用户名: 密码: 验证码:
非对称建筑结构的磁流变阻尼器半主动控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
理论研究与震害经验表明,扭转反应会加速偏心结构在地震作用下的破坏,在某些情况下甚至成为导致建筑物破坏的主要因素,研究偏心结构在地震作用下的扭转耦联振动控制问题具有重要现实意义。磁流变阻尼器(magnetorheological damper,简称MRD)是目前振动控制中最有效的半主动控制装置,采用MRD对结构进行智能控制成为结构控制领域的一个重要研究方向。国内外学者在这方面进行了大量研究工作,并取得一些成果,但在MRD的动力建模、控制策略以及利用MRD对偏心结构扭转反应的控制等方面仍存在许多问题,有待进一步研究。在此背景下,本论文主要在以下几方面进行系统的理论分析和试验研究:
     (1)提出MRD动力模型—双sigmoid模型。在对MRD进行力学性能试验研究的基础上,建立一种新的力学模型—双sigmoid模型。该模型的突出优点是综合考虑了施加电流、激励性质等因素的影响,且参数识别容易、物理概念清晰。与试验结果相比,在不同激励性质和电流下该模型均能较准确地描述MRD低速区的滞回非线性及在高速区的饱和特性。
     (2)提出改进Clipped-Optimal控制策略和多态控制策略。针对双态控制易引起结构加速度局部放大和三态控制中刚度不易确定的问题,提出电流连续变化的改进Clipped-Optimal控制策略和以速度响应作为状态切换参数的多态控制策略。通过遗传算法工具得到多态控制策略中最优速度控制参数估算公式。数值计算结果表明本文提出的两种半主动控制策略能较好解决双态控制下在地震动初期、末期和小震时易引起受控结构动力反应局部放大的问题,且简单易行,具有较高应用价值。
     (3)仿真分析偏心结构地震反应规律和MRD的振动控制效果。基于简化有限元方法,利用变分原理和静力缩聚技术推导剪力墙的单元刚度矩阵,编制钢筋混凝土框—剪偏心结构空间协同分析的计算程序。计算场地类别、地震动强度、偏心距以及使用荷载等因素对钢筋混凝土框—剪偏心结构地震反应的影响规律,分析MRD在这些因素下对偏心结构扭转反应的控制效果。
     (4)进行钢筋混凝土框—剪偏心结构MRD减震振动台试验。利用Matlab/Simulink软件平台和dSPACE实时仿真系统建立一座3层钢筋混凝土框—剪偏心结构试验控制系统的仿真模型,并采用RCP技术对此结构进行MRD控制的振动台试验,在不同地震动输入下比较分析MRD的被动控制和半主动控制的减震效果。振动台试验结果表明:与无控结构反应相比,MRD的两种被动控制对框—剪偏心结构均有一定减震效果,但被动控制效果对地震动频谱特性比较敏感;MRD半主动控制对结构在不同地震动输入下的控制效果比被动控制好,结构扭转反应得到了明显抑制;MRD数量和安装位置对结构的减震效果有重要影响。
Both theoretical analysis and seismic disasters indicate that the torsional response can aggravate destroying of the eccentric structures. So the control of eccentric structures under earthquake is an important issue in seismic response control. Magnetorheological damper (MRD) is a kind of intelligent and the most effective semi-active control device, and it is hot to research the control of structure using MRD. There are a large mount of researches on MRD and its application up to now, and many significant developments have been gained. However, there are many problems required to be further investigated including developing new type MRD, semi-active control strategy, torsional response control of eccentric structure using MRD, etc. The thesis focus on the vibration control of eccentric structures using MRD, and the main effects are devoted to the following aspects:
    (1) The double sigmoid model of MRD is proposed. A new mechanical model — double sigmoid model is developed based on the experimental study of MRD. The outstanding feature of the proposed model is a fact that both the magnitude of control current and a wide range of excitation conditions are under consideration. Through this model, the identification of parameters is relatively easy and the physical concept of the model is clear. Under different excitation conditions and control current, the comparison between the results given by this model and the experimental data shows that via the proposed model, the phenomena of the hysteresis nonlinear properties in higher velocity region and the saturation characteristic in lower velocity region of MRD can be described accurately.
    (2) The modified clipped-optimal control strategy (MCO) and the multi-state control strategy (MSC) are developed. According to the problems of amplification of local acceleration response appearing in the bi-state control method and the stiffness confirmed difficulty for the tri-state control method, two semi-active control strategies are proposed, the modified clipped-optimal control strategy which adjusts current continuously and the multi-state control strategy which uses the velocity response as state-switch parameter. The value of state-switch parameter in the multi-state control strategy is optimized by genetic algorithm (GA) method, and a formula is proposed. The simulation results indicate that the proposed two kinds of semi-active control strategies can avoid the amplification of local acceleration response, and they are simple, feasible and have a high application value.
    (3) The seismic response characteristics of the eccentric structures and the control effects of MRD are simulated. Based on the simplified method of finite element, the element stiffness
引文
[1] 李宏男.结构多维抗震理论与设计方法[M].北京:科学出版社,1998.
    [2] 李宏男,王苏岩.多维地震动作用下偏心结构扭转耦联随机反应分析[J].建筑结构学报,1992,13(6):12-20.
    [3] 江宜城,唐家祥.单轴偏心的单层隔震框架结构地震扭转反应分析[J].世界地震工程,1999,15(4):57-61.
    [4] Housner G W, et al. Structural control: past, present, and future[J]. Journal of engineering mechanics, 1997, 123(9): 897-987.
    [5] Yao J P T. Concept of Structural Control[J]. Journal of Structural Division, ASCE, 1972, 98(7): 1567-1574.
    [6] 王恩荣,Su C,Rakheja S.新型可控磁流液阻尼器的应用研究[J].南京师范大学学报,2003,3(2):34-40.
    [7] 李秀领,李宏男.磁流变阻尼器结构控制策略研究进展[J].防灾减灾工程学报,2004,24(3):335-342.
    [8] Jansen L M, Dyke S J. Semi-active control strategies for MR dampers: a comparative study[J]. Journal of Engineering Mechanics, ASCE, 2000, 126(8): 795-803
    [9] Kamagata, S, Kobori, T. Autonomous adaptive control of active variable stiffness system for seismic ground motion[A]. Proceedings of 1st World Conference on Structural Control[C], Vol. 2, USC Publications, Los Angeles, TA, 1994: 4-33.
    [10] Jann N Y, Kim J H, Anil K A. Resetting semi-active stiffness damper for seismic response control[J]. Journal of Structural Engineering, ASCE, 2000, 126(12): 1427-1433.
    [11] 王光远等.工程结构与系统抗震优化设计的实用方法[M].北京:中国建筑工业出版社,1999:59-81.
    [12] 李宏男.结构多维抗震理论[M].北京:科学出版社,2006.
    [13] 李宏男等.结构振动与控制[M].北京:中国建筑工业出版社,2005.
    [14] 李宏男.多高层建筑多维抗震分析与振动控制—理论及工程应用[R].大连:大连理工大学,2005.
    [15] 周福霖.工程结构减震控制[M].北京:地震出版社,1997.
    [16] 武田寿一著,纪晓惠等译.建筑物隔震、防振与控振[M].北京:中国建筑工业出版社,1993.
    [17] 杨迪雄,李刚,程耿东.隔震结构的研究概况和主要问题[J].力学进展,2003,33(3):302-312.
    [18] 苏经宇,曾德民.我国建筑结构隔震技术的研究和应用[J].地震工程与工程振动,2001,21(4):94-101.
    [19] 孙树民.土木工程结构振动控制技术的发展[J].噪声与振动控制,2001,(1):22-28.
    [20] Pall A S, Marsh C. Response of friction damped braced frames[J]. Journal of the structural division, ASCE. 1982, 108(6): 1313-1323.
    [21] 吴斌,张纪刚.基于几何非线性的Pall型摩擦阻尼器滞回特性分析与试验验证[J].地震工程与工程振动,2001,21(4):60-65.
    [22] 吴斌,张纪刚,欧进萍.Pall型摩擦阻尼器的试验研究与数值分析[J].建筑结构学报,2003,24(2):7-13.
    [23] 吴斌,张纪刚,欧进萍.Pall型摩擦阻尼支撑内力计算方法[J].世界地震工程,2004,20(2):6-11.
    [24] Nielsen E J, et al. Viscoelastic damper overview for seismic and wind application[J]. Proceedings of 1st world conference on structural control, 1994, 3: 42-51.
    [25] 吴波,李惠,林立岩等.东北某政府大楼采用摩擦阻尼器进行抗震加固的研究[J].建筑结构学报,1998,19(5):28-36.
    [26] 欧进萍,吴斌,龙旭等.北京饭店消能减振抗震加固分析与设计时程分析法[J].地震工程与工程振动,2001,21(4):82-87.[27] 北京火车站抗震加固与改造设计项目组.北京火车站抗震鉴定与加固技术[J].2003,(1):25-29.
    [28] 刘伟庆,董军,王曙光.宿迁市文体综合馆基础隔震设计[J].建筑结构学报,2003,24(2):20-24.
    [29] 丁建华.结构的粘滞流体阻尼减震系统及其理论与试验研究[D].哈尔滨:哈尔滨工业大学,2001.
    [30] 孙树民.自立式独柱平台的TMD减震控制研究[J].中国海洋平台,2000,15(6):6-9.
    [31] Lin Y Y, Cheng C M, Lee C H. A tuned mass damper for suppressing the coupled flexural and torsional buffeting response of long-span bridges[J]. Engineering Structures, 2000, 22(9): 1195-1204.
    [32] 胡继军,黄金枝,李春样等.网壳—TMD风振控制分析[J].建筑结构学报,2001,22(3):31-35.
    [33] 叶继红,陈月明,沈世钊.网壳结构TMD减震系统的优化设计.振动工程学报,2000,13(3):376-384.
    [34] 赵光恒.土建结构振动控制研究进展[J].地震学刊,1999:35-42.
    [35] 顾明,项海帆.杨浦大桥抖振及控制分析[J].同济大学学报,1993,21(3):307-314.
    [36] 陈艾荣,项海帆.斜拉桥涡激扭转振动的被动控制[J].同济大学学报,1994,22(4):487-492.
    [37] 顾明,吴炜,项海帆.大跨桥梁颤振控制的试验研究[J].同济大学学报,1996,24(2):124-129.
    [38] Vandiver J K, Mitome S. Effect of liquid storage tanks on the dynamic response of offshore platforms[J]. Journal of Petroleum Technology, 1979, 31 (10): 1231-1240.
    [39] Lee S C, Reddy D V. Frequency tuning of offshore platform by liquid sloshing[J]. Applied Ocean Research, 1982, 4(4): 226-231.
    [40] Kareem A, Sun W J. Stochastic response of structure with fluid-containing appendages[J]. Journal of Sound and Vibration, 1987, 119(3): 189-408.
    [41] Fujino Y, Sun L M. Vibration control by multiple tuned liquid dampers (MTLDs)[J]. Engineering Mechanics, 1993, 119(12): 3482-3502.
    [42] Dirithy R, Jinkyu Y, Harry Y. et al. Investigation of tuned liquid dampers under large amplitude excitation[J]. Journal of Engineering Mechanics, 1998, 124(4): 405-413;
    [43] 李宏男,阎石,贾连光.利用调液阻尼器减振的结构控制研究进展[J].地震工程与工程振动,1995,15(3):99-110.
    [44] 李宏男,张玲,杨玉石.利用多个调液阻尼器减小高层建筑地震反应的研究[J].地震工程与工程振动,1997,17(1):23-31.
    [45] 瞿伟廉,宋波,陈研桂等.TLD对珠海金山大厦主楼风振控制设计[J].建筑结构学报,1995,16(3):21-36.
    [46] Zhu Bolong, et al. Test research on vibration control of 1: 50 model structure of 459m Shanghai radio and TV tower with water tanks[C]. USA/China/Japan Trilateral workshop on structure, 1992.
    [47] 井秦阳.大连国贸大厦高层水箱减振控制研究与应用[D].大连:大连理工大学,2005.
    [48] Soong T T. Active structural control-theory and practice[M]. Longrnan scientific & technical, 1990: 60-97.
