.北京:中国建筑工业出版社,1993
    [10]苏经宇,曾德民.我国建筑结构隔震技术的研究与应用.地震工程与工程振动,2001,21(4):94-101
    [11]中华人民共和国国家标准(GBSO0ll一2001).建筑抗震设计规范.北京:中国建筑工业出版社,2001
    [12] Kelly J M, Skinner R I, Heine A J. Mechanisms of energy absorption in special devices foruse in earthquake resistant structure.Bulletin of N.Z. soeiety for Earthquake Engineering,1972,5(3):63-88
    [13]李钢.新型金属阻尼器减震结构的试验及理论研究:(博士学位论文).大连:大连理工大学,2007
    [14]李宏男,李钢,李中军等.钢筋混凝土框架结构利用“双功能”软钢阻尼器的抗震设计.建筑结构学报,2007,28(4):36-43
    [15]周云,刘季.圆环耗能器的研究.世界地震工程,1996,12(4):l-8
    [16] Pall A S, Marsh C.Response of firction damped braced frames. Journal of StructuralDivision,1982,108(6):1313-1323
    [17]吴斌,张纪刚.基于几何非线性的Pall型摩擦阻尼器滞回特性分析与试验验证.地震工程与工程振动,2001,21(4):60-65
    [18]陈宗明,陈立兴等.新型抗震耗能支撑的试验研究[J].工程抗震,1988
    [19]瞿伟廉,成克苏等.设置耗能横缝的填充墙对多层框架地震反应的控制[J].建筑结构学报,1991,12(2):42-50
    [20]欧进萍,吴斌.摩擦型与软钢屈服型耗能器的性能与减振效果的试验比较[J].地震工程与工程振动,1995,15(2):73-87
    [21]赵东,王威强,马汝建等.新型摩擦阻尼器的研究及其在建筑结构振动控制中的应用.工业建筑,2006,38(2):1-4,15
    [22]周福霖,俞公骅等.单层工业厂房纵向抗震设计能量分析法[J].建筑结构,1980,(6)
    [23]周福霖,俞公骅.抗震结构消能支撑的试验与设计[J].地震工程动态,1982,(1)
    [24]周云,刘季.圆环耗能器的试验研究[J].世界地震工程,1996,(4):1-7
    [25]周云,刘季.双环软钢耗能器的试验研究[J].地震工程与工程振动,1998,18(2):117-123
    [26]周云,刘季.新型耗能(阻尼)减震器的开发与研究[J].地震工程与工程振动,1998,18(1)
    [27]孙峰,周云等.加劲圆环耗能器性能的试验研究[J].地震工程与工程振动,1999,19(3):115-120
    [28] Makris, N. Constantinou, M. C. Viscous Damper:Testing, Modeling and Application inVibration of Seismic Isolation[J].NCEER Rep. 90- 0028, State Univ. of New York atBaffalo, Baffalo, N. Y. , 1990
    [29] Douglas P. Taylor, M ichaelC. Constantinou. Fluid Dampers for Applications of SeismicEnergy Dissipation and Seismic Isolation[EB/OL]
    [30]杨国华.天津站斜拉人行天桥的地震反应与振动控制[D].天津大学建工学院,1998
    [31]叶正强,李爱群等.采用粘滞流体阻尼器的工程结构减震设计研究[J].建筑结构学报,2001,22(4):61-66
    [32]叶正强,李爱群,徐幼麟.工程结构粘滞阻尼器减震新技术及其应用[J].东南大学学报(自然学科版),2002,32(3):466-473
    [33]杨国华,李爱群等.工程结构粘滞阻尼器的减震机制与控制分析[J].东南大学学报(自然学科版),2001,31(1):57-61
    [34]杨国华,李爱群等.结构控制设计中流体阻尼器的指数选择与控制系统设计
    [35]李爱群.粘滞流体阻尼器在高层建筑减振设计中的应用研究.徐州工程学院学报,2005
    [36]欧进萍,丁建华.油缸间隙式阻尼器理论与试验研究[J].地震工程与工程振动,1999,19(4)
    [37]欧谨,刘伟庆,章振涛.一种新型粘滞阻尼材料的试验研究[J].地震工程与工程振动,2005,25(1):108-112
    [38]欧谨,刘伟庆,章振涛.粘滞阻尼墙动力性能试验研究[J].工程抗震与加固改造,2005,27(6):55-59
    [39]姚远,禹奇才,刘爱荣等.一种新型形状记忆合金(SMA)粘滞阻尼器.2008,7(2):91-94
    [40]陈月明,刘季.杠杆粘弹阻尼器(LVES)及其受控结构的试验研究[A].第一届全国结构控制会议论文集[C],1998:277-281
    [41]邹向阳,欧进萍.粘弹性耗能器的性能与结构减振试验研究[J].振动工程学报,1999,12(2):237-243
    [42]徐赵东.粘弹性减震控制结构随机状态反应分析.振动与冲击,2008,27(1):37-39
    [43] [彭刚,张国栋.土木工程结构振动控制.武汉理工大学出版社,2002年5月第一版.ISBN-5629-1801-5
    [44]赵光恒.土建结构振动控制研究进展.地震学刊,1999:35-42
    [45]顾明,项海帆.杨浦大桥抖振及控制分析.同济大学学报,1993,21(3):307-314
    [46]顾明,吴炜,项海帆.大跨桥梁颤振控制的试验研究.同济大学学报,1993,24(2):124-129
    [47]陈艾容,项海帆.斜拉桥涡激扭转振动的被动控制.同济大学学报,1994,22(4):487-492
    [48]赵大海.基于压电摩擦阻尼器的结构振动控制理论与试验研究[D].2007,12
    [49]宋根由.结构主动控制(AMD)系统试验与分析:(博士学位论文).哈尔滨:哈尔滨工业大学,1996.
