用户名: 密码: 验证码:
双振子压电泵设计理论与结构优化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在多振子压电泵中,双振子压电泵是结构最简单的形式。分析双振子驱动形式对泵性能的影响,优化结构尺寸,设计输出性能良好的双振子压电泵,并为压电泵在多振子驱动过程中,解决工作流体流动时存在的相互扰动问题提供可借鉴的方法,有着十分重要的意义。
     本文采用理论分析与试验研究相结合的方法,运用压电陶瓷学、机械振动学、流体动力学与运动学等相关理论知识,对双振子压电泵设计理论和结构优化技术进行研究。
     为预测双振子压电泵的输出能力,推导了压电单晶片和压电双晶片振动时的弯曲变形方程和容积变化量方程,并通过试验验证理论推导的正确性。
     针对双振子压电泵最佳工作点比较高的特点,分别设计了悬臂梁阀、轮式平板和伞形橡胶阀等三种被动截止阀,应用三种被动截止阀设计了双振子单腔泵、双振子双腔串联泵和双振子双腔并联泵三种结构双振子压电泵,并对三种结构双振子压电泵的阀通流孔大小和泵腔体的初始容积进行了确定,给出了各自的理论输出流量公式,对振子驱动方式对其输出性能的不同影响进行了分析与阐述,在此基础上加工了试验样机,进行了试验测试。
     对双振子压电泵的试验测试结果表明,在满足双振子压电泵最佳结构尺寸的条件下,在110V正弦交流电驱动下,以水为介质,双振子单腔泵最大输出流量和输出压力为500ml/min和100kPa;双振子双腔串联泵最大输出流量和输出压力为1100ml/min和100kPa;双振子双腔并联泵最大输出流量和输出压力为1350ml/min和40 kPa。
     对双振子压电泵驱动气体和粘度比水大的液体进行了试验,试验结果表明,双振子串联泵和并联泵可驱动最大粘度为234.6mPa.s的甘油水溶液,此时泵的输出最大流量为30ml/min。和驱动液体比较,当驱动气体时,泵的工作方式发生了变化,在电信号为“同步驱动”的情况下,三种结构形式的双振子压电泵都能获得比“异步驱动”还要好的流量输出,输出气体的最大流量和压力可达1100ml/min和7.8kPa;腔体的初始容积对泵送气体的性能仍然有影响,在满足压电振子和阀自由振动的情况下,腔体的初始容积越小,泵输出气体的性能越好。
The structure of Double-actuator Piezo-pump is the simplest among the multi-actuator Piezo-pumps.It is very important to analyze the performance influence of the Double-actuator Piezo-pump, optimize the structure size,design a Double-actuator Piezo-pump with good output performance,offer a effective method for the turbulence of the liquid in the multi-actuator Piezo-pumps.
     The piezo-pump research has more than twenty years history,so it has a tremendous progress,such as the Co. thinXXSGmbH in Germany and Co.SIMI in Japan already have had products in market. As for the domestic research condition, related research of piezo -pump started lately, there is no products. By reading large numbers of papers and author’s experience on the research, the research of the Piezo-pump overseas focus in the single-actuator single cavity pump, especially focus in the minisize Piezo-pump. In China,the research of the multi- actuator Piezo-pumps is developing based on the research of the single actuator Piezo-pumps.
     The two main development directions are below:one is the exact Piezo–pump,which is productd by the Micro-Processing technology,with the flux 10μl/min~10ml/min,mainly used in the chip laboratory, micro-analysis system, biomedical engineering(such as microinjected, disease examination analysis),even at unicellular monitor which need the flux at pl(1 pl=1/1,000,000,000,000L);the other is the big flux pump with the flux more than 1000 ml/min, the out press at 10~100kPa,and it can replace the traditional pump or used in situsituation that the traditional pump can’t work, such as fuel battery supply, motor fuel supply, cooling of the chip. Moreover, for the Piezo-pump, beside pumping the low viscosity liquid such as water, the pumping high viscosity liquid or gas was no reported, this is very important in the future research.
     Based on the research of the design theory and structure optimization of the Double-actuator Piezo-pump , the author engaged some work below:
     1.Research of vibration characteristic of Piezoelectric actuator
     In order to predict the output performance of the Double-actuator Piezo-pump,in the situations of ignoring the influence of the glue line to the piezo-pump, establishing libration equation of circular piezoelectric actuator and cubage variety equation of cavity. The theory result indicate that establishing libration equation of circular piezoelectric actuator and cubage variety equation of cavity relate to the size of the actuator, performance parameter d 31of the ceramic wafer, driving voltage U. The result indicate that Drived by effective voltage 110V, the amplitude of center of ? 35mm single-actuator is 20.2 ?m ,the cubage variety of cavity is ?V =1.43x10-8m3;the amplitude of center of ? 35mm double-actuator is 50.49 ?m ,the cubage variety of cavity is ?V '=3.6x10-8m3 . Then, this thesis prove the theory derivation by static and dynamic test on the the amplitude of center.