    [49] Cao H, Reinhorn A M, Soong T T. Design of an active mass damper for a tall TV tower in Nanjing, China[J]. Engineering structures, 1998, 20(3): 134-143.
    [50] 欧进萍.结构振动控制—主动、半主动和智能控制[M].北京:科学出版社,2003.
    [51] 李爱群,瞿伟廉,程文滚.南京电视塔风振的混合振动控制研究[J].建筑结构学报,1996,17(3):9-17.
    [52] 吴彦文.高层建筑风振动控制的A/TMD方法[D].武汉:武汉工业大学,1999.
    [53] 程文瀼,瞿伟廉等.南京电视塔的风振控制[J].土木工程学报,1993,(5):14-20.
    [54] Tzan S R, Pantelides, P. Hybrid structural control using viscoelastic dampers and active control systems[J]. Earthquake engineering and structural dynamics, 1994, 23: 1369-1388.
    [55] Kawamura S., et al. Hybrid isolation system using friction-control sliding bearing[A]. Proceedings of the 10th world conference on earthquake engineering[C]. Madrid, Spain, 1992.[56] Yang J N, Li Z, Danielians, A., et al. Aseismic hybrid control of nonlinear and hysteretic structures[J]. Journal of engineering mechanics, 1992' 118(7): 1423-1456.
    [57] 李惠.粘弹性阻尼材料在结构及其内部设备减震中的应用研究和低层大空间高层建筑的混合控制方法[D].博士后出站报告.哈尔滨:国家地震局工程力学研究所,1996.
    [58] Housner G W, Soong T T. Second generation of active structural control in civil engineering[J]. Microcomputers in civil engineering, 1996, 11: 289-296.
    [59] Kobori T. Dynamics loading test of real scale steel frame with active variable stiffness device[J]. Journal of structural engineering, 1991, 37B: 317-328
    [60] Kobori T, et al. Seismic response controlled structure with active variable stiffness system[J]. Earthquake engineering and structure dynamics, 1993, 22(11): 925-941.
    [61] Nasu T, Kobori T, Takahashi M. Earthquake observation and efficiency evaluation of active variable stiffness[J]. Proceedings of 4th international conference on adaptive structures, 1993: 15-28.
    [62] 周福霖,谭平,闫维明.结构半主动减震控制新体系的理论与试验研究[J].广州大学学报,2002,1(1):69-74.
    [63] 吴波,刘份涛,魏德敏.变刚度半主动控制结构的抗震设计方法[J].振动工程学报,2003,16(3):306-310.
    [64] 何玉傲,冯德平.主动变刚度结构体系(AVS)多模态优化控制研究[J].建筑结构学报,2000,21(3):53-59.
    [65] 李敏霞,刘季.变刚度半主动结构振动控制的试验研究[J].地震工程与工程振动,1998,18(4):90-95.
    [66] 李敏霞,刘季.电液式变刚度结构振动控制系统的稳定性分析[J].振动与冲击,1999,18(2):81-83.
    [67] 李敏霞,欧进萍,王刚等.足尺变刚度控制系统性能试验与计算模型[J].地震工程与工程振动,2000,20(4):96-100.
    [68] Hrovat D, et al. Semi-active versus passive or active tuned mass dampers for structural control[J]. Journal of engineering mechnics, 1995, 109(3): 149-166.
    [69] 刘季,孙作玉.结构可变阻尼半主动控制[J].地震工程与工程振动,1997,(2):139-145.
    [70] 孙作玉.变阻尼半主动结构控制[D].哈尔滨:哈尔滨工业大学,1998.
    [71] 李惠,袁雪松,吴波.粘滞流体变阻尼半主动控制器对结构抗震控制的试验研究[J].振动工程学报,2002,15(1):25-30.
    [72] 瞿伟廉,李肇胤,李桂青.U型水箱对高层建筑和高耸结构风振控制试验和研究[J].建筑结构学报,1993,(5):37-43.
    [73] 李宏男,金峤.基于Takagi-Sugeno模型的半主动TLCD对偏心结构的减震控制[J].计算力学学报,2003,20(5):523-529.
    [74] 阎石.结构振动智能控制的人工神经网络与模糊逻辑方法研究[D].大连:大连理工大学,2000.
    [75] 霍林生,李宏男.基于市场机制的TLCD半主动控制方案[J].应用力学学报,2005,22(1):71-75.
    [76] 金峤,周晶,李昕.半主动TLCD对固定式海洋平台的离散神经网络滑模控制[J].世界地震工程,2005,21(3):28-34.
    [77] 瞿伟廉,陈朝晖,徐幼麟.压电材料智能摩擦阻尼器对高耸钢塔结构风振反应的半主动控制[J].地震工程与工程振动,2000,20(1):94-99.
    [78] Li H N, Li J, Song G B. Sub-optimal bang-bang control of buildings with piezoelectric friction dampers[C]. Proceedings of SPIE, San Diego, 2005.
    [79] 李军.智能压电摩擦阻尼器的控制理论与试验研究[D].大连:大连理工大学,2005.[80] 郭保全,侯宏花,潘玉田.智能材料和结构的应用及展望[J].科技情报开发与经济,2005,15(6):131-132.
    [81] 茹继平.土木基础设施减灾基础研究进展与趋势[J].土木工程学报,2000,33(6):1-5.
    [82] 陶宝棋.智能材料与结构[M].北京:国防工业出版社,1997.
    [83] 高淑雅.智能材料及其应用[J].山西科技大学学报,2004,22(5):163-166.
    [84] 姜德生,Claus R O.智能材料、器件、结构与应用[M].武汉:武汉工业出版社,2000.
    [85] 郑智能,张永兴,董强.智能材料及其在土木工程中的应用[J].重庆交通学院学报,2005,24(6):91-94.
    [86] 杨浩.基于智能算法的结构系统辨识及MR阻尼器半主动控制[D].沈阳:沈阳建筑工程学院,2003.
    [87] 黄尚廉.智能结构系统—减灾防灾的研究前沿[J].土木工程学报,2000,33(4):1-5.
    [88] 邓友生,孙宝俊.智能材料系统及其在土木工程中的应用研究[J].建筑技术,2005,36(2):92-95.
    [89] 李宏男,李东升,赵柏东.光纤健康监测方法在土木工程中的研究与应用进展[J].地震工程与工程振动,2002,22(6):76-83.
    [90] 孙丽.光纤光栅传感技术与工程应用研究[D].大连:大连理工大学,2006.
    [91] 李宏男,赵晓燕.压电智能传感结构在土木工程中的研究和应用[J].地震工程与工程振动,2004,24(6):165-172.
    [92] 焦莉,李宏男.PZT的EMI技术在土木工程健康监测中的研究进展[J].防灾减灾工程学报,2006,26(1):102-108.
    [93] 张卫东,徐海燕.智能材料在土木工程健康监测中的应用[J].石油工程建设,2004,30(2):9-13.
    [94] 欧进萍,关新春.土木工程智能结构体系的研究与发展[J].地震工程与工程振动,1999,19(2):21-28.
    [95] 柯钢.智能材料结构在建筑工程中的应用[J].建筑技术开发,2005,32(3):75-76.
    [96] 任勇生.智能材料在土木结构监测和振动控制中的应用[J].太原理工大学学报,2000,31(5):486-493.
    [97] 崔迪,李宏男,宋钢兵.形状记忆合金在土木工程中的研究与应用进展[J].防灾减灾工程学报,2005,25(1):86-94.
    [98] 杨大智,姚康德等.智能材料与智能系统[M].天津:天津大学,2000.
    [99] 李宏男,李军,宋钢兵.采用压电智能材料的土木工程结构控制研究进展[J].建筑结构学报,2005,26(3):1-8.
    [100] 杜善义,冷劲松,王殿富.智能材料系统和结构[M].北京:科学出版社,2001.
    [101] Rabinow J. The magnetic fluid clutch[J]. AIEE transition, 1948, 67: 1308-1315.
    [102] Winslow W M. Induced vibrations of suspensions[J]. Journal of applied physics, 1949, 20: 1137-1140.
    [103] 廖昌荣,余淼,陈伟民等.磁流变材料与磁流变阻尼器的潜在工程应用[J].机械工程材料,2001,25(1):31-34.
    [104] 李金,张华良.磁流变液研究和应用[J].上海大学学报,2004,10(1):21-25.
    [105] 董平,唐家祥.MR智能材料在结构振动控制中的应用[J].工程抗震,2000,2:15-23.
    [106] 瞿伟廉,李卓球,姜德生等.智能材料—结构系统在土木工程中的应用[J].地震工程与工程振动,1999,19(3):87-95.
    [107] 周鲁卫,潘胜,乔皓洁.电流变液研究进展及最新动态—第5届国际电流变液磁悬浮体及相关技术研讨会评介[J].力学进展,1996,26(2):230-236.
    [108] 黄俊,姜德生,官建国等.新型EMR液的协同效应和稳定性研究[J].武汉工业大学学报,2000,22(4):1-3[109] Jiang D S, Huang J, Yuan R Z, et al. Study on Electromagnetorheological Fluid[J]. Journal of Wuhan University of Technology, 2002, 17(1): 35-37.
    [110] 王玉铨,王焕定,徐国函等.电磁流变及电磁复合流变测试装置[J].哈尔滨工业大学学报,2004,36(12):1668-1671.
    [111] 关新春,欧进萍.磁流变耗能器的阻尼力模型及其参数确定[J].振动工程学报,2001,20(1):5-8.
    [112] 杨广强(Yang G),Spencer B F,Carlson M K,et al.足尺磁流变阻尼器的建模及动态特性[J].地震工程与工程振动,2001,21(4):8-23.
    [113] 杨飏.结构振动控制的智能阻尼器性能与智能隔震系统[D].哈尔滨:哈尔滨工业大学,2003.
    [114] 潘胜,吴建耀,胡林等.磁流变液的屈服应力与温度效应[J].功能材料,1997,28(2):264-267.
    [115] 黄尚廉.磁流变技术及其在机械装备系统中的应用研究进展[R].重庆,2005.
    [116] 汪建晓,孟光.磁流变液装置及其在机械工程中的应用[J].机械强度,2001,23(1):50-56.
    [117] Spencer B F, Dyke S J, Sain M K, et al. Phenomenological model for magnetorheological dampers[J]. Journal of Engineering Mechanics, 1997, 123(3): 230-238.
    [118] Dyke S J. Acceleration feedback control strategies for active and semi-active control systems: Modeling, algorithm development, and experimental verification[D]. Indiana: University of Notre Dame, 1996.
    [119] Zhang J, Roschke P N. Active control of a tall structure excited by wind[J]. Journal of Engineering and Industrial Aerodynamics, 1999, 83: 209-223.
    [120] Jansen L M, Dyke S J. Semi-active control strategies for MR dampers: a comparative study[J]. Journal of Engineering Mechanics, 2000, 126(8): 795-803.
    [121] Yi F, Dyke S J, Caicedo J M, et al. Experimental Verification of multi-input seismic control strategies for smart dampers[J]. Journal of Engineering Mechanics, 2001, 127(11): 1152-1164.
    [122] Yang G Q. Large scale magnetorheological fluids damper for vibration mitigation: modeling, testing and control[D]. Indiana: University of Notre Dame, 2001.
    [123] Yang G Q, Spencer B F, Jung H J, et al. Dynamic Modeling of Large-Scale Magnetorheological Damper Systems for Civil Engineering Applications[J]. Journal of Engineering Mechanics, 2004, 130(9): 1107-1114.
    [124] Ribakov Y, Gluck J. Selective combined control stiffness and magnetorheological damping system in nonlinear multistory structures[J]. The Structural design of Tall Buildings, 2002, 11:171-195.
    [125] Hiemenz G J, Choi Y T, Wereley N M. Seismic control of civil structures utilizing semi-active MR braces[J]. Computer-Aided Civil and Infrastructure Engineering, 2003, 18: 31-44.
    [126] Yoshioda O, Dyke S K. Seismic Control of a Nonlinear Benchmark Building Using Smart Dampers[J]. Journal of Engineering Mechanics, 2004, 130(4): 386-392.
    [127] Renzi E, Serino G. Testing and modeling a semi-actively controlled steel frame structure equipped with MR dampers[J]. Structural Control and Health Monitoring, 2004, 11: 189-221.
    [128] Tse T, Chang C C. Shear-Mode Rotary Magnetorheological Damper for Small-Scale Structural Control Experiments[J]. Journal of Structural Engineering, 2004, 130(6): 904-911.
    [129] Choi K M, Cho S W, Jung H J, et al. Semi-active fuzzy control for seismic response reduction using magnetorheological dampers[J]. Earthquake Engineering and Structural Dynamics, 2004, 33: 723-736.
    [130] Cho S W, Kim B W, Jung H J. Implementation of Modal Control for Seismically Excited Structures using Magnetorheological Dampers[J]. Journal of Engineering Mechanics, 2005, 131 (2): 177-184.
    [131] Aldemir U. Optimal control of structure with semi-active-tuned mass damper[J]. Journal of Sound and Vibration, 2003, 266: 847-874.[132] Koo J H, Ahmadian M, Setareh M. Experimental Robustness Analysis of Magneto-Rheological Tuned Vibration Absorbers Subject to Mass Off-Tuning [J]. Journal of Vibration and Acoustics, 2006,128: 126-131.
    
