用户名: 密码: 验证码:
基于多次压电效应的执行器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于压电效应的传感器与执行器以其优越的性能在国民经济和国防工业中发挥着独特作用,现代精密测试与驱动技术的发展迫切需要深化与扩展压电理论,对多次压电效应的理论与应用研究势在必行。本文在国家自然科学基金(50675026)的资助下,运用压电学、晶体物理学、电介质物理学、各向异性弹性力学等交叉学科的理论,对压电晶体多次压电效应进行了深入系统地研究,研制出基于多次压电效应的微执行器和自感知执行器。本文具体工作如下:
     基于经典压电理论研究了压电晶体的纵向三次耦合效应,提出压电晶体三次正、逆压电效应的实验研究方法。从四类压电方程出发,推导出压电体分别在外应力和外电场作用下的多次压电效应的通用数学模型。通过与改变PZT-5叠堆边界条件等效的实验方法得到了纵向三次耦合效应,实验表明三次正、逆压电效应产生的结果与压电叠堆所施外场具有良好的线性关系,实验结果不仅验证了多次压电效应理论的正确性,而且证明了所提出的实验方法的科学性和可行性。同时,采用两片由压电系数d_(11)转换的xy切型石英晶片制成压电石英晶组,研究了工程实际中广泛应用的压电石英三次压电效应,通过与压电石英晶组并联远大于其等效电容量的电容,消除了压电石英中的多次压电效应,从而量化压电石英晶体的纵向三次压电效应,并得到了多次压电效应对石英传感器静态灵敏度的影响结果,实验表明压电传感器的静态灵敏度提高了1.75%。分析了多次压电效应对压电石英力传感器刚度、固有频率和机电耦合系数的影响。
     研制开发出基于压电陶瓷叠堆多次压电效应的微执行器。研究了基于多次压电效应微执行器的原理,并验证了其可行性。通过选择微执行器的核心元件,确定其结构形式和预紧方式,从而建立了微执行器的力学模型,设计了微执行器的执行板和壳体,得到各部件的尺寸参数,并通过有限元分析进一步验证了微执行器的各部件参数选择的合理性,最后研制出基于多次压电效应的微执行器。对微执行器进行了性能检定,静态标定结果表明微执行器的外载荷与其输出电压、弹性位移以及二次逆压电位移均具有良好的线性关系。在动态标定中得到微执行器的固有频率为4.433KHz。该微执行器不仅能够实现弹性位移和二次逆压电位移的两次定位,而且可通过微执行器的一次正压电效应进行外载荷的校验。
     基于多次压电效应理论进行了压电执行器位移自感知的研究,提出基于多次压电效应自感知执行器的解耦方法。通过引入参考电容,采取电流积分与差分比例运算电路相结合的方式进行PZT-5叠堆执行器的位移自感知实验,结果表明压电执行器本身产生的多次正压电效应可以反映其输出位移信息,同时证明了解耦方法的正确性,从而得到一种较传统电桥电路解耦更易于在工程实际应用的方法。以基于压电陶瓷多次压电效应的微执行器为对象,进行了其位移自感知的实验研究,实验结果进一步表明基于多次压电效应的自感知方法能够很好地获取出该微执行器的位移输出信号。
Nowadays, piezoelectric sensors and actuators which have superior performance play a unique role in the national economy and defense industry. The development of modern precision testing and driving technology urgently needs to deepen and extend the piezoelectric theory. Therefore, it's imperative to study the theory and application of multiple piezoelectric effects. This paper, supported by the National Science Foundation under Grant No. 50675026, studies on multiple piezoelectric effects through using the knowledge of different disciplines such as piezoelectricity, physics of dielectrics, physics of crystals, and theory of anisotropic elasticity. And then the microactuator and self-sensing actuator based on multiple piezoelectric effects are developed. The specific work in this paper is as follows.