     2.Research of design and work characteristic of check valve
     Check valve is the key component which confirm the output performance of the piezo-pump ,the development of the check valve promotes the development of piezo-pump. Membrane valve is very popular for its simple structure, easy to open, high response frequency. According to the characteristic of the piezo-pump , the author designs and products three kinds of cut-off valves, cantilever valve, spiral plate valve, umbrella-shape rubber valve, analysised overflowing property and critical working conditions of the check valve.The experimentation show that the three kinds of valve start to work when the press reach 0.2kPa. The flow capacity of the umbrella-shape rubber valve is the best, those of cantilever valve is the worst.when set the three kinds of valves into the same structure of piezo-pump, self-absorbing capacity of the umbrella-shape rubber valve piezo-pump.is the best,those of cantilever valve piezo-pump is the worst.Then,did the simulation analysis of umbrella-shape rubber valve by the software ANASYS.
     3. Structure design and performance analysis of Double-actuator Piezo-pump with membrane valve
     According to the design theory of the Double-actuator Piezo-pump, the author develop the structure optimization design of Double-actuator Piezo-pump. The research of the Double-actuator Piezo-pump show that the more cavity initialization capacity,the worse self-absorbing capacity of pump. But a proper cavity initialization capacity could made the pump get the best output flow. The author also obtain the number of the suction holes and radius of the umbrella-shape rubber valve and spiral plate valve by experiment.When the valve hole radius of umbrella-shape rubber valve is r ? 3.2mm,suction holes=n=8,the suction performance is the best, the valve hole radius of spiral plate valve is r=2.75mm, the suction performance is the best. The experiment also show that tandem pump three valves structure is better than those of two valves.The author expatiated the reason of cavitation give birth to in the pump,we must make sure that the pressure ratio on the two sides of the vlalve p1/p2<3.5 for avoid producing cavitation in the pump. Cavitation may lead to abscission and cauterization of actuator metal plate .
     Aiming at the factors that affect the performance of double-actuator piezo-pump, such as drive method of actuator electrical signal,high of cavity, author product many kinds of Piezo-pump ,choose water as transmission medium,use bimorph actuator, experimentalize with sine alternating current 110V.
     With regard to double-actuator single cavity pump, with the synchronous drive on actuator, working frequency band of pump less than 250Hz,the optimal frequency is around 60Hz,at that time the flux is more than 500ml/min. With the synchronous drive on actuator, working frequency band of pump is more wide, which can reach to 400Hz,when the pressure output is more than 100kPa. The cavity initialization capacity may affect the output of the pump, which reach to 2501.2 mm3,the output is pretty good.The length of the outlet pipe may affect optimal working frequency of the pump. Prolong the length of the loulet pipe, the optimal working frequency of the pump will diminish, the output flux will diminish.The using of flexible support on actuator will diminish optimal working frequency of the pump, without influence of the flux output.
     In the face of double-actuator pump in series, the output performance of pump is affected by chamber initialization capacity and valve number,which is best when the chamber initialization capacity is 1900 mm3 and with three valves,the max output flux can reach to 1100ml/min.When the working frequency of the pump is less than 400Hz,the max output pressure is 100kPa.
     In the face of double-actuator pump in parallel, analysis the influence which cavity initialization capacity,drive method of actuator,the different kinds of valve onto it.When cavity initialization capacity is 1135 mm3, paralleled pumps get the best output performance,the max output flux is 1350ml/min, when the working frequency of the pump is less than 400Hz, the max output. Pressure is 40kPa.Compare with the cantilever valve paralleled pumps, spiral plate valve paralleled pumps,the umbrella-shape rubber valve paralleled pump’s performance is best in the experiment.
     4. Experimental Study of Double-actuator Piezo-pump with membrane valve driving gas and liquid with different viscosity.
     The author did the experimental study of Double-actuator Piezo-pump with membrane valve driving gas and liquid with viscosity higher than water, the result of the experiment indicate that driven by the effective working voltage 110v sinusoidal current, double-actuator tandem pump and paralleled pump can drive max viscosity 234.6 mPa.s glycerine solution,when the the max output flux is 30ml/min. comparing with the driven by liquid, Piezo-pump driven by synchronous electric signal is much than those driven by induction electric signal;the max gas output pressure of Piezo-pump is 7.8kPa; The output gas performance is affected by the cavity initialization capacity,the litter the cavity initialization capacity,the better the output gas performance.If we take the three kinds structure double-actuator Piezo-pump with the same cavity initialization capacity in a experiment, in aspect of output flux , synchronous parallel pump is the best, induction tandem pump is the worst;in the aspect of output pressure, induction tandem pump is the best, synchronous parallel pump is the worst.
     Based on the research of Double-actuator Piezo-pump , author offered a effective method for the turbulence of the liquid in the double-actuator Piezo-pumps, showed clearly direction of the research on the multi-actuator Piezo-pumps, such as Three- actuator Piezo-pump ,four-actuator Piezo-pump.
     This paper funded by―863 programe‖Investigation on Multi-chamber Mini-Piezo-Pump‖(number 2002AA404250)and innovation fund for technology based firms program― computer chip water cooling system with piezo-pump‖(number04C26222210064), investigated a kind of piezo-pump with valve which has the characteristics of working stabilized, low noise ,great flow(1000ml/min), high and accurate out pressure(100kPa).Base on the research above, the theory of Piezoelectric drive and the structure design of the Double-actuator Piezo-pump , experimental study were developed.