    [133] Ribakov Y, Gluck J. Selective controlled base isolation system with magnetorheological dampers [J]. Earthquake Engineering and Structural Dynamics, 2002, 31: 1304-1324.
    
    [134] Gluck J, Ribakov Y, Dancygier A. Predictive active control of MDOF structures [J]. Earthquake Engineering and Structural Dynamics, 2000, 29: 109-125.
    
    [135]Gluck J, Ribakov Y, Dancygier A. Selective control of base isolated structures with CS dampers [J]. Earthquake Engineering and Structural Dynamics, 2000, 16: 593-606.
    
    [136] Yoshioka H, Ramallo J C, Spencer B F. "Smart" base isolation strategies employing magnetorheological dampers[J]. Journal of Engineering Mechanics, 2002,128(5): 540-551.
    
    [137] Jung H J, Choi K M, Spencer B F, et al. Application of some semi-active control algorithms to a smart base-isolated building employing MR dampers [J]. Structural Control and Health Monitoring, 2006, 13:693-704.
    
    [138] Sahasrabudhe S, Nagarajaiah S. Experimental Study of Sliding Base-Isolated Buildings with Magnetorheological Dampers in Near-Fault Earthquakes [J]. Journal of Structural Engineering, 2005, 131(7): 1025-1034.
    
    [139] Ruangrassamee A, Sresamai W, Lukkunaprasit P. Response mitigation of the base isolated benchmark building by semi-active control with the viscous-plus-variable-friction damping force algorithm [J]. Structural Control and Health Monitoring, 2006, 13: 809-822.
    
    [140] Nitta Y, Nishitani A, Spencer B F. Semiactive control strategy for smart base isolation utilizing absolute acceleration information [J]. Structural Control and Health Monitoring, 2006, 13: 649-659.
    
    [141]Bani-Hani K A, Sheban M A. Semi-active neuro-control for base-isolation system using magnetorheological (MR) dampers [J]. Earthquake Engineering and Structural Dynamics (in press).
    
    [142] Lee H J, Yang G Q, Jung H J, et al. Semi-active neurocontrol of a base-isolated benchmark structure [J]. Structural Control and Health Monitoring, 2006,13: 682-692.
    
    [143] Nagarajaiah S, Narasimhan S. Smart base-isolated benchmark building. Part II: phase I sample controllers for linear isolation systems [J]. Structural Control and Health Monitoring, 2006,13: 589-604.
    
    [144] Jung H J, Spencer B F, Lee I W. Control of Seismically Excited Cable-Stayed Bridge Employing Magnetorheological Fluid Dampers [J]. Journal of Structural Engineering, 2003, 129(7): 873-883.
    
    [145] Erkus B, Abe M, Fujino Y. Investigation of semi-active control for seismic protection of elevated highway bridges [J]. Engineering Structures, 2002,24:281-293.
    
    [146] Satish N, Sanjay S, Iyer R. [J]. Seismic response of sliding isolated bridges with MR dampers [A]. Proceedings of the American control conference[C], Chicago, 2004:4437-4441.
    
    [147] Anat R, Kazuhiko K. Seismic response control of a Benchmark cable-stayed bridge by variable dampers [J]. Proceedings of the American control conference, Anchorage, 2002: 3064-3069.
    
    [148] Dounis A I, Tiropanis P, Syrcos G P, et al. Evolutionary fuzzy logic control of base-isolated structures in response to earthquake activity [J]. Structural Control and Health Monitoring (in press).
    
    [149] Liu Y M, Gordaninejad F, Evrensel C A. Comparative Study on Vibration Control of a Scaled Bridge Using Fail-Safe Magneto-Rheological Fluid Dampers [J]. Journal of Structural Engineering, 2005, 131(5): 743-751.
    