     Firstly, according to classical piezoelectric theory, tertiary coupling effect under longitudinal mode of piezoelectric crystal is investigated and the validation methods of tertiary piezoelectric effects are proposed. On the basis of four kinds of piezoelectric equations, the general mathematic models of multiple piezoelectric effects are deduced under applied force and electric field. The experimental results of this tertiary coupling effect of PZT-5 are obtained by the methods that are equivalent to changing boundary conditions. Experimental data shows that the output of tertiary direct and converse piezoelectric effect is linear with the applied force and voltage, respectively. As a result, theoretical analysis is justified by experimental results, just as experimental methods are proved scientific and feasible. Moreover, through a piezoelectric group composed of two xy cutting-type quartz wafers transformed by du, the tertiary piezoelectric effect of piezoelectric quartz which is applied on practical engineering widely is studied. The result of the tertiary piezoelectric effect of piezoelectric quartz is quantified by using a capacitor parallel with the piezoelectric quartz group to eliminate multiple piezoelectric effects. At the same time, the influence of multiple piezoelectric effects on static sensitivity of piezoelectric quartz sensors is obtained. Experimental results show that sensor's static sensitivity is increased by 1.75%. The influence of multiple piezoelectric effects on the stiffness, natural frequency and electromechanical coupling factor of piezoelectric quartz force sensors is analyzed.
     Secondly, the microactuator based on multiple piezoelectric effects of PZT stack is developed. The principle of microactuator based on these effects is demonstrated. Its theoretical feasibility is validated through the experiment. After choosing the core element, structural form and pretightening mode of the microactuator, a simplified mechanical model of the microactuator is established. According to the model, the actuation plate and shell of microactuator is analyzed and designed. In this way, the size parameters of each component are obtained. The functionality of component parameters' selection is further validated through FEM analysis. Finally, the microactuator based on multiple piezoelectric effects is developed successfully. The results of static calibration show that there is a strong linear relationship between the output voltage, elastic displacement and output displacement of the secondary converse effect of the microactuator and external loading. In this dynamic calibration, natural frequency of the microactuator is 4.433KHz. The microactuator not only can realize dual-stage position of elastic displacement and secondary converse displacement, but also can check the external loading through the primary direct piezoelectric effect of the microactuator.
     Thirdly, the research of the piezoelectric self-sensing actuator is performed on the basis of multiple piezoelectric effects and the decoupling method of self-sensing actuator based on multiple piezoelectric effects is proposed. Through a referenced capacitor combined with current integration and a differential proportional operational circuit, this self-sensing experiment of displacement of a PZT-5 actuator is performed. The experimental results indicate that multiple direct piezoelectric effects generated by the piezoelectric actuator itself may totally reflect the information of the output displacement of actuator. Meanwhile, it proves that the decoupling method is correct. Consequently, a decoupling method that is easier for practical engineering application than electric bridge circuit is obtained. Through adopting the microactuator based on multiple piezoelectric effects of ceramics, the experimental research of self-sensing of displacement of the microactuator is performed. Experimental results further show that the self-sensing method based on multiple piezoelectric effects may well acquire the signal of the output displacement of the microactuator.
引文
[1]赵玉珍,段宝岩.微机电一体化与纳米技术[J].电子科技,1995(9):1-4,8.
    [2]Curie P,Curie J.Developpement,par pression de l'electricite polaire dans les cristaux hemiedres a faces inclines[J].Comptes Rendus 1880,91:291-295.
    [3]Pfeifer T,Benz M,Engelmann B,et al.High precision ultrasonic on-machine measurement[J].Measurement,2006,3(5):407-414.
    [4]Piotr G,Domanski K,Janus P,et al.Microsystem technology as a road from macro to nanoworld[J].Bioelectrochemistr,2005,66(1-2):23-28.
    [5]Hodgins D and McGregor Ⅰ.The integration of bio,micro and nano technologies to produce a range of medical implants from the Healthy Aims project[C].In Proceedings of the Third IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology,Oahu,Hawaii,12-15 May 2005,pp.299-301.
    [6]Waters D A.Echolocation in air:biological systems,technical challenges,and transducer design[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2007,221(10):1165-1175.
    [7]Fatikow S and Eichhorn V.Nanohandling automation:trends and current developments[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2008,222(7):1353-1369.
    [8]nartmut J and Klaus K.Real-time compensation of hysteresis and creep in piezoelectric actuators[J].Sensors and Actuators A:Physical,2000,79(2):83-89.
    [9]崔玉国,孙宝元,董维杰,等.压电陶瓷执行器迟滞与非线性成因分析[J].光学精密工程,2003,11(3):270-275.
    [10]孙宝元,钱敏,张军.机电耦合大于等于二次感生效应探析[J].大连理工大学学报,1999,39(2):268-273.
    [11]史丽萍.多次压电效应探析及在传感执行器上的应用基础研究[D].大连:大连理工大学,2006.
    [12]Ballato A.Piezoelectricity:old effect,new thrusts[J].IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control,1995,42(5):916-926.