    [50]田石柱,刘季.结构模型的AMD主动控制试验.地展工程与工程振动,1999,19(4):90-94
    [51]欧进萍,王刚,田石柱.海洋平台结构的AMD主动控制试验研究.高技术通讯,2002,12(10):85-90
    [52] Cao H, Reinhorn A M, Soong T T. Design of an active mass damper for a tall TV tower inNanjing. China.Engineering Struetures,1998,20(3),134-143
    [53] Kobori T,Takahashi M,Nasu T etal. Seismic response controlled strueture with activevariable stiffness system. Earthquake Engineering and Structural Dynamies,1993,22(11):925-941
    [54]周福霖,谭平,阎维明.结构半主动减震控制新体系的理论与试验研究.广州大学学报(自然科学版),2002,1(l):69-74
    [55]吴波,刘汾涛,魏德敏.变刚度半主动控制结构的抗震设计方法.振动工程学报,2003,16(3):306-310
    [56]吴波,刘汾涛,魏德敏.变刚度半主动控制结构的拟振型分解法.华南理工大学学报(自然科学版),2002,30(9):85-90
    [57]何玉敖,冯德平.主动变刚度结构体系(AVS)多模态优化控制研究.建筑结构学报,2000,21(3):53-59
    [58]李敏霞,欧进萍,王刚等.足尺变刚度控制系统性能试验与计算模型.地震工程与工程振动,2000,20(4):96-100
    [59]李敏霞,刘季.变刚度半主动结构振动控制的试验研究.地震工程与工程振动,1998,18(4):90-95
    [60]李敏霞,刘季.电液式变刚度结构振动控制系统的稳定性分析.振动与冲击,1999,18(2):81-83.
    [61] Patten W N. New life for the walnut creek bridge via semi-active vibration control.Newsletter of the International Association for Structural Control,1997,2(1):4-5
    [62] Kobori T. Mission and perspective towards future structural control research.Proceedingsof the 2nd World Conference on Structures Control, Kyoto,Japan,1998 (1):25-34
    [63] Yang J N, Li Z , Danielians A, etal. Aseimic hybrid control of nonlinear and hytereticstruetures. Journal of Engineering Mechanies,1992,118(7):1423-1456
    [64] Yang J N, Wu J C, Kawashima K, etal. Hybrid control of seismic-excited bridgestruetures. Earthquake Engineering and Struetural Dynamies,1995,24(11):1437-1451
    [65] Madden G J.Wongprasert N.Symans M D. Analytical and numerical study of a smartsliding base isolation system for seismic protection of buildings. Computer–Aided Civiland Infrastrueture Engineering,2003,18(1):18-30.
    [66] Watakabe M, Tohdo M, Chiba 0, et al. Response control performance of a hybrid massdamper applied to a tall building. Earthquake Engineering and Structural Dynamics,2001,30(11):1655-1676.
    [67]吴彦文.高层建筑风振控制的A/TMD方法:(博士学位论文).武汉:武汉工业大学,1999
    [68] Nagashima I, Maseki R, Asami Y, et al. Performance of hybrid mass damper system appliedto a 36-story high-rise building. Earthquake Engineering and Structural Dynamics, 2001,30(11):1615-1637.
    [69]李爱群,瞿伟廉,程文壤.南京电视塔风振的混合振动控制研究.建筑结构学报,1996,17(3):9-17
    [70]龙旭.结构速度相关型阻尼减振体系抗振分析、设计与试验研究[D].2004,5
    [71] Y Jiang and J Tang. Torsional Response of the Offshore Platform with TMD [J]. ChinaOcean Engineering. 2001, 15(2): 309~314
    [72]陆建辉等.海洋平台离散模型振动控制研究[J].力学与实践,2001,23(2):26~29
    [73]王翎羽等.调谐液体阻尼器在冰区导管架平台上应用的初步研究[J].振动工程学报,1994,7(2)::144~149
    [74] H.H. Lee. Stochastic Analysis for Offshore Structures with Added Mechanical Dampers[J].Ocean Engineering. 1997, 24(9): 817~834
    [75] H.H. Lee. Seismic and Vibration Mitigation for the A-Type Offshore Template PlatformSystem[J]. Structural Engineering and Mechanics. 1998, 6(3): 347~362
    [76]关新春,郭鹏飞,吴阳,欧进萍.基于微驱动材料的智能摩擦阻尼器试验研究.振动与冲击,2008,27(10)
    [77] Colajanni P, Papia M. Seismic response of braced frames with and without frictiondampers[J].Engineering Structures,1995,17(2):l29-140.