    [150] Sahasrabudhe S S, Nagarajaiah S. Semi-active control of sliding isolated bridges using MR dampers an experimental and numerical study [J]. Earthquake Engineering and Structural Dynamics, 2005, 34: 965-983.
    [151] Christenson R E, Spencer B F, Johnson E A. Experimental Verification of Smart Cable Damping[J]. Journal of Engineering Mechanics, 2006, 132(3): 268-278.
    [152] Park K S, Jung H J, Spencer B F, et al. Hybrid control systems for seismic protection of a phase Ⅱ benchmark cable-stayed bridge[J]. Journal of Structural Control, 2003, 10: 231-247.
    [153] Loh C H, Chang C M. Vibration control assessment of ASCE benchmark model of cable-stayed bridge[J]. Structural Control and Health Monitoring (in press).
    [154] Hiroshi S, Kohei S, Katsuaki S. Development of Large Capacity Semi-Active Seismic Damper Using Magneto-Rheological Fluid[J]. Journal of Pressure Vessel Technology, 2004, 126: 105-109.
    [155] Spencer B F, Nagarajaiah S. State of art of structural control[J]. Journal of Structural Engineering, 2003: 845-856.
    [156] Fujitani H, Sodeyama H, Tomura T, et al. Development of 400 kN magnetorheological damper for a real base-isolated building[C], Proceedings of SPIE Conference: Smart Structures and Materials, Wash, 2003, 5052: 265-276.
    [157] 欧进萍,关新春.Magnetorheological fluid and smart damper for structural vibration control[J].地震工程与工程振动,2001,21(4):1-7.
    [158] 关新春,李金海,欧进萍.三阶段活塞式磁流变液减振器磁路的试验研究[J].机械设计与研究,2004,20(1):60-62.
    [159] 关新春,李金海,欧进萍.足尺磁流变液耗能器的性能与试验研究[J].工程力学,2005,22(6):207-211.
    [160] 隋莉莉.结构磁流变阻尼控制系统德控制算法、反应分析与试验研究[D].哈尔滨:哈尔滨工业大学,2003.
    [161] 张春巍.结构振动的磁流变阻尼控制算法与控制方案效果分析[D].哈尔滨:哈尔滨工业大学,2001.
    [162] 杨飏,欧进萍.基于瞬时最优算法的磁流变阻尼隔震结构半主动控制[J].世界地震工程,2003,19(2):145-150.
    [163] 付伟庆,张永山,张焕定.基于第一振型的结构控制MR阻尼器优化设计[J].世界地震工程,2005,21(3):105-109.
    [164] 付伟庆,张焕定,祁峰.磁流变智能基础隔震系统研究[J].地震工程与工程振动,2005,25(3):167-171.
    [165] 张进秋,陆念力,王光远等.剪切阀式磁流变阻尼器动态特性实验研究[J].工程力学,2005,22(3):11-15.
    [166] 张进秋,欧进萍,李猛等.半主动悬挂系统磁流变减振器的阻尼力实验与分析[J].地震工程与工程振动,2003,23(1):122-127.
    [167] 欧进萍,杨飏.导管架式海洋平台结构的磁流变阻尼隔震控制[J].高技术通讯,2003,6:66-73.
    [168] 杨飏,欧进萍.导管架式海洋平台结构磁流变阻尼隔震的振动台试验[J].地震工程与工程振动,2005,25(4):141-148.
    [169] 张纪刚,欧进萍.渤海某平台磁流变智能阻尼隔振控制[J].沈阳建筑大学学报,2006,22(1):68-72.
    [170] 张纪刚.海洋平台结构振动的被动与半主动混合阻尼控制[D].哈尔滨:哈尔滨工业大学,2005.
    [171] 王刚.海洋平台结构的冰致振动机理与智能控制[D].哈尔滨:哈尔滨工业大学,2002.
    [172] 李惠,刘敏,欧进萍等.斜拉索磁流变智能阻尼控制系统分析与设计[J].中国公路学报,2005,18(4):37-41.
    [173] 周强,瞿伟廉.磁流变阻尼器的两种力学模型和试验验证[J].地震工程与工程振动,2002,22(4):144-150.[174] 周强,瞿伟廉.安装MR阻尼器工程结构的非参数模型自适应控制[J].地震工程与工程振动,2004,24(4):127-132.
    [175] 瞿伟廉,陈波.智能基础隔震结构的剪扭耦联地震反应分析[J].武汉理工大学学报,2003,25(8):39-42.
    [176] Qu W L, Xu Y L. Semi-active control of seismic response of Tall building with podium structure using ER/MR dampers[J]. The Structural Design of Tall Buildings, 2001, 10: 179-192.
    [177] 瞿伟廉,吕明云,李学安.屋盖MR智能隔震系统对升船结构顶部厂房地震鞭梢效应的模糊控制[J].地震工程与工程振动,2002,22(3):129-137.
    [178] 瞿伟廉,周耀.MR阻尼器对地震反应的模糊半主动控制[J].武汉理工大学学报,2003,25(11):44-46.
    [179] 瞿伟廉,李波.MR阻尼器对桅杆结构风振响应的智能半主动控制[J].地震工程与工程振动,2003,23(3):177-183.
    [180] 瞿伟廉,朱晓辉.两种半主动MR阻尼器对电视塔的风振控制[J].武汉理工大学学报,2005,27(1):44-46.
    [181] 杨世浩,郑明燕,瞿伟廉.水工弧形闸门半主动减振控制[J].长江科学院院报,2006,23(2):50-52.
    [182] 杨万庆.屋盖MR智能隔震系统对升船机地震反应的智能控制[J].工程抗震与加固改造,2005,27(S):81-84.
    [183] 吕明云,武哲,瞿伟廉.屋盖MRD隔震升船机结构模型振动台试验[J].北京航抗航天大学学报,2005,31(3):288-292.
    [184] 陈静.带裙房高层建筑的半主动逻辑控制[D].武汉:武汉理工大学,2003.
    [185] 陈静,卢曰万,涂建维.三峡升船机结构振动智能控制试验研究[J].武汉大学学报,2004,37(3):102-105.
    [186] 沈少波,吴文剑.建筑结构地震反应智能基础隔震的半主动控制[J].武汉科技大学学报,2004,27(4):384-386.
    [187] 黄斌,刘晖.智能TMD对高层建筑风振响应的抑制[J].振动与冲击,2003,22(4):58-61.
    [188] 汪伟,卢平,刘佐民.磁流变阻尼控制系统中DSP与PC机的串行通信[J].武汉理工大学学报,2004,26(1):26-29.
    [189] Xu Y L, Qu W L, Ko J M. Seismic response control of frame structures using MR/ER dampers[J]. Earthquake Engineering and Structural Dynamics, 2000, 29: 557-575.
    [190] Xu Y L, Chen J, Ng C L. Semiactive Seismic Response Control of Buildings with Podium Structure[J]. Journal of Structural Engineering, 2005, 131 (6): 890-899.
    [191] 李忠献,姜南,徐龙河等.不同控制策略下安装MRD的模型结构振动台试验与分析[J].建筑结构学报,2004,25(6):15-21.
    [192] Li Z X, Xu L H. Performance Tests and Hysteresis Model of MRF-04K Damper[J]. Journal of Structural Engineering, 2005, 131 (8): 1303-1306.
    [193] 李忠献,张磊,王泽明.三类结构抗震控制措施控制效果的比较与分析[J].工程抗震与加固改造,2005,27(1):37-41.
    [194] 李忠献,张媛,王泽明.土_结构动力相互作用对结构控制的影响[J].地震工程与工程振动,2005,25(3):138-144.
    [195] 徐龙河,周云,李忠献.半主动磁流变阻尼控制方法的比较与分析[J].世界地震工程,2000,16(9):95-100.[196] 徐龙河,周云,李忠献.MRFD半主动控制系统的时滞与补偿[J].地震工程与工程振动,2001,21(3):127-131.
    [197] 何亚东.基于智能理论建筑结构系统辨识、半主动控制及控制优化研究[D].天津:天津大学,2001.
    [198] 史志利.大跨度桥梁多点激励地震反应分析与MR阻尼器控制[D].天津:天津大学,2003.
    [199] 李忠献,樊素英,史志利.应用MRF_04K阻尼器的大跨连续刚构桥地震反应的半主动控制[J].土木工程学报,2005,38(8):75-79.
    [200] 王成博,史志利,李忠献.大跨度斜拉桥地震反应MR阻尼器半主动控制[J].天津大学学报,2005,38(2):95-101.
    [201] 张巍.MR_TMD半主动控制研究及其应用[D].天津:天津大学,2003.
    [202] 李秀领,李宏男.MR阻尼结构振动控制的仿真试验研究[J].系统仿真学报,2006,18(5):1343-1346.
    [203] 李宏男,董松员,李宏宇.基于遗传算法优化阻尼器空间位置的结构振动控制[J].振动与冲击,2006,25(2):1-4.
    [204] 贝伟明.建筑结构利用磁流变阻尼器减震的优化设计[D].大连:大连理工大学,2006.
    [205] 周云,徐龙河,李忠献.磁流体阻尼器半主动控制结构的地震反应分析[J].土木工程学报,2001,34(5):10-14.
    [206] 周云,邓雪松,吴志远.磁流变阻尼器对高层建筑风振舒适度的半主动控制分析[J].地震工程与工程振动,2002,22(6):135-141.
    [207] 周云,吴志远,邓雪松.高层建筑磁流变阻尼器风振半主动控制系统的优化[J].振动与冲击,2003,22(1):1-5.
    [208] 周云,徐龙河,李忠献.两结构联系体系MRFD半主动控制系统优化设计[J].振动与冲击,2001,20(4):29-32.
    [209] 张永山,付伟庆,王焕定.MR阻尼器智能基础隔震系统数值模拟研究Ⅰ[J].广州大学学报,2005,4(6):521-525.
    [210] 张永山,付伟庆,王焕定.MR阻尼器智能基础隔震系统数值模拟研究Ⅱ[J].广州大学学报,2006,5(1):61-64.
    [211] 徐赵东,郭迎庆.利用模糊控制器确定磁流变半主动控制结构的参数[J].东南大学学报,2004,34(2):244-248.
    [212] 邸龙.磁流变阻尼器对建筑结构的减震研究[D].西安:西安建筑科技大学,2003.
    [213] 郭迎庆.磁流变阻尼结构的智能减震控制研究[D].西安:西安建筑科技大学,2003.
    [214] Sun Q, Zhang L, Zhou J X, et al. Experimental.study of the semi-active control of building using the shaking table[3]. Earthquake Engineering and Structural Dynamics, 2003, 32: 2353-2376.
    [215] 孙清.磁流变阻尼器及其在结构振动控制中的理论与实验研究[D].西安:西安交通大学,2003.
    [216] 孙清,史庆轩,周进雄等.磁流变阻尼器在相邻建筑结构体系弹塑性地震反应控制中的应用[J].世界地震工程,2005,21(1):101-107.
    [217] 孙清,伍晓红,戴红等.结构振动半主动控制系统的时滞补偿研究[J].机械科学与技术,2005,24(5):505-509.
    [218] 范健,孙清,王学明等.磁流变阻尼器抗震应用的试验研究[J].长安大学学报,2003,20(3):9-11.
    [219] 倪建华,张智谦,张可等.一种新型的磁流变阻尼器及其在半主动控制车辆悬架中的应用研究[J].机械科学与技术,2004,23(1):4-10.[220] 刘超群,陈花玲,李海龙.磁流变阻尼器阻尼性能研究[J].振动、测试与诊断,2004,24(2):135-161.
    [221] 徐一兵,刘超群.磁流变阻尼器的建模及其设计原则[J].西安通信学院学报,2004,3(6):5-8.
    [222] 李大海,刘超群,李天石.磁流变阻尼器试验系统开发及应用[J].机床与液压,2004,12:114-115.
    [223] 周玉丰,陈花玲.磁流变阻尼器结构改进设计与性能研究[J].宁夏工程技术,2005,4(4):325-327.
    [224] 吴龙,陈花玲,徐一兵.基于Bingham模型的磁流变阻尼器的优化设计[J].机械科学与设计,2005,24(8):953-955.
    [225] 郭惠勇,蒋健,张凌.改进遗传算法在MRFD半主动控制系统优化配置中的应用[J].工程力学,2004,21(2):145-151.