    [13]Voigt W.Lehrbuch der Kristallphysik[M].Teubner Leipzig,1910.
    [14]Cady W G.Piezoelectricity[M].New York:Dover Pub.,1964.
    [15]Mason W P.Crystal Physics of Interaction Processes[M].New York:Academic Press,1966.
    [16]Tiersten H F.Linear Piezoelectric Plate Vibrations[M].New York:Plenum,1969.
    [17]Bechmann R.The Elastic and Piezoelectric Constants of Alpha-Quartz[J].Phys.Rev.,1958,110(6):1060-1061.
    [18]Korolev M V,Karpelson A E.Calculation of the input impedance of surface-driven piezoelectric transducers[J].Soviet Journal of Nondestructive Testing,1979,15(4):357-358.
    [19]Abe Y and Imai K.Interferometric measurement of the third-order elastic constants in germanium and gallium arsenide[J].IEEE Ultrasonics Symposium,1985,1109-1112.
    [20]孙慷,张福学.压电学[M].北京:国防工业出版社,1984.
    [21]肖定全,王民.晶体物理学[M].成都:四川大学出版社,1989.
    [22]虞孝栋.复合型压电陶瓷材料的导纳及其瞬态特性[J].无机材料学报,1993,8(1):82-88.
    [23]鲁敏.一种自校准压电加速度计[J].宇航计测技术,1995,15(2):57-60.
    [24]周桃生.压电点火材料参数的关联性与综合性选择[J].湖北大学学报(自然科学版),1995,17(3):242-247.
    [25]闫云聚,姜节胜,任礼行.智能材料结构及在振动控制中的应用研究评述和展望[J].西北工业大学学报,2000,18(1):35-40.
    [26]石艺娜,周又和,赵强.压电层合圆板传感器的非线性静力耦合分析[J].力学季刊,2003,24(1):36-42.
    [27]张福学.压电传感器发展史的研究和开发建议[J].传感器技术,1984,S1:63-67.
    [28]孙宝元,钱敏,张军.压电式传感器与测力仪研发回顾与展望[J].大连理工大学学报,2001,41(2):127-133.
    [29]孙宝元,张贻恭.压电石英力传感器及动态切削测力仪[M].北京:中国计量出版社,1985.
    [30]Ranjith A,Dzung V D,Toshiyuki T,et al.Development of miniaturized 6-axis accelerometer utilizing piezoresistive sensing elements[J].Sensors and Actuators A:Physical,2007,134(2):310-320.
    [31]Mason W P.Piezoelectricity,its history and applications[J].Acoustical Society of America,1981,70(6):1561-1566.
    [32]梁国伟,蔡武昌.流量测量技术及仪表[M].北京:机械工业出版社,2002
    [33]陈小林,王祝盈,谢中,等.石英晶体温度传感器的应用[J].传感器技术,2002,21(5):55-57.
    [34]谢胜秋,宋国庆.谐振式水晶温度传感器的现状和发展预测[J].传感器技术,2002,21(2):1-4.
    [35]钱君贤,祝大昌.压电晶体吸附检测器及其在环境分析中的应用[J].化学通报,1988,12:38-42,49.
    [36]关鲁雄,刘立华.石英晶体微天平研究进展与展望[J].传感器世界,2000,3:1-9.
    [37]贾良菊,应鹏展,许林敏,等.气敏传感器的研究现状与发展趋势[J].煤矿机械,2005,4:3-5.
    [38]Wang W,He S T,Li S Z,et al.Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator[J].Sensors and Actuators B:Chemical,2007,125(2):422-427.
    [39]陈昕,周康源,顾宇.等.压电生物传感器研究进展[J].传感技术学报,2003,3:291-298.
    [40]吴永强,王茜.压电生物传感器的研究进展[J].四川理工学院学报(自然科学版),2006,19(3):42-46.
    [41]Fawcett N C,Evans J A,Chien L C,et al.Nucleic-acid hybridization detected by piezoelectric resonance[J].Anal Lett,1988,21(7):1099-1114.
    [42]Passamano M,Pighini M.QCM ONA-sensor for GMOs detection[J].Sensors and Actuators B:Chemical,2006,118(1-2):177-181.
    [43]杜志江,董为,孙立宁.柔性铰链及其在精密并联机器人中的应用[J].哈尔滨工业大学学报,2006,38(9):1469-1473,1478.