引文
[1] D.J.Laser, J. G. Santiago.A review of micropumps. Journal of Micromechanics and Microengineering[J], 2004, 14(6): 35-64.
    [2]焦小卫,黄卫清,赵淳生.压电泵技术的发展及其应用[J].微电机, 2005, 38(05): 66-69.
    [3]王沫然,李志信.基于mems的微泵研究进展[J].传感器技术, 2002, 21(06): 59-61.
    [4]王秀红.微泵研究进展[J].排灌机械, 2003, 21(01): 5-8.
    [5]苏宇锋,陈文元.基于mems的微泵研究进展[J].微纳电子技术, 2004, 146(05): 66-69.
    [6] Peter Woias. Micropumps--past, progress and future prospects[J]. Sensors and Actuators B: Chemical, 2005, 105(1): 28-38.
    [7]阚君武,杨志刚,程光明.压电泵的现状与发展[J].光学精密工程, 2002, 10(06): 619-625.
    [8]格雷戈里T. A.科瓦奇(美),张文栋,等译.微传感器与微执行器全书[M].北京:科学出版社,2003.
    [9]方肇伦.微流控分析芯片的制作及应用[M].北京:化学工业出版社,2005.
    [10]李勇,周兆英,叶雄英.微型泵和微型阀的进展[J].仪器仪表学报,1996,17(1):56-60.
    [11] Zengerle, R. Kluge, S. Richter, M. Richter. A Bidirectional Silicon Micropump. Proceedings of. the IEEE 1995 Micro Electro Mechanical Systems. Workshop (MEMS‖95), Amsterdam, Netherland, Jan. 29-Feb. 2, 1995: 19-24.
    [12]崔建国,郑小林,等.基于MEMS的微型泵技术研究[J].中国医疗器械杂志,2004,28(3):190-193.
    [13]杨岳,周兆英,叶雄英,等.双金属热致动微型泵[J].仪器仪表学报,1996, 17(1): 341-345.
    [14] Van de Pol FCM, Van Lintel HTG, Elwenspoek M. A thermopneumatic micropump based on micro-engineering techniques[J]. Sensors and Actuators A, 1990, 21(1-3): 198-202.
    [15] P. Dario, N. Croce, M.C. Carrozza, G. Varallo. A fluid handling system for a chemical microanalyzer, Technical Digest of the MME’95, Sixth Workshop on Micromachining, Micromechanics and Microsystems, Copenhagen, Denmark, 3–5 September 1995[C], 140–143.
    [16] S. B?hm, W. Olthuis, P. Bergveld. A plastic micropump constructed with conventional techniques and materials[J]. Sensors and Actuators A: Physical, 1999, 77(3): 223-228.
    [17] Qiulian Gong,Zhaoying Zhou,Yihua Yang,et al.Design,optimization and simulation on microelectromagnetic pump[J]. Sensors and Actuators, A: Physical, 2000, 83(1): 200-207.
    [18] Swadeshmukul Santra, Paul Holloway,Christopher D. Batich. Fabrication and testing of a magnetically actuated micropump[J]. Sensors and Actuators, B: Chemical, 2002, 87(2): 358-364.
    [19] Christophe Yamahata , Frederic Lacharme, Martin A.M. Gijs, Glass valveless micropump using electromagnetic actuation[J], Microelectronic Engineering 78-79 (2005) 132-137 .
    [20] Christophe Yamahata,Frederic Lacharme,Yves Burri, et al. A ball valve micropump in glass fabricated by powder blasting[J]. Sensors and Actuators, B: Chemical, 2005, 110(1): 1-7.
    [21]苏宇锋,陈文元,崔峰.电磁驱动柔性振动膜无阀微泵[J],微细加工技术,2003,N4:60-64.
    [22]苏宇锋,陈文元,崔峰.一种新型电磁驱动微泵的设计与制作工艺[J],新技术新工艺,2005,N2:27-29.
    [23] R. Rapp,W. K. Schomburg,D. Maas, et al.LIGA micropump for gases and liquids[J]. Sensors and Actuators, A: Physical, 1994, 40(1): 57-61.
    [24] William H. Grover,Alison M. Skelley,Chung N. Liu, et al. Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices[J]. Sensors andActuators B: Chemical, 2003, 89(3): 315-323.
    [25] Spence W J, Corbett W T, Dominguez L R. An electronically controlled piezoelectric insulin pump and valves. IEEE Transactions on Sonics and Ultrasonics, 1978[C], SU-25(3): 153-156.
    [26] Linnemann R, Woias P, Senff C D, et al. A self-priming and bubble-tolerant piezoelectric silicon micropump for liquids and gases. Proc. of the 11th IEEE M EMS 1998 Technical Digest Heidelberg, Germany, 25-29, 1998[C]: 532-537.
    [27] Van Lintel H T G, van de Pol F C M, Bouwstra S. A piezoelectric micropump based on micromachining of silicon[J]. Sensors and Actuators, 1988, 15:153-167.