    [226] 阎石,宁欣.不同频率影响下结构减振效果分析[J].世界地震工程,2004,20(4):71-75.
    [227] 常治国.智能算法在MR阻尼器半主动控制中的应用研究[D].沈阳:沈阳建筑工程学院,2003.
    [228] 张海.高架桥(立交桥)利用MR阻尼器振动控制研究[D].沈阳:沈阳建筑工程学院,2003.
    [229] 宁欣.磁流变阻尼器减振控制技术的研究[D].沈阳:沈阳建筑工程学院,2004.
    [230] 李宏宇.基于模糊神经网络的阻尼器的空间优化布置[D].沈阳:沈阳建筑大学,2005.
    [231] 郑伟.应用MR阻尼器高层建筑风振智能控制[D].沈阳:沈阳建筑大学,2005.
    [232] 闫维明,纪金豹.应用于结构控制的磁流变材料与装置[J].工程抗震,2004,3:1-9.
    [233] 卞晓芳,薛素铎.SMA-MR复合型阻尼器[J].世界地震工程,2004,20(2):23-29.
    [234] 薛素铎,卞晓芳.SMA_MR阻尼器在大跨度挑篷结构中的减振控制研究[J].空间结构,2005,11(2):19-26.
    [235] Lin P Y, Roschke P N, Loh C H. Hybrid base-isolation with magnetorheological damper and fuzzy control[J]. Structural Control and Health Monitoring (in press).
    [236] 吴亮宇.使用磁流比率变阻尼器之半主勤控制之研究—针封隔震系统[D].台北:国立台湾大学,2002.
    [237] Loh C H, Wu L Y, Lin P Y. Displacement control of isolated structures with semi-active control devices[J]. Journal of Structural Control, 2003, 10: 77-100.
    [238] 张延年,刘斌,李艺等.MRD与LRB相混合的结构振动控制[J].东北大学学报,2006,27(1):95-98.
    [239] 张延年,刘剑平,刘斌.多向地震耦合作用下MRD结构的地震反应分析[J].东北大学学报,2005,26(9):897-900.
    [240] 张洵安,谢霄,连业达.巨子型控制结构体系风振的半主动控制研究[J].郑州大学学报,2005,26(4):39-43.
    [241] 杜永峰.被动与智能隔震结构地震响应分析及控制算法[D].大连:大连理工大学,2003.
    [242] 党育.基础隔震结构耗能及MR智能隔震结构时程分析[D].兰州:兰州理工大学,2003.
    [243] 张丽娟,龚福华,赵世伟.MR智能隔震结构在随机激励下的动力响应[J].湖南工程学院学报,2004,14(3):89-91.
    [244] 孙树民,梁启智.隔震独桩平台地震反应的半主动磁流变阻尼器控制研究[J].振动与冲击,2001,20(3):61-64.
    [245] 管友海,李华军,黄维平.海洋平台磁流变阻尼器半主动控制研究[J].青岛海洋大学学报,2002,32(4):650-656.
    [246] 王树青.海洋平台结构的系统辨识与振动控制技术研究[D].青岛:中国海洋大学,2003.
    [247] 何旭辉,陈政清,黄万林等.MR阻尼器在抑制斜拉桥拉索风雨振中的应用研究[J].湖南大学学报,2002,29(3):91-95.
    [248] 何旭辉,陈政清,黄万林等.洞庭湖大桥斜拉索减振试验研究[J].振动工程学报,2002,15(4):447-450.[249] 陈政清,曹宏,禹见达等.磁流变阻尼器在洪山大桥拉索减振中的应用[J].中南公路工程,2005,30(4):27-30.
    [250] 王修勇,陈政清,何旭辉等.洞庭湖大桥风雨振减振试验研究[J].桥梁建设,2002,2:11-14.
    [251] 王修勇,陈政清,倪一清.斜拉索_磁流变阻尼器系统半主动控制的神经网络法[J].振动与冲击,2003,22(4):49-53.
    [252] 王修勇,陈政清,倪一清等.斜拉桥拉索风雨振观测及其控制[J].土木工程学报,2003,36(6):53-59.
    [253] 孙炳楠,吕朝坤,毛国栋.STMD对高层建筑地震响应的控制[J].工业建筑,2005,35(7):39-42.
    [254] Ni Y Q, Chen Y, Ko J M. Neuro-control of cable vibration using semi-active magnetorheological dampers[J]. Engineering Structures, 2002, 24: 295-307.
    [255] 邬喆华,陈勇,楼文娟等.MRD对斜拉索减振效果的试验研究[J].振动工程学报,2004,17(1):102-107.
    [256] 邬喆华,楼文娟,陈勇等.MR阻尼器对斜拉索被动控制的研究[J].土木工程学报,2005,38(4):78-83.
    [257] 邬喆华,楼文娟,朱瑶宏等.斜拉索采用MR阻尼器半主动控制的研究[J].福州大学学报,2005,33(S):6-10.
    [258] 颜桂云,孙炳楠,杨俪先等.高层建筑非线性地震反应的半主动模型预测控制[J].浙江大学学报,2004,38(11):1460-1465.
    [259] 陈昭辉,应组光.斜拉索不稳定振动的主动及半主动控制[J].噪声与振动控制,2005,6:5-8.
    [260] 陈勇,孙炳楠,楼文娟等.基于降阶模型的斜拉索振动的半主动神经网络控制[J].控制理论与应用,2004,21(2):211-216.
    [261] 陈勇,徐意娟,孙炳楠等.斜拉索_非线性滞回阻尼器系统的振动控制试验研究[J].系统工程理论与实践,2005,7:67-74.
    [262] Ying Z G, Zhu W Q. A stochastic optimal semi-active control strategy for ER/MR dampers[J]. Journal of sound and vibration, 2003, 259(1): 45-62.
    [263] Zhu W Q, Luo M, Dong L. Semi-active control of wind excited building structures using MRfER dampers[J]. Probabilistic Engineering Mechanics, 2004, 19: 279-285.
    [264] Ying Z G, Ni Y Q, Ko J M. Semi-active optimal control of linearized systems with multi-degree of freedom and application[J]. Journal of Sound and Vibration, 2005, 279: 373-388.
    [265] 任晓崧,周彬.MR阻尼器的半主动风振响应控制研究[J].力学季刊,2005,26(1):150-156.
    [266] 周春燕,岳继光,彭瑞等.磁流变液气动伺服系统的控制算法研究[J].液压与气动,2006,1:14-16.
    [267] 代泽兵,黄金枝,郭子兴.加速度反馈磁流变阻尼器半主动控制[J].上海交通大学学报,2002,36(11):1649-1651.
    [268] 代泽兵,黄金枝,王红霞.基于智能阻尼器的大跨度斜拉桥多支承激励地震振动控制[J].振动与冲击,2005,24(2):66-70.
    [269] 唐欣,凌虹,胡克鳌.磁流变液沉降稳定性研究现状与趋势[J].磁性材料与器件,2004,35(3):5-8.
    [270] 王刚,姚谦峰.考虑阻尼器被动特性的半主动控制算法研究[J].工程抗震与加固改造,2004,6:20-24.
    [271] 李波,瞿伟廉.MR阻尼器对桅杆结构风振响应的模糊控制[J].北京交通大学学报,2005,29(1):32-35.
    [272] 刘林.高墩大跨铁路桥梁抗震设计与减震控制研究[D].北京:北京交通大学,2004.
    [273] 冷谦.关于利用磁流变液体阻尼器作结构减振控制的研究[D].成都:四川大学,2002.
    [274] 麦庆元,韦树英.MR智能基础隔震结构的抗震分析[J].广西科学,2005,12(4):292-294.
    [275] 董平,李黎,叶昆.智能磁流变(RM)阻尼器的实验研究[J].噪声与振动控制,2002,1:42-44.[276] 陈水生.高架桥梁地震响应磁流变阻尼器(MR)半主动控制[J].长安大学学报,2003,23(6):40-43.
    [277] 陈水生.斜拉桥拉索的MR半主动控制研究[J].中国公路学报,2004,17(2):50-54.
    [278] 陈水生,任东红.斜拉桥拉索MR模糊半主动控制研究[J].华东交通大学学报,2005,22(5):1-4.
    [279] Baif B, et al. Design rules for MR fluid actuators in different working models[J]. SPIE, 1998, 3045: 148-159.
    [280] Lindler J E, Dimock G A, Wereley N M. Design of a magnetorheological automotive shock absorber[J]. SPIE, 2000, 3985: 426-437.
    [281] Choi S B, Lee H S, Hong S R, et al. Control and response characteristics of a magnetorheological fluid damper for passenger vehicle[J]. SPIE, 2000, 3985: 438-443.
    [282] Yao G Z, Yap F F, Chen G, et al. MR damper and its application for semi-active control of vehicle suspension system[J]. Mechatronics, 2002, 12: 963-973.
    [283] McManus S J, Clair K A, et al. Evaluation of vibration attenuation performance suspension seat with MR[J]. Journal of Sound and Vibration, 2002, 253(1): 313-327.
    [284] Yang G, Spencer B F, Leban F. Yang. Shock isolation using smart damping[J]. Journal of Structural Control, 2002, 9: 135-152.
    [285] Array V S, Roschke P N. Design, fabrication, testing, and fuzzy modeling of a large magnetorheological damper for vibration control in a railcar[A]. Proceedings of the 2003 IEEE/ASME Joint Rail Conference, Chicago, 2003: 223-229.
    [286] Song X B, Ahmadian M, Southward S, et al. An Adaptive Semiactive Control Algorithm for Magnetorheological Suspension Systems[J]. Journal of Vibration and Acoustics, 2005, 127: 493-502.
    [287] 廖昌荣,陈爱军,张红辉等.磁流变液的流变学特性检测方法与仪器[J].仪器仪表学报,2004,25(4S):84-87.
    [288] 廖昌荣,余淼,李建春等.汽车磁流变减振器神经网络模型研究[J].中国公路学报,2003,16(4):94-97.
    [289] 李锐,余淼,廖昌荣等.汽车磁流变半主动悬架模糊控制技术[J].重庆大学学报,2004,27(3):1-4.
    [290] 方子帆,邓兆祥,陈益.陆地车辆的磁流变半主动悬架模糊集成控制[J].系统仿真学报,2004,16(6):1139-1142.
    [291] 翁建生.基于磁流变阻尼器的车辆悬架系统半主动控制[D].南京:南京航空航天大学,2002.
    [292] 郭大蕾.车辆悬架振动的神经网络半主动控制[D].南京:南京航空航天大学,2001.
    [293] 王炅,黄文良.磁流变减振器在半主动振动控制中的应用[J].南京理工大学学报,2004,28(3):26-270.
    [294] Wang E R, Ma X Q, Rakheja S. Semi-active control of vehicle vibration with MR dampers[A]. Proceedings of the 42nd IEEE Conference on Decision and Control[C]. USA, 2003.
    [295] 汪建晓,孟光,陈运西.挤压式磁流变液阻尼器—转子系统的动力学特性与控制[J].机械工程学报,2004,40(3):76-83.
    [296] 陈吉安,赵晓昱.应用于汽车减振的磁流变阻尼器的设计原理[J].设计计算研究,2002,8:9-13.
    [297] 高国生,杨绍普,陈恩利等.高速机车悬架系统磁流变阻尼器试验建模与半主动控制[J].机械工程学保,2004,40(10):87-91.
    [298] 高国生,杨绍普,陈恩利等.汽车悬架磁流变阻尼器的试验建模[J].汽车工程,2004,26(6):683-685.
    [299] 祁玉宁.车辆悬架系统用磁流变阻尼器的设计方法研究[D].兰州:兰州理工大学,2005.
    [300] 黄豪彩,黄宜坚.磁流变技术及其在机械工程中的应用[J].设计与研究,2003,4:24-26.
    [301] Giraldo D, Dyke S J. Control of an elastic continuum when traversed by a moving oscillator[J]. Structural Control and Health Monitoring (in press).