    [44]吴博达,鄂世举,杨志刚,等.压电驱动与控制技术的发展与应用[J].机械工程学报,2003,39(10):79-85.
    [45]Scire F E,Teague E C.Piezodriven 50-μm Range Stage with Subnanometer Resolution[J].Review of Scientific Instruments,1978,49(12):1735-1740.
    [46]Ryu J W,Lee S Q,Gweon D G,et al.Inverse kinematic modeling of a coupled flexure hinge mechanism[J].Mechatronics,1999,9(6):657-674.
    [47]Fung R F,nsu Y L,nuang M S.System identification of a dual-stage XY precision positioning table[J].Precision Engineering,2009,33(1):71-80.
    [48]高宏,李庆祥,严普强.亚微米弹性微位移工作台系统的设计及其精度分析[J].清华大学学报(自然科学版),1988,28(5):19-28.
    [49]林德教,吴健,殷纯永.具有纳米级分辨率的超精密定位工作台[J].光学技术,2001,27(6):556-557,559.
    [50]程良伦,杨宜民.新型压电式直线驱动器的研究[J].高技术通讯,1997,7(10):16-19.
    [51]孙立宁,马立,荣伟彬,等.一种纳米级二维微定位工作台的设计与分析[J].光学精密工程,2006,14(3):406-411.
    [52]王勇,刘志刚,薄锋,等.五自由度纳米级定位工作台的设计研究[J].中国机械工程,2005,16(15):1317-1321.
    [53]Yamagata Y,niguchi T.A Micropositioning Device for Precision Automatic Assembly using Impact Force of Piezoelectric Elements[C].Proceedings of the IEEE International Conference on Robotics and Automation,Japan:Nagoya,1995:666-671.
    [54]Torii A,Kato H,Hayakawa K,et al.An XY actuator using piezoelectric and electromagnetic actuators[C].IEEE International Symposium on Micromechatronics and Human Science,Japan:Nagoya,1997:85-90.
    [55]李曼,章亚男,米智楠,等.管道微机器人技术的现状与趋势[J].机械设计,2000,10(10):1-4.
    [56]刘华,颜国正,丁国清.惯性式压电陶瓷驱动器的研究[J].压电与声光,2001,23(4):275-278.
    [57]卢秋红,高志军,颜国正,等.压电型惯性微驱动器研究[J].压电与声光,2004,26(2):112-115.
    [58]张宏壮,曾平,华顺明,等.压电双晶片型惯性冲击式旋转精密驱动器研究[J].光学精密工程,2005,13(3):298-304.
    [59]温建明,程光明,曾平,等.新型惯性式压电旋转驱动器[J].吉林大学学报(工学版),2007,37(5):1112-1115.
    [60]赵宏伟.尺蠖型压电驱动器基础理论与试验研究[D].长春:吉林大学,2006.
    [61]Miesner J E,Teter J P.Piezoelectric/magetossrictive Resonant Inchworm Motor[C].Proceedings of SPIE:Smart Structures and Intelligent Systems,USA:Florida,1994:520-527.
    [62]Vaughan M,Leo D J.Integrated piezoelectric linear motor for vehicle applications[C].2002 ASME International Adaptive Structures and Materials Systems Symposium,USA:New Orleans,2002:1-9.
    [63]Kim J and Lee J H.Self-moving cell linear motor using piezoelectric stack actuators[J].Smart Materials and Structures,2005,14(5):934-940.
    [64]杨宜民,李传芳,周学才,等.仿生型步进式旋转驱动器及其控制器[J].高技术通讯,1995,8:24-26.
    [65]冯晓光,詹涵菁,赵万生,等.微小型电极蠕动进给在电火花加工中的应用[J].中国机械工程,1998,9(8):15-17.
    [66]赵宏伟,吴博达,华顺明,等.尺蠖型压电直线驱动器的动态特性[J].光学精密工程,2007,15(6):873-877.
    [67]赵宏伟,杨志刚,范尊强,等.尺蠖型压电驱动器的闭环控制[J].光学精密工程,2008,16(9):1727-1731.
    [68]赵淳生.超声马达的发展与应用[J].测控技术,1996,15(1):8-10.
    [69]Backes P G,Bar-Cohen Y,Joffe B.The multifunction automated crawling system(MACS)[C].Proceedings of the 1997 IEEE International Conference on Robotics and Automation.Albuquerque,New Mexico,20-25 April 1997:335-340.