    [28]刘长庚,周兆英,王晓浩,等.压电驱动微型喷雾器的研究[J].压电与声光,2001,23(4):272-274.
    [29]冯焱颖,周兆英,叶雄英,等.压电致动微喷的压力波特征分析[J].微纳电子技术,2003,40 (7):506-511.
    [30]刘凯.压电驱动式主动阀压电泵理论与试验研究[D].长春:吉林大学机械科学与工程学院,2004.
    [31]吕刚.压电晶片驱动式主动阀压电泵的研究[D].长春:吉林大学机械科学与工程学院,2007.
    [32]胡雄海.双晶片压电振子式主动阀压电泵的研究. [D].长春:吉林大学机械科学与工程学院, 2008.
    [33]田萃.圆形压电振子与压电叠堆驱动式主动阀压电泵的研究[D].长春:吉林大学机械科学与工程学院,2007.
    [34]李鹏.主动阀压电泵的理论与试验研究[D].长春:吉林大学机械科学与工程学院,2007 .
    [35]吴丽萍.单振子双腔体压电泵的理论与试验研究[D].长春:吉林大学机械科学与工程学院,. 2004.
    [36]董景石.悬臂梁阀压电泵理论及应用研究. [D].长春:吉林大学机械科学与工程学院,2004.
    [37]林敬国.整体开启阀式压电泵理论与试验研究[D].长春:吉林大学机械科学与工程学院, 2005.
    [38]崔继英.单腔体双振子压电泵的理论与试验研究[D].长春:吉林大学机械科学与工程学院,2006.
    [39]刘国君.迭片式系列微型压电泵的设计理论及试验研究[D].长春:吉林大学机械科学与工程学院,2006.
    [40]杨树臣.喷流压电泵的理论分析与试验研究[D].长春:吉林大学机械科学与工程学院,2006.
    [41]高冬冬.结构对压电泵性能影响的理论和试验研究[D].长春:吉林大学机械科学与工程学院,2007.
    [42]张德君.双腔体四振子压电薄膜泵的理论与试验研究[D].长春:吉林大学机械科学与工程学院,2007.
    [43]张志宇.大粘度压电泵的理论和试验研究[D].长春:吉林大学机械科学与工程学院,2006
    [44]刘健.针对不同粘度液体压电泵的设计与试验研究. [D].长春:吉林大学机械科学与工程学院,2008.
    [45]刘九龙.压电泵为动力源的计算机芯片水冷系统研究[D].长春:吉林大学机械科学与工程学院,2005.
    [46]孙晓锋.压电泵驱动的电脑芯片水冷系统理论与试验研究[D].长春:吉林大学机械科学与工程学院,2005.
    [47]赵艳龙.芯片水冷系统中压电泵性能的试验与研究[D].长春:吉林大学机械科学与工程学院,2006.
    [48]郑丽兵.压电驱动式计算机芯片水冷系统的试验研究[D].长春:吉林大学机械科学与工程学院,2006..
    [49]袁又春.收缩管/扩张管型无阀压电泵的研究[D].长春:吉林大学机械科学与工程学院,2006.
    [50]吴丽萍.扁锥腔无阀压电泵理论与试验研究[D].长春:吉林大学机械科学与工程学院,2008 .
    [51]谢海波,傅新,杨华勇.微型无阀泵参数化结构设计及测试[J].工程设计, 2002,9(2):83-85.
    [52]程秀兰,蔡炳初,徐东等.基于硅结构的微流体控制系统[J].微细加工技术, 2002,(2):58-65.
    [53] Jason Hok-chun Lo Ashley Min-hang Pun, Derek Chi-hang Louie and Li-man Li. Micro-fabrication of the non-moving part valve micro-pump by hot-embossing technology[J].2007, 14: 242-245.
    [54] Anders Olsson,Peter Enoksson,Goran Stemme, et al. Valve-less planar pump in silicon. 1995[C]. Piscataway, NJ, USA: IEEE.
    [55] Anders Olsson, Goran Stemme,Erik Stemme.Valve-less planar fluid pump with two pump chambers[J]. Sensors and Actuators, A: Physical, 1995, 47: 549-556.
    [56] Anders Olsson,Peter Enoksson,Goran Stemme, et al. Valve-less planar pump isotropically etched in silicon[J]. Journal of Micromechanics and Microengineering, 1996, 6(1): 87-91.
    [57] Anders Olsson,Olle Larsson,Johan Holm, et al. Valve-less micropumps fabricated using thermoplastic replication. 1997[C]. Piscataway, NJ, USA: IEEE.
    [58] Torsten Gerlach.Microdiffusers as dynamic passive valves for micropump applications[J]. Sensors and Actuators, A: Physical, 1998, 69(2): 181-191.
    [59] M. Koch, A. G. R. Evans,A. Brunnschweiler. Dynamic micropump driven with a screen printed PZT actuator[J]. Journal of Micromechanics and Microengineering, 1998, 8(2): 119-122.
    [60] Yeng-Yung Tsui,Shiue-Lin Lu. Evaluation of the performance of a valveless micropump by CFD and lumped-system analyses[J]. Sensors and Actuators, A: Physical, 2008, 148(1): 138-148.