    [302] Kordonsky W I, Demchuk S A. Additional Magnetic dispersed phase improves the properties[C].??Proceedings of 5th International Conference on ER Fluid, MR Fluids and Associated Technology, Sheffield, UK, 1995: 613-619.
    [303] Rong Y, Tao R, Tang X. Flexible fixturing with phase-change materials, part 1, experimental study on magnetorheological fluid[J]. International Journal of Advanced Manufacturing Technology, 200, 16: 822-829.
    [304] 林忠华,胡国清,刘文艳等.磁流变新型微加速度传感器的分析[J].厦门大学学报,2004,43(S):369-372.
    [305] 郑坚,熊超,张进秋等.磁流变液研究进展及其在军事领域应用综述[J].军械工程学院学报,2004,16(1):6-10.
    [306] 熊超,郑坚,吕建刚等.磁流变阻尼器力学特性及其在车辆悬挂系统中的应用[J].液压与气动,2006,1:47-50.
    [307] 熊超,郑坚,吕建刚等.履带车辆磁流变半主动悬挂系统控制算法研究[J].液压与气动,2006,3:8-11.
    [308] 叶和明,张进秋,唐伟.基于磁流变阻尼器的车辆悬挂二自由度模型控制算法[J].军械工程学院学报,2003,15(2):58-62.
    [309] 余强,方秦,柳锦春.磁流变阻尼器在防护工程隔震减震中的应用前景[C].中国土木工程学会防护工程分会第九次学术会论文集,长春,2004:1114-1118.
    [310] http://www.pangumrf.com/news_show.asp?id=44
    [311] Marathe S, et al. Helicopter blade response and aeromechanical stability with a magnetorheological fluid based lag damper[A]. SPIE, 1998, 3329: 390-401.
    [312] Pranoto T, Nagaya K, Hosoda A. Vibration suppression of plate using linear MR fluid passive damper[J]. Journal of Sound and Vibration, 2004, 276: 919-932.
    [313] 夏品奇.基于系统识别理论的磁流变阻尼器模型[J].工程力学,2003,20(3):115-119.
    [314] 夏品奇,岳海龙.磁流变阻尼器性能及振动控制[J].航空动力程学报,2004,19(3):305-309.
    [315] 周丽,张志成.基于MRD的结构振动优化控制[J].振动工程学报,2003,16(1)109-113.
    [316] 王唯,夏品奇.磁流变阻尼器用于直升机“地面共振”半主动抑制[J].工程力学,2005,22(1):102-106.
    [317] 周智勇.基于磁流变阻尼器的旋翼机体耦合动稳定性半主动控制研究[D].南京:南京航空航天大学,2005.
    [318] 孙伟.基于多级磁流变阻尼器的颤振半主动抑制[D].南京:南京航空航天大学,2005.
    [319] Jolly M. Pneumatic motion control using magnetorheological fluid technology[A]. 27th International Symposium on Smart Actuators and Transducers[C]. State College, PA, 1999: 22-23.
    [320] Kim J H, Oh J H. Development of an above knee prosthesis using MR damper and leg simulator[A]. Proceedings of the 2001 IEEE International Conference on Robotics & Automation[C], Seoul, 2001: 3686-3691.
    [321] 魏琏,王森,韦承基.水平地震作用下不对称不规则结构抗扭设计方法研究[J].建筑结构,2005,35(8):12-17.
    [322] 魏琏,王森.论水平地震作用下对称和规则结构的抗扭设计[J].建筑结构,2005,35(5):13-17.
    [323] 罗仁,何玉敖.地震作用下高层建筑平移—扭转耦联振动的控制.建筑结构学报[J].1997,18(6):65-73.
    [324] 黄世敏,魏琏,衣洪建等.地震作用下不对称高层建筑平移—扭转耦联振动的控制研究[J].工程抗震,2003,4:1-5.
    [325] 郑久建,魏琏.多高层建筑采用粘滞阻尼器减震结构的扭转分析[J].工程抗震,2004,2:1-5.[326] 张俊发,杨迪雄,刘云贺等.空间非对称框架结构偏心扭转地震反应的控制[J].西安建筑科技大学学报,2002,34(4):349-353.
    [327] 郭仕群.控制高层建筑扭转效应的工程方法[J].工程建设与设计,2004,6:24-25.
    [328] 李忠献,万家,姜忻良.高层建筑结构扭转耦合地震反应阻尼器控制试验研究[J].振动工程学报,1999,12(2):262-266.
    [329] 金峤.结构振动的滑模变结构控制研究[D].大连:大连理工大学,2005.
    [330] 霍林生.偏心结构利用调液阻尼器减震控制的研究[D].大连:大连理工大学,2005.
    [331] Wu J C, Yang J N. LQG control of lateral-torsional motion of Nanjing TV transmission tower[J]. Earthquake Engineering and Structural Dynamics, 2000, 29: 1111-1130.
    [332] Ahlawat A S, Ramaswamy A. Multi-objective optimal FLC driven hybrid mass damper system for torsionally coupled, seismically excited structures[J]. Earthquake Engineering and Structural Dynamics, 2002, 31: 2121-2139.
    [333] Singh M P, Singh S, Moreschi L M. Tuned mass dampers for response control of torsional buildings[J]. Earthquake Engineering and Structural Dynamics, 2002, 31:749-769.
    [334] Shum K M, Xu Y L. Multiple-tuned liquid column dampers for torsional vibration control of structures: experimental investigation[J]. Earthquake Engineering and Structural Dynamics, 2002, 31: 977-991.
    [335] Xu Y L, Shum K M. Multiple-tuned liquid column dampers for torsional vibration control of structures: theoretical investigation[J]. Earthquake Engineering and Structural Dynamics, 2003, 32: 309-328.
    [336] Fujinami T, Saito Y, Morishita M, et al. A hybrid mass damper system controlled by H~∞ control theory for reducing bending-torsion vibration of an actual building[J]. Earthquake Engineering and Structural Dynamics, 2001, 30: 1639-1653.
    [337] Lin W H, Chopra A K. Asymmetric one-storey elastic systems with non-linear viscous and viscoelastic dampers Earthquake response[J]. Earthquake Engineering and Structural Dynamics, 2003, 32: 555-577.
    [338] Goel R K, Booker C A. Effects of supplemental viscous damping on inelastic seismic response of asymmetric systems[J]. Earthquake Engineering and Structural Dynamics, 2001, 30: 411-430.
    [339] Goel R K. Seismic response of linear and non-linear asymmetric systems with non-linear fluid viscous dampers[J]. Earthquake Engineering and Structural Dynamics, 2005, 34: 825-846.
    [340] Yoshida O. Torsional Coupled response control of earthquake excited asymmetric buildings: Development and application of effective control systems using smart dampers[D]. Washington University in St. Louis, St. Louis., 2003.
    [341] Yoshida O, Dyke S J, et al. Experimental verification of torsional response control of asymmetric buildings using MR dampers[J]. Earthquake Engineering & Structural Dynamics, 2003, 32: 2085-2105.
    [342] Yoshida O, Dyke S J. Seismic control of a nonlinear benchmark building using smart dampers[J]. Journal of Engineering Mechanics, ASCE, 2004, 130(4): 386-392.
    [343] Juan C, Almaza J L. Torsional balance of plan-asymmetric structures with frictional dampers: analytical results[J]. Earthquake Engineering and Structural Dynamics, 2005, 34(9): 1089-1108.
    [344] Desu N B, Deb S K, Dutta A. Coupled tuned mass dampers for control of coupled vibrations in asymmetric buildings[J]. Structural Control and Health Monitoring (in press).
    [345] 李洪泉,陈颖,欧进萍等.地震损伤钢筋混凝土结构耗能减震加固设计实用方法[J].世界地震工程,2001,17(1):42-47.
    [346] 黄南翼,张锡云,姜萝香.日本阪神大地震建筑震害分析和加固技术[M].北京:地震出版社,2000.
    [347] Sincraian G E, Guerreio L M C. Use of base isolation in historical and traditional structures, 11th??WCEE, 1996.
    [348] Youssef N. Viscous dampers at multiple levels for the historic preservation of Los Angeles City Hall[J]. Struct. Design Tall Build, 2001, (10): 339-350.
    [349] Uriz P, Whittaker A. S. Retrofit of Pre-Northridge steel moment-resisting frames using fluid viscous dampers[J]. Struct. Design Tall Build, 2001, (10): 371-390.
    [350] El-Borgi S, Smaoui H, Casciati F, et al. Seismic evaluation and innovative retrofit of a historical building in Tunisia[J]. Structural Control and Health Monitoring, 2005, (12): 179-195.
    [351] Chrysostomou C Z, Demetriou T, Pittas M, et al. Retrofit of a church with linear viscous dampers[J]. Structural Control and Health Monitoring. 2005, (12): 197-212.
    [352] 黄镇,李爱群,秦新刚等.大跨结构抗震性能鉴定与加固研究[J].江苏建筑,2005,4:27-29.