    [70]Hagood N W,Mcfarland A J.Modeling of a piezoelectric rotary ultrasonic motor[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,1995,42(2):210-224.
    [71]Dogan A,Uchino K,Newnham R E.Composite piezoelectric transducer with truncated conical endcaps "cymbal"[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,1997,44(3):597-605.
    [72]夏长亮,史婷娜,王太勇.压电超声波电机技术发展水平与应用前景展望[J].仪器仪表学报,2001,22(3):390-391.
    [73]Zhang M H,Guo W,Sun L N.A multi-degree-of-freedom ultrasonic motor using in-plane deformation of planar piezoelectric elements[3].Sensors and Actuators A:Physical,2008,148(1):193-200.
    [74]Dosch J J,Inman D J,Garcia E.Self-sensing piezoelectric actuator for collocated control[J].Journal of Intelligent Material Systems and Structures,1992,3(1):166-185.
    [75]Yellin J M,Shen I Y.A self-sensing active constrained layer damping treatment for a eulerbernoulli beam[J].Smart Materials and Structures,1996,5:628-637.
    [76]Nam C H,Kim Y D,Layton J B.Active aeroelastic wing design for gust load alleviation and flutter suppression[J].Structural Dynamics & Materials Conference,1997,1:729-735.
    [77]Akiyama T,Staufer U,De Rooij N F.Self-sensing and self-actuating probe based on quartz tuning,fork combined with microfabricated cantilever for dynamic mode atomic force microscopy[J].Applied Surface Science,2003,210(1-2):18-21.
    [78]Yamada H,Sasaki M,Nam Y.Active vibration control of a micro-actuator for hard disk drives using self-sensing actuator[J].Journal of Intelligent Material Systems and Structures,2008,19(1):113-123.
    [79]Chen C Q,Wang X M,Shen Y P.Finite element approach of vibration control using self-sensing piezoelectric actuators[J].Computer& Structures,1996,60(3):505-512.
    [80]徐明龙.压电类机敏结构及机敏地震检波器的研究[D].西安:西安交通大学,1998.
    [81]周洁敏,陶云刚,姚志峰,等.利用压电自敏感致动器实现挠性结构振动的主动控制[J].吉林工业大学自然科学学报,1999,29(1):64-69.
    [82]董维杰,孙宝元,崔玉国,等.基于压电自感知执行器悬臂梁振动控制[J].大连理工大学学报,2000,41(1):77-80.
    [83]Liao W H,Law W W,Chan K W.Implementation of adaptive structures with enhanced self-sensing piezoelectric actuators[C].2002 IEEE International Conference on Industrial Technology,Thailand:Bangkok,2002:955-960.
    [84]Jones L D,Garcia E.Novel approach to self-sensing actuation[C].WA USA Soeiety of Photo-Optical Instrumentation Engineers,Bellingham,1997:305-314.
    [85]Okugawa M,Saskai M.System identification and controller design of a self-sensing piezoelectric cantilever structure[C].Smart Structures and Materials 2001:Modeling,Signal Processing,and Control in Smart Structures,USA:Newport Beach 2001:34-45.
    [86]董维杰,孙宝元,崔玉国,等.基于状态观测器的压电自感知执行器研究[J].机械工程学报,2002,38(7):80-83.
    [87]庄乾霞,孙宝元,董维杰.自感知压电微夹钳研究[J].大连理工大学学报,2004,44(6):8 19-822.
    [88]Wakatsuki N,Yokoyama H,Kudo H.Piezoelectric actuator of LiNb03 with integrated displacement sensor[J].Japanese Journal of Applied Physics,1998,37(5B):2970-2973.
    [89]Fumihito A,Kouhei M,Paul G R et al.Novel Touch Sensor with Piezoelectric Thin Film for Microbial Separation[C].International Conference on Robotics & Automation,Taipei,2003:306-311.
    [90]Campolo D,Sahai R,Fearing R S.Development of piezoelectric bending actuators with embedded piezoelectric sensors for micromechanical flapping mechanisms[C].IEEE International Conference on Robotics and Automation,Taipei,2003:3339-3346.
    [91]李涵.压电自感知执行器空分复用解耦方法研究[D].大连:大连理工大学,2005.
    [92]娄敏.基于空分复用的自感知压电夹钳的研究[D].大连:大连理工大学,2006.
    [93]王波,殷学纲,黄尚廉.一种新型自感知作动器及其应用[J].压电与声光,2003,25(2):122-126.