    [61] Anders Olsson,Olle Larsson,Johan Holm, et al. Valve-less diffuser micropumps fabricated using thermoplastic replication. Sensors and Actuators, A: Physical, 1998, 64(1): 63-68.
    [62] Wouter van der Wijngaart,Helene Andersson,Peter Enoksson, et al. First self-priming and bi-directional valve-less diffuser micropump for both liquid and gas. Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 2000: 674-679.
    [63]李军,吴博达,程光明,等.收缩管/扩张管型无阀压电泵的工作原理[J].压电与声光, 2000, 22(06): 376-378.
    [64] Helene Andersson,Wouter van der Wijngaart,Peter Nilsson, et al. Valve-less diffuser micropump for microfluidic analytical systems[J]. Sensors and Actuators, B: Chemical, 2001, 72(3): 259-265.
    [65] Amos Ullmann, Ilan Fono,Yehuda Taitel. A Piezoelectric Valve-Less Pump-Dynamic Model[J]. Journal of Fluids Engineering, 2001, 123(1): 92-98.
    [66]王立文,高殿荣,杨林杰.压电驱动无阀微泵泵腔流场分析[J].机床与液压, 2005(12): 89-92.
    [67]王海宁,崔大付,耿照新,等.一种无阀压电微泵的研究[J].压电与声光, 2006, 28(06): 668-670.
    [68]王蔚,田丽,鲍志勇,等.一种新型压电式双向无阀微泵的研制[J].传感技术学报, 2006, 19(05): 2018-2021.
    [69]吴丽萍,吴银柱.无阀压电泵噪声分析与探讨[J].长春工程学院学报(自然科学版), 2006, 7(04):30-31.
    [70] P. Sethu,C. H. Mastrangelo. Polyethylene glycol (PEG)-based actuator for nozzle-diffuser pumps in plastic microfluidic systems[J]. Sensors and Actuators, A: Physical, 2003, 104(3): 283-289.
    [71]吴博达,赵永军,杨志刚,等.多腔体并联锥形管无阀压电泵输出流量研究[J].压电与声光, 2004, 26(06): 460-463.
    [72] Jie Kou,Dehua Lai,Jianhui Zhang, et al. Research of valve-less pumps with changeable cone angle nozzle/diffuser elements. 2005[C]. Long Beach, CA, United States: American Society of Mechanical Engineers, New York, NY 10016-5990, United States.
    [73] Yong-Li Zhang,Jian-Kang Wu. Numerical study of periodical flows of piezoelectric valveless micropump for biochips[J]. Applied Mathematics and Mechanics (English Edition), 2005, 26(8): 1026-1033.
    [74]程光明,杨志刚,吴博达,等.一种改进的平板式无阀压电流体泵[J].压电与声光, 2001, 23(05): 351-353.
    [75]吴博达,李军,程光明,等.平板式无阀压电流体泵的初步研究[J].压电与声光, 2001, 23(04): 256-258.
    [76]张建辉,王守印.压电锥形流管无阀泵的研究——气穴现象[J].压电与声光, 2001, 23(06): 470-472.
    [77]张建辉,王守印.压电锥形流管无阀泵的研究——单向流动原理及泵流量[J].压电与声光, 2001, 23(01): 23-25.
    [78]张建辉,王守印.压电锥形流管无阀泵的研究——受流体温度及物质含量影响的流量特性[J].压电与声光, 2001, 23(03): 192-194.
    [79] Jian-Hui Zhang,Yi-Li Li,Qi-Xiao Xia, et al.Research on vibration and pump flow rate of valveless piezoelectric pump with Y-shape tubes[J]. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2007, 15(6): 922-929.
    [80]张建辉,黎毅力,夏齐霄.“Y”形流管无阀压电泵流量及流管流阻特性分析[J].机械工程学报, 2007, 43(11): 136-141.
    [81]张建辉,黎毅力,夏齐霄,等“.Y”形流管无阀压电泵振动分析及泵流量计算[J].光学精密工程, 2007, 15(06): 922-929.
    [82]王晓伟,刘建亭,路计庄,等. Y形流管无阀压电泵结构特性探析[J].煤矿机械, 2008, 29(06): 84-86.
    [83]叶芳,黎毅力,张建辉.“Y”形流管无阀压电泵驱动器的动态研究(英文) [J].光学精密工程, 2008, 16(12): 2358-2365.
    [84]张建辉,黎毅力,刘菊银,等.“Y”形流管无阀压电泵模拟与试验[J].光学精密工程, 2008, 16(04): 669-675.
    [85]张建辉,黎毅力,刘菊银,等.“Y”形流管无阀压电泵流场分析[J].北京工业大学学报, 2008, 34(02): 126-132.
    [86]张建辉,路计庄,夏齐霄,等.细胞或高分子输送用“Y”形流管无阀压电泵的工作原理及流量特性[J].机械工程学报, 2008, 44(09): 92-99.
    [87]夏齐霄,张建辉,李洪.非对称坡面腔底无阀压电泵[J].光学精密工程, 2006, 14(04): 641-647.