    [353] 叶燎原,肖梅玲.丽江物资大厦的震害机理及加固分析[J].地震工程与工程振动,1999,19(1):237-240.
    [354] 王亚勇,薛彦涛,欧进萍等.北京饭店等重要建筑的消能减振抗震加固设计方法[J].建筑结构学报,2001,22(2):35-39.
    [355] 刘伟庆,王曙光,林勇.宿迁市人防指挥大楼隔震设计方法研究[J].建筑结构学报,2005,26(2):81-86.
    [356] 王曙光,刘伟庆.宿迁市教育大厦消能减震设计研究[J].防灾减灾工程学报,2005,25(1):63-68.
    [357] 李洪泉,吕西林.钢筋混凝土框架地震损伤识别与采用耗能装置修复的试验研究[J].建筑结构学报,2001,22(3):9-14.
    [358] 欧进萍,何政,龙旭等.振戎中学食堂楼耗能减震分析与设计Ⅱ——能力谱法与地震损伤性能控制设计[J].地震工程与工程振动,2001,21(1):115-122.
    [359] X L LU, Q ZHUO. Dynamic analysis method of a combined energy dissipation system and its experimental verification[J]. Earthquake Engineering and Structural Dynamic, 2003, 31(6): 1251-1265.
    [360] 吕西林,蒋欢军.建筑结构抗震研究的若干进展[J].同济大学学报,2004,32(10):1278-1284.
    [361] 瞿伟廉,李爱群,项海帆.自动加固的ER智能抗震结构体系的研究[J].东南大学学报,1998,28(6):101-105.
    [362] 陈政清.斜拉索风雨振现场观测与振动控制[J].建筑科学与工程学报,2005,22(4):5-10.
    [363] Stanway R, Sposton J L, Stevens N G. Non-linear modeling of an electro-rheological vibration damper[J]. J Electrostatics, 1987, 20: 167-184.
    [364] Shames I H, Cozzarelli F A. Elastic and inelastic stress analysis[M]. Englewood Cliffs: Prentice Hall, 1992.
    [365] Wen Y K. Method of random vibration of hysteretic systems[J]. Journal of Engineering Mechanics Division, ASCE, 1976, 102, NO. EM2: 249-263.
    [366] Dyke S J. Seismic protection of a benchmark, building using magnetorheological dampers[A]. Proceedings of the 2nd World Conference on Structural Control[C], Kyoto, JAPAN, 1998.
    [367] Pan G Y, Matsuhisa H, Honda Y. Analytical model ofa magnetorheological damper and its application to the vibration control[J]. 26th Annual Conference of the IEEE, 2000(3): 1850-1855.
    [368] Occhiuzzi A, Spizzuoco M, Serino G. Experimental analysis of magnetorheological dampers for structural control[J]. Smart Materials and Structures, 2003, 12: 703-711.
    [369] Gavin H, Dobossy M, Lamberton J. Designing and testing devices for semi-active structural control[A]. Proceedings of the 3rd International Workshop on Structural Control[C], Paris, France, 2000: 255-263.
    [370] Wereley N M, Pang L, Kamath G M. Idealized hysteresis modeling of electrorheological and magnetorheologieal dampers[J]. J Intelligent Mat., Systems and Struct. 1998, 9: 642-649.[371] 翁建生,胡海岩,张庙康.磁流变阻尼器的试验建模[J].振动工程学报,2000,13(4):616-621.
    [372] Loh C H, Chang C M. Vibration control assessment of ASCE benchmark model of cable-stayed bridge[J]. Structural Control and Health Monitoring (in press).
    [373] Gamota D R, Filsko F E. Dynamic mechanical studies of electrorheological materials: moderate frequencies[J]. Journal of Rheology, 1991, 35: 399-425.
    [374] Dyke S J, Fu Y, Frech S, et al. Application of magnetorheological dampers to seismically excited structures[A]. Proceedings of the 17th International Modal Analysis Conference[C]. Kissimmee, 1999.
    [375] Fu Y, Dyke S J, Frech S, et al. Investigation.of magnetorheological dampers for earthquake hazard mitigation[A]. Proceedings of the 2nd World Conference on Structural Control, Kyoto, Japan, 1998: 349-358.
    [376] Chiharu S, Hiromitsu O, Akira S. Modeling of MR damper with hysteresis and application to vibration control[A]. SICE Annual Conference, Fukui, Japan, 2003: 2697-2702.
    [377] Dyke S J, Spencer B F, Sain M K, et al. An experimental study of MR dampers for seismic protection[J]. Smart Materials and Structures, 1998, 7(5): 693-703.
    [378] Dyke S J, Spencer B F, Sain M K, et al. Modeling and control of magnetorheological damper for seismic response reduction[J]. Smart Materials and Structures, 1996, 5: 565-575.
    [379] Dyke S J, Spencer B F, Sain M K, et al. On the efficacy of magnetorheological dampers for seismic response reduction[A]. Proceedings of the ASME Biennial Conference on Vibration and Noise[C], Sacramento, September, 1997.
    [380] 王修勇,戚跃然,陈政清等.磁流变阻尼器控制拉索振动的优化参数研究[J].湘潭矿业学院学报,2003,18(1):31-35.
    [381] Yang G, Spencer B F, Carlson J D, et al. Large-scale MR fluid dampers: modeling and dynamic performance considerations[J]. Engineering Structure, 2002, 24: 309-323.
    [382] Sims N D, Peel D J, Stanway R, et al. The electrorheological long stroke damper a new modeling technique with experimental validation[J]. Journal of Sound and Vibration, 2000, 229(2): 207-227.
    [383] 徐赵东,李爱群,程文瀼等.磁流变阻尼器带质量元素的温度唯象模型[J].工程力学,2005,22(2):144-148.
    [384] Jimenez R, Alvarez-Icaza L. LuGre friction model for a magnetorheological damper[J]. Structural Control and Health Monitoring, 2005, 12: 91-116.
    [385] 邬喆华,楼文娟,陈勇等.基于简化模型的MR阻尼器动力特性[J].防灾减灾工程学报,2004,24(1):99-103.
    [386] 徐赵东,沈亚鹏.磁流变阻尼器的计算模型及仿真分析[J].建筑结构,2003,33(1):68-70.
    [387] Wang E R, Ma X Q, Rakheja S, et al. A general model of a magneto-rheological controllable damper[J]. The 9th Int. Congress on Sound and Vibration, No. 412, 2002, Orlando, Florida, USA.
    [388] 侯保林,王炅,Goncalves F D.一种磁流变阻尼器非参数模型[J].南京理工大学学报,2005,29(5):560-564.
    [389] Choi S -B, Lee S K, Park Y R A Hysteresis Model for the Field-dependent Damping Force of a Magnetorheological Damper[J]. Journal of Sound and Vibration, 2001, 245(2): 375-383.
    [390] Ehrgott R C, Masri S E Modeling of oscillatory dynamic behavior of electrorheological materials in shear[J]. Smart Materials and Structures, 1992, 4: 275-285.
    [391] Gavin H P, Hanson R D, Filisko F E. Electrorheological dampers, part 2: testing and modeling[J]. Journal of Applied Mechanics, ASME, 1996b, 63(9): 676-682.[392] Chang C C, Roschke P. Neural network modeling of a magnetorheological damper[J]. Journal of Intelligent Material Systems and Structures, 1998, 9(9): 755-764.
    [393] Kim B, Rosehke P N. Linearization of magnetorheological behavior using a neural network[A]. Proceedings of the American Control Conference, San Diego, 1999: 4501-4505.
    [394] Gang J, Sain M K, Pham K D, et al. Modeling MR-dampers: a nonlinear blackbox approach[A]. Proceedings of the American Control Conference, Arlington, 2001: 429-434.
    [395] Savaresi S M, Bittanti S, Montiglio M. Identification of semi-physical and black-box nonlinear models: the ease of MR dampers for vehicles control[J]. Automatica, 2005, 41: 113-127.
    [396] 涂建维,瞿伟廉,邹承明等.MR智能阻尼器试验研究及径向基网络模型[J].武汉理工大学学报,2003,25(1):43-45.
    [397] Zhou L, Chang C C. Neural network realization of structural vibration control using MR damper[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2001, 18(2): 144-150.
    [398] Chang C C, Zhou L. Neural network emulation of inverse dynamics for a magnetorheological damper[J]. Journal of Structural Engineering, 2002, 128(2): 231-239.