    [78] Nishitani A, Nitta Y, Ishibashi Y. Structural control based on semi-active variable frictiondampers[C].Proceedings of the 12th World Conferences on Earthquake Engineering, Auckland. New Zealand.2000.265- 276.
    [79] Kannan S, Uras H, Aktan H M. Active control of building seismic response by energydissipation. Earthquake Engineering and Structural Dynamics,1995,24(5):747-759
    [80] Fujita T, Shimazaki M, Yutaka H, etal. Semiactive seismic isolation system usingcontrollable friction damper Bulletin of Earthquake Resistant Structure ResearehCenter,1994,27:21-31.
    [81]吴阳.基于磁致伸缩材料的半主动摩擦阻尼器的设计与应用研究[D]哈尔滨:哈尔滨工业大学,2007
    [82] Inaudi J A. Modulated homogeneous friction: A semi-active damping strategy.Earthquake Engineering and Structural Dynamics, 1997, 26(3):361-376.
    [83] Agrawal A K, Yang J N. Semi-active control strategies for bildings subjected to near-fieldearthquakes. Proceedings of SPIE, 2000, 3988:359-370.
    [84] He W L, Agrawal A K, Yang J N. Novel semiactive friction controller for linear structuresagainst earthquakes. Journal of Structural Engineering, 2003, 129(7):941-950.
    [85] Lu L Y. Predictive control of seismic structures with semi-active friction dampers.Earthquake Engineering and Structural Dynamics, 2004, 33(5):647-668.
    [86] Lu L Y. Semi-active modal control for seismic structures with variable friction dampers.Engineering Structure, 2004, 26(4):437-454.
    [87] Chen C Q, Chen G D. Comparative study on semi-active control algorithms forpiezoelectric friction dampers. Proceedings of the 11th SPIE Annual Symposium on SmartStructures and Materials, San Diego, California, 2004.
    [88] Nishitani A, Nitta Y, Itoh A. Semi-active structural control with variable friction dampers.Proceeding of the American Control Conference, San Diego, 1999:1017-1021.
    [89] Nishitani A, Nitta Y, Itoh A, et al. Semiactive variable-friction damper control with simplealgorithm. Proceedings of the American Control Conference, Chicago, 2000, June, 503-506.
    [90]李军.智能压电摩擦阻尼器的控制理论与试验研究[D]大连:大连理工大学,2005
    [91]杜永峰.安装智能摩擦阻尼器的高层建筑结构振动控制的一般算法.兰州理工大学学报,2005,31(2):103-106
    [92]王刚.海洋平台结构冰振机理与智能控制[D].2002
    [93]邓树奇.海冰增长与气候变暖趋势[C].第三届全国冰工程学术会议论文集:90~105,1997,大连
    [94] JZ20-2MUQ平台结构设计报告[M]
    [95] JZ20-2MUQ平台结构设计报告[R].中海石油海上工程股份有限公司(内部资料),1990
    [96]胡卫兵,王骏涛.压电摩擦阻尼隔震结构地震响应及控制分析[J].振动与冲击,2007,26(2)
    [97]李士勇.模糊控制-神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1998
    [98]宾斌,唐露新.模糊神经网络的应用研究[M].机床与液压,2009,11,37(11)
    [99]张平,苑明哲,王宏.基于遗传算法的FUZZY+CMA优化设计[J] .电机与控制学报,2006(2):195-198
    [100]王睿,高社生,赵霞.基于粗糙集理论的模糊神经网络构造方法[J].计算机测量与控制,2006 (6):782-784,789
    [101]王介生,战红仁,王伟.基于粗糙集的T-S模糊神经网络在回转窑烧结过程中的应用[J].华东理工大学学报:自然科学版,2006 (7):49-52
    [102]马铭,周春光,张利彪等.一种优化模糊神经网络的多目标微粒群算法[J].计算机研究与发展,2006(12):2104-2019
    [103]陆文娟,戴民,程鹏.基于模糊神经网络的机械手自适应控制[J].清华大学学报:自然科学版,1999(5):25-28
    [104]侯志祥,申群太,李河清.基于ANFIS的非线性系统辨识研究[J].计算机仿真,2004(7):119-121
    [105]张景元,张荣顺.基于神经网络的模糊控制规则校正方法研究[M].山东建材学院学报,1997,9,11(3)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700