    [88]徐斌,朱杰,路计庄.非对称群峰无阀压电泵的结构设计[J].中国设备工程, 2008,(12): 45-46.
    [89]夏齐霄,张建辉,雷红,等.非对称群峰结构无阀压电泵的理论分析(英文) [J].光学精密工程, 2008, 16(12): 2391-2397.
    [90] Nam-Trung Nguyen,Thai-Quang Truong. A fully polymeric micropump with piezoelectric actuator[J]. Sensors and Actuators B: Chemical, 2004, 97(1): 137-143.
    [91]孙晓锋,杨志强,刘晓论,等.整体开启阀与悬臂梁阀压电泵性能研究[J].光学精密工程, 2006, 14(04): 648-651.
    [92] Sebastian Bo¨hm, Wouter Olthuis,Piet Bergveld. A plastic micropump constructed with conventional techniques and materials[J]. Sensors and Actuators A: Physical, 1999, 77(3): 223-228.
    [93] Dong Gun Lee, Daniel D. Shin,Gregory P. Carman. Large flow rate/high frequency microvalve array for high performance actuators[J]. Sensors and Actuators A: Physical, 2007, 134(1): 257-263.
    [94] Bo Li,Quanfang Chen,Dong-Gun Lee, et al. Development of large flow rate, robust, passive micro check valves for compact piezoelectrically actuated pumps[J]. Sensors and Actuators A: Physical, 2005, 117(2): 325-330.
    [95] Jung-Ho Park, Kazuhiro Yoshida,Shinichi Yokota. Resonantly driven piezoelectric micropump: Fabrication of a micropump having high power density[J]. Mechatronics, 1999, 9(7): 687-702.
    [96] Thanh Tung Nguyen,Nam Seo Goo,Vinh Khanh Nguyen, et al. Design, fabrication, and experimental characterization of a flap valve IPMC micropump with a flexibly supported diaphragm[J]. Sensors and Actuators A: Physical, 2008, 141(2): 640-648.
    [97]阚君武,杨志刚,刘品宽,等.两腔体串联压电驱动微型泵的输出特性[J].哈尔滨工业大学学报, 2004, 36(10): 1347-1350.
    [98]程光明,刘国君,杨志刚,等.基于悬臂梁阀的微型压电泵的试验研究[J].机械科学与技术, 2005, 24(10): 1181-1183.
    [99]董景石,程光明,沈传亮,等.压电驱动型胰岛素泵的研究[J].西安交通大学学报, 2007, 41(05): 602-605.
    [100]沈传亮,刘国君,董景石,等.压电型多振子单腔精密药物输送泵[J].吉林大学学报(工学版), 2007, 37(01): 89-94.
    [101] K. Jung-Ho Park, Y. Yoshida, S. Nakasu and Yokota. A resonantly-driven piezoelectric micropump for microfactory, Proceedings of the ICMT20002 Kitakyushu (2002), 417–422.
    [102]成仲,张小丰,吴育林,等.胰岛素泵与常规胰岛素注射治疗糖尿病疗效比较[J].人民军医, 2003, 46(10): 573-574.
    [103]朱旅云,罗云章,吕建锋,等.胰岛素泵的研制和进展[J].医疗卫生装备, 2004(07): 29-31.
    [104]张琴,于蕾,赵海伦,等.胰岛素泵在糖尿病患者治疗中的应用及护理[J].解放军护理杂志, 2004, 21(02): 55-56.
    [105]白丽娜.胰岛素泵在糖尿病患者治疗中的应用及护理[J].实用医学杂志, 2006, 21(06): 613.
    [106] Ling-Sheng Jang,Yuan-Jie Li,Sung-Ju Lin, et al.A stand-alone peristaltic micropump based on piezoelectric actuation[J]. Biomedical Microdevices, 2007, 9(2): 185-194.
    [107] Jia-Hao Li,Wai-Hong Kan,Ling-Sheng Jang, et al. A portable micropump system based on piezoelectric actuation. 2007[C]. Piscataway, NJ 08855-1331, United States: Institute of Electrical and Electronics Engineers Computer Society.
    [108] Takaaki Suzuki,Yuji Teramura,Hidetoshi Hata, et al.Development of a micro biochip integratedtraveling wave micropumps and surface plasmon resonance imaging sensors[J]. Microsystem Technologies, 2007, 13(8-10): 1391-1396.
    [109] H. K. Ma,B. R. Hou,H. Y. Wu, et al.Development and application of a diaphragm micro-pump with piezoelectric device[J]. Microsystem Technologies, 2008, 14(7): 1001-1007.
    [110] A. Nisar,Nitin Afzulpurkar,Banchong Mahaisavariya, et al. MEMS-based micropumps in drug delivery and biomedical applications[J]. Sensors and Actuators, B: Chemical, 2008, 130(2): 917-942.
    [111] Kan Junwu,Yang Zhigang,Peng Taijiang, et al. Design and test of a high-performance piezoelectric micropump for drug delivery[J]. Sensors and Actuators A: Physical, 2005, 121(1): 156-161.