    [94]贾艳丽.压电自感知执行器时分复用解耦法研究[D].大连:大连理工大学,2007.
    [95]董维杰,崔玉国,张小军,等.压电执行器位移自感知方法研究[J].大连理工大学学报,2004,44(6):815-818.
    [96]崔玉国,董维杰,孙宝元,等.基于积分器的压电陶瓷自感知执行器研究[J].大连理工大学学报,2006,46(6):846-850.
    [97]崔玉国,董维杰,高长银,等.压电微动工作台的位移自感知控制[J].机械工程学报,2008,44(4):159-164,170.
    [98]张鹏.基于信号处理的压电自感知执行器解耦研究[D].大连:大连理工大学,2006.
    [99]殷之文.电介质物理学(第二版)[M].北京:科学出版社,2003.
    [100]陈纲,廖理几编著.晶体物理学基础[M].北京:科学出版社,1992.
    [101]董加礼,孙丽华.工科数学基础(下册)[M].北京:高等教育出版社,2002.
    [102]闫西林,阮永丰等.晶体物理学[M].北京:电子工业出版社,1995.
    [103]Standards Committee of the IEEE Ultrasonics,Ferroelectrics and Frequency Control Society[S].IEEE Standard on Piezoelectricity.1987,10
    [104]孙宝元等.现代执行器技术[M].长春:吉林大学出版社,2003.
    [105]Zhang Z H,Sun B Y,Shi L P.Theoretical and experimental study on secondary piezoelectric effect based on PZT-5[J].Journal of Physics:Conference Series,2006,48:86-90.
    [106]Shi L P,Sun B Y and Qian M.The effect of secondary piezoelectric effect on the measuring precision of quartz dynamometers[J].Key Engineering Materials,2005,291-292:519-524.
    [107]Shi,L.P.Investigation of the multi-piezoelectric effect on elastic constants[C].In Proceedings of the Sixth International Conference on Frontiers of Design and Manufacturing,Xi' an Jiaotong University,China,21-23 June 2004,pp.437-439.
    [108]史丽萍,孙宝元,钱敏.二次压电效应的研究及利用其原理设计微驱动器的探析[J].哈尔滨工业大学学报,2005,37(11):1522-1525.
    [109]程光明,沈传亮,杨志刚.压电驱动型电液伺服阀前置级驱动器实验研究[J].西安交通大学学报,2004,38(1):43-46.
    [110]李国荣,陈大任,殷庆瑞.PZT系多层片式压电陶瓷微驱动器位移性能研究[J].无机材料学报,1999,14(3):418-423.
    [111]沙定国.误差分析与测量不确定度评定[M].北京:中国计量出版社,2003.
    [112]秦自楷.压电石英晶体[M].北京:国防工业出版社,1980.
    [113]潘玉安,曹荣祥,曹良足,等.压电陶瓷传感器灵敏度的研究[J].压电与声光,2005,27(2):128-130.
    [114]Chang S H,Rogacheva N N,Chou C C.Analysis of methods for determining electromechanical coupling coefficients of piezoelectrics elements[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,1995,42(4):630-640.
    [115]孙宝玉,林洁琼,梁淑卿,等.压电式微定位机构及其控制系统的研究[J].压电与声光,2005,27(2):139-141.
    [116]张贻恭,王继尚.新型高灵敏度压电式钻削测力仪[J].机械设计与制造.1990,(2):14-16.
    [117]金清肃.机械设计基础[M].武汉:华中科技大学出版社,2008.
    [118]岳大鑫,王忠.机械设计基础[M].西安:西安电子科技大学出版社,2008.
    [119]王彪.工程力学[M].合肥:中国科学技术大学出版社,2008.
    [120]郑晨升.仪表机械结构设计[M].北京:化学工业出版社,2006.
    [121]许贤泽,戴书华.精密机械设计基础[M].北京:电子工业出版社,2007.
    [122]徐科军.传感器动态特性的实用研究方法[M].合肥:中国科学技术大学出版社,1999.
    [123]王维贵.动态压力测量原理及方法[M].北京:中国计量出版社,1976.
    [124]蔡礼君.切削测力仪的动态误差[J].机械工程学报,2000,20(4):78-82.
    [125]董维杰.压电自感知执行器理论与应用研究[D].大连:大连理工大学,2003.
    [126]董维杰,崔玉国,杨志欣,等.电压驱动与电流积分器相结合实现压电电荷控制[J].计算机测量与控制,2002。10(4):260-262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700