    [399] Xia P Q. An inverse model of MR damper using optimal neural network and system identification[J]. Journal of Sound and Vibration, 2003, 266:1009-1023.
    [400] McClamroch N H. Closed loop structural control using electrorheological dampers[A]. Proc., Am. Control Conf., American Automatic Control Council, Washington, D. C., 1995: 4173-4177.
    [401] Iansen L M, Dyke S J. Semi-active control strategies for MR dampers: A comparative study[J]. Journal of Engineering Mechanics, 2000, 126(8): 795-803.
    [402] Leitman G. Semi-active control for vibration attenuation[J]. J Intelligent Mat., Systems and Struct, 1994 (5): 841-846.
    [403] Jose A I. Modulated homogeneous friction: a semi-active damping strategy[J]. Earthquake Engineering Structure. Dyn. 1997: 26: 361-376.
    [404] 李忠献,徐龙河,姜南等.基于MRF-04F阻尼器的结构减震控制模型试验[J],地震工程与工程振动,2004,24(1):148-153.
    [405] 张春巍,欧进萍.结构磁流变阻尼半主动控制的改进算法与仿真分析[J].世界地震工程,2003,19(1):37-43.
    [406] Xu Z D, Shen Y E A new intelligent control strategy for the structure with magnetorheological dampers[J], Journal of Intelligent Material Systems and Structures. 2003, 14(1): 35-42.
    [407] 徐赵东,沈亚鹏.磁流变阻尼结构的双态控制和三态控制弹塑性分析[J].西安交通大学学报.2003,37(7):754-758.
    [408] Schurter K C, Roschke P N. Neuro-Fuzzy control of structures using magnetorheological dampers[A], Proceedings of the American Control Conference, Arlingtn, 2001, 7: 1097-1102.
    [409] Zhou L, Chang C C, Wang L X. Adaptive Fuzzy Control for Nonlinear Building-Magnetorheologica] Damper System[J]. Journal of Structural Engineering, 2003, 129(7): 905-913
    [410] 陈静.结构振动逻辑控制[M].北京:国防工业出版社,2005.
    [411] 任晓崧,许奇.MRD的状态跳跃控制参数[J].力学季刊,2004,25(1):145-151.
    [412] 谢礼立,翟长海.最不利设计地震动研究[J].地震学报,2003,25(3):250-261.
    [413] 文立华,尚世英,刘洪兵.一种框架—剪力墙结构的动力分析方法[J].西北工业大学学报,1995,13(1):114-118
    [414] 王勖成,邵敏.有限单元法基本原理和数值方法(第二版)[M].清华大学出版社,北京.2001[415] 王耀伟.平面不规则结构非弹性地震反应规律研究[D].重庆:重庆建筑大学,2003.
    [416] 李宏男,尹之潜.偏心结构在多维地震作用下扭转耦联反应分析[J].地震工程与工程振动,1988,8(4):45-53.
    [417] Chandler A M, Duan X N. Performance of asymmetric code-designed buildings for serviceability and ultimate limit states[J]. Earthquake Engineering and Structural Dynamics, 1997, 26(7):717-735.
    [418] 蔡贤辉,邬瑞锋,许士斌.多层剪切型均匀偏心结构的弹塑性地震反应规律的研究[J].应用数学和力学,2001,22(11):1129-1134.
    [419] 潘东辉,蔡健.建筑结构在不同方向水平地震作用下的扭转振动效应[J].工程抗震与加固改造,2004,6:9-14.
    [420] 潘峰,薛定宇,徐心和.基于dSPACE半实物仿真技术的伺服控制研究与应用[J].系统仿真,2004,16(5):936-939.
    [421] 马培蓓,吴进华,纪军等.dSPACE实时仿真平台软件环境及应用[J].系统仿真学报,2004,16(4):667-670.
    [422] dSPACE. ControlDesk. Experiment Guide for Release4.0[Z]. Paderborn: dSPACE GmbH, 2003.
    [423] dSPACE. ControlDesk. Automation Guide for Release4.0[Z]. Paderborn: dSPACE GmbH, 2003.
    [424] dSPACE. Real-Time Interface (RTI and RTI-MP) Implementation Guide for Release4.0[Z].Paderborn: dSPACE GmbH, 2003.
    [425] dSPACE. DS1104 R&D Controller Board, Installation and Configuration for Release4.0[Z]. Paderborn: dSPACE GmbH, 2003.
    [426] Chu S Y, Song T T, Reihorn A M, et al. Integration issues in implementation of structural control systems[J]. Journal of structural control, 2002, 9: 31-58.
    [427] 李国强,李杰.工程结构动力检测理论与应用[M].北京:科学出版社,2002.
    [428] 中华人民共和国国家标准,《建筑抗震设计规范》(GB 50011-2001,).北京:中国建筑工业出版社,2001.
    [429] 中华人民共和国国家标准,《高层建筑混凝土结构技术规程》(JGJ 3-2002).北京:中国建筑工业出版社,2002.
    [430] Ahmed Ghobarah. Performance-based design in earthquake engineering: state of developed[J]. Engineering Structures, 2001, 23: 878-884.
    [431] 小谷俊介.日本基于性能结构抗震设计方法的发展[J].建筑结构,2000,(6):3-9.
    [432] 欧进萍,何政,吴斌等.钢筋混凝土结构的地震损伤控制设计[J].建筑结构学报,2000,21(1):63-70.
    [433] 谢里阳,刘灏,王德俊.疲劳损伤问题中有效应力的一种定义[J].应用力学学报,1992,9(1):32-36.
    [434] Perdomo M E, Rami A, Florez-Lopez J. Simulation of damage in RC frames with variable axial forces[J]. Earthquake Engineering and Structural Dynamics, 1999: 311-328.
    [435] Cipollona A, Lopez-Inojosa A, Florez-Lopez J. A simplied damage mechanics approach to nonlinear analysis of frames[J]. Computer & Structures, 1995, 54(6): 1113-1126.
    [436] 王振宇,刘晶波.建筑结构地震损伤评估的研究进展[J].世界地震工程,2001,17(3):43-48.
    [437] Housner G W. Limit Design of Structures to Resist Earthquake. Proc. WCEE. 1956
    [438] Banon H, Irving H M, Biggs J M. Seismic Damage in Reinforced Concrete Frames[J]. J. Structure Engineering, ASCE, 1981, 107(9).
    [439] Park Y J, Ang A H-S. Mechanistic Seismic Damage Model for Reinforced Concrete[J]. Journal of Structural Engineering. ASCE, 1985, 111(4): 722-739.[440] Chai Y H, Romstad K M, Bird S M. Energy-based linear damage model for high-intensity seismic loading[J]. Journal of structural engineering, ASCE, 1985, 121 (5): 857-864.
    [441] 陈永祁,龚思礼.结构在地震动时延性和累积塑性耗能的双重破坏准则[J].建筑结构学报,1986,7(1):35-48.
    [442] 江近仁,孙景江.砖结构的地震破坏模型[J].地震工程与工程振动,1987,7(1):20-34.
    [443] 欧进萍,牛荻涛,王光远.多层非线性抗震钢结构的模糊动力可靠性分析与设计[J].地震工程与工程振动,1990,10(4):27-37.
    [444] 牛荻涛,任利杰.改进的钢筋混凝土结构双参数地震破坏模型[J].地震工程与工程振动,1996(4):44-54.
    [445] 韩东,方根生.建筑结构地震破坏准则研究的现状及发展[J].四川建筑,2003,23(3):39-40.
    [446] 杜修力,欧进萍.建筑结构地震破坏评估模型[J].世界地震工程,1991,7(3):52-58.
    [447] 刘伯权,白绍良.抗震结构的等效延性破坏准则及其子结构试验验证[J].地震工程与工程振动,1997,17(3):77-83.
    [448] Rodriguez M E, Aristizabal J C. Evaluation of a Seismic Damage Parameter[J]. Earthquake Engineering and Structural Dynamics, 1999, 28: 463-477.
    [449] Fajfar P, Gaspersic P. The N2 Method for the Seismic Damage Analysis of RC Buildings[J]. Earthquake Engineering and Structural Dynarnies, 1996, 25(1): 31-34.
    [450] 吕大刚,王光远.基于损伤性能的抗震结构最优设防水准的决策方法[J].土木工程学报,2001,34(1):44-49.
    [451] 欧进萍,何政,吴斌等.钢筋混凝土结构基于地震损伤性能的设计[J].地震工程与工程振动,1999,19(1):21-30.
    [452] 李宏男,何浩洋.利用能力谱法对结构地震损伤评估简化方法[J].大连理工大学学报,2004,44(2):267-270.
    [453] Ghobarah A, Abou-elfath H, Ashraf B. Response-based damage assessment of structures[J]. Earthquake Engineering and Structural Dynarnics, 1999, 28: 79-104.
    [454] Roufaiel M S L, Meyer C. Analytical modeling of hysteretic behavior of R/C frames[J]. Journal of Structural of Engineering, ASCE, 1987, 113(3): 429-444.
    [455] Rabotnov Y N. Greep Rupture[A], Proc. 12th Int. Conf. Appl. Mech. IUTAM, 1968.
    [456] 余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993.
    [457] 吴波,李惠,李玉华.结构损伤分析的力学方法[J].地震工程与工程振动,1997,17(1):14-22.
    [458] 丁春花,周云,邓雪松等.耗能减震加固结构的性能水准与设防目标[J].工程抗震与加固改造,2004,(6):35-40.
    [459] Williams M S, Sexsmith R G. Seismic damage induces for concrete structures: a state-of-art review[J]. Earthquake Spectra, 1995, 11(2): 319-349.
    [460] ATC-40. Seismic Evaluation and Retrofit of Concrete Building[R]. Applied Technology Council. Red Wood City, California, 1996.
    [461] 魏琏,郑久建,韦承基等.论粘滞阻尼减震结构及其抗震设计方法[J].建筑结构,2004,34(10):10-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700