    [112] A. Geipel,A. Doll,F. Goldschmidtboing, et al. Pressure-independent micropump with piezoelectric valves for low flow drug delivery systems. 2006[C]. Istanbul, Turkey: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States.
    [113] Jia-Hao Li,Wai-Hong Kan,Ling-Sheng Jang, et al. A portable micropump system based on piezoelectric actuation. 2007[C]. Piscataway, NJ 08855-1331, United States: Institute of Electrical and Electronics Engineers Computer Society.
    [114] Qifeng Cui, Chengliang Liu,Xuan F. Zha. Study on a piezoelectric micropump for the controlled drug delivery system[J]. Microfluidics and Nanofluidics, 2007, 3(4): 377-390.
    [115] Qifeng Cui, Chengliang Liu,Xuan F. Zha. Design and simulation of a piezoelectrically actuated micropump for the drug delivery system. 2007[C]. Shanghai, China: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States.
    [116] Marta F. T. Ribeiro, Joao L. M. Santos,Jose L. F. C. Lima. Piezoelectric pumping in flow analysis: Application to the spectrophotometric determination of gabapentin. Analytica Chimica Acta, 2007, 600(1-2 SPEC ISS): 14-20.
    [117]何叶,李磊民,杨涛.基于mems技术的新型微冷却方式[J].仪表技术与传感器, 2004(09): 43-45.
    [118]曾平,程光明,刘九龙,等.集成式计算机芯片水冷系统的研究[J].西安交通大学学报, 2005, 39(11): 1207-1210.
    [119]邵宝东,孙兆伟.基于mems的微槽冷却系统在微纳卫星热控中的应用[J].上海航天, 2006(04): 34-38.
    [120]曾平,程光明,刘九龙,等.压电泵为动力源的计算机芯片水冷系统研究[J].压电与声光, 2006, 28(04): 403-406.
    [121]张德君,杨志刚,孙晓锋.计算机芯片冷却技术的现状与发展[J].机械设计与制造, 2008(03): 213-215.
    [122] Hsiao-Kang Ma,Bo-Ren Hou,Cheng-Yao Lin, et al. The improved performance of one-side actuating diaphragm micropump for a liquid cooling system[J]. International Communications in Heat and Mass Transfer, 2008, 35(8): 957-966.
    [123]山东大学压电铁电物理教研室[M].压电陶瓷及其应用,济南:山东人民出版社,1974年.
    [124]电子陶瓷情报网编.压电陶瓷应用[M],山东:山东大学出版社,1985年.
    [125]张福学,王丽坤.现代压电学(上册)[M],北京:科学出版社,2002年.
    [126]栾桂冬,张金铎.压电换能器和换能器阵[M].北京:北京大学出版社,2005年.
    [127] Michael Koch,Nick Harris,Alan G.R. Evans,et al. A novel micromachined pump based on thick–film piezoelectric actuation[J]. Sensors and Actuators A,1998,70: 98-103.
    [128] Y.H. Mu,N.P. Hung , K.A. Ngoi. Optimization design of a piezoelectric micropump. Theinternational journal advanced manufacturing technology[J]. 1999, 15:573-576.
    [129] P. Muralt,A. Kholkin,M. Kohli, et al. Piezoelectric actuation of PZT thin-film diaphragms at static and resonant conditions[J]. Sensors and Actuators A: Physical, 1996, 53(1-3): 398-404.
    [130] M. Koch,C. G. J. Schabmueller,A. G. R. Evans, et al.Micromachined chemical reaction system[J]. Sensors and Actuators A: Physical, 1999, 74(1-3): 207-210.
    [131] C. H. J. Fox, X. Chen,S. McWilliam.Analysis of the deflection of a circular plate with an annular piezoelectric actuator[J]. Sensors and Actuators A: Physical, 2007, 133(1): 180-194.
    [132] Qifeng Cui, Chengliang Liu,Xuan F. Zha. Simulation and optimization of a piezoelectric micropump for medical applications[J]. International Journal of Advanced Manufacturing Technology, 2008, 36(5-6): 516-524.
    [133] A. B. Dobrucki,P. Pruchnicki. Theory of piezoelectric axisymmetric bimorph[J]. Sensors and Actuators, A: Physical, 1997, 58(3): 203-212.
    [134] D. Accoto,O. T. Nedelcu,M. C. Carrozza, et al. Theoretical analysis and experimental testing of a miniature piezoelectric pump. 1998[C]. Piscataway, NJ, USA: IEEE.
    [135] Christopher J. Morris,Fred K. Forster, Optimization of a circular piezoelectric bimorph for a micropump driver[J]. Journal of Micromechanics and Microengineering, 2000, 10(3): 459-465
    [136] Q. Wang,S. T. Quek,C. T. Sun, et al., Analysis of piezoelectric coupled circular plate[J]. Smart Materials and Structures, 2001, 10(2): 229-239.
    [137]刘品宽,孙立宁,祝宇虹,等.双压电复合薄圆板驱动器的理论分析[J].压电与声光, 2002, 24(02): 111-115.
    [138] Michel Brissaud, Sarah Ledren,P. Gonnard. Modelling of a cantilever non-symmetric piezoelectric bimorph[J]. Journal of Micromechanics and Microengineering, 2003, 13(6): 832-844.
    [139] Minqiang Bu,Tracy Melvin,Graham Ensell, et al. Design and theoretical evaluation of a novel microfluidic device to be used for PCR[J]. Journal of Micromechanics and Microengineering, 2003, 13(4): 125-130.
    [140] Sunghwan Kim, William W. Clark,Qing-Ming Wang. Piezoelectric energy harvesting using a diaphragm structure. 2003: The International Society for Optical Engineering.
    [141] Shifeng Li,Shaochen Chen. Analytical analysis of a circular PZT actuator for valveless micropumps[J]. Sensors and Actuators, A: Physical, 2003, 104(2): 151-161.
    [142]范国滨,王卫东,贾建援.压电致动式圆片驱动装置结构分析与设计[J].西安电子科技大学学报, 2003, 30(01): 42-46.
    [143] Michel Brissaud. Modelling of non-symmetric piezoelectric bimorphs. Journal of Micromechanics and Microengineering[J], 2004, 14(11): 1507-1518.
    [144] Michel Brissaud. Theoretical modelling of non-symmetric circular piezoelectric bimorphs[J]. Journal of Micromechanics and Microengineering, 2006, 16(5): 875-885
    [145] Baowei Wang,Xiangcheng Chu,Enzhu Li, et al.Simulations and analysis of a piezoelectric micropump[J]. Ultrasonics, 2006, 44(SUPPL): 643-646.
    [146] B. L. Wang,J. C. Han. A circular indenter on a piezoelectric layer[J]. Archive of Applied Mechanics, 2006, 76(7-8): 67-379.
    [147] Mandar Deshpande,Laxman Saggere. An analytical model and working equations for static deflections of a circular multi-layered diaphragm-type piezoelectric actuator[J]. Sensors and Actuators, A: Physical, 2007, 136(2): 673-689.
    [148] Tao Li, Y. H. Chen,J. Ma. Frequency dependence of piezoelectric vibration velocity[J]. Sensors and Actuators, A: Physical, 2007, 138(2): 404-410.
    [149] Shuyu Lin.Study on the radial composite piezoelectric ceramic transducer in radial vibration[J]. Ultrasonics, 2007, 46(1): 51-59.
    [150] Poorna Mane,Karla Mossi,Christopher Green, et al. Studying the effects of temperature on energy harvesting using prestressed piezoelectric diaphragms. 2007[C]. Bellingham WA, WA 98227-0010, United States: SPIE.
    [151] Shuyu Lin. The radial composite piezoelectric ceramic transducer[J]. Sensors and Actuators, A: Physical, 2008, 141(1): 136-143.
    [152] Melih Papila, Mark Sheplak,Louis N. Cattafesta Iii. Optimization of clamped circular piezoelectric composite actuators[J]. Sensors and Actuators, A: Physical, 2008, 147(1): 310-323.
    [153] Tao Zhang, Qing-Ming Wang. Valveless piezoelectric micropump for fuel delivery in direct methanol fuel cell (DMFC) devices. Journal of Power Sources, 2005, 140(1): 72-80.
    [154]铁摩辛柯,等.板壳理论.北京:科学出版社,1977.
    [155]刘孝敏.工程材料的微细观结构和力学性能.合肥:中国科技大学出版社,2003.
    [156]尹执中,胡桅林,过增元.悬臂梁式微型阀的启动和过流特性[J].传感技术学报, 2000(01): 1-6.
    [157]尹执中,庞江涛,胡桅林,等.悬臂梁式微型阀[J].仪表技术与传感器, 2000(03): 38-43.
    [158] D. C. S. Bien, S. J. N. Mitchell,H. S. Gamble. Fabrication and characterization of a micromachined passive valve[J]. Journal of Micromechanics and Microengineering, 2003, 13(5): 557-562.
    [159] Dongshin Kim,David J. Beebe. A bi-polymer micro one-way valve[J]. Sensors and Actuators, A: Physical, 2007, 136(1): 426-433.
    [160] E. H. Yang, S. W. Han,S. S. Yang. Fabrication and testing of a pair of passive bivalvular microvalves composed of p + silicon diaphragms[J]. Sensors and Actuators, A: Physical, 1996, 57(1): 75-78.
    [161] Bo Li,Quanfang Chen. Solid micromechanical valves fabricated with in situ UV-LIGA assembled nickel[J]. Sensors and Actuators A: Physical, 2006, 126(1): 187-193.
    [162] J. F. Jansen, R. F. Lind, J. B. Chesser, L. J. Love.Design, Analysis, Fabrication, and Testing of a Novel Piezoelectric Pump. U.S. DEPARTMENT OF ENERGY,2003.
    [163] A. Geipel,F. Goldschmidtboing,A. Doll, et al. An implantable active microport based on a self-priming high-performance two-stage micropump[J]. Sensors and Actuators, A: Physical, 2008, 145-146(1-2): 414-422.
    [164] M. Richter, R. Linnemann,P. Woias. Robust design of gas and liquid micropumps[J]. Sensors and Actuators A: Physical, 1998, 68(1-3): 480-486.
    [165]张也影.流体力学[M].北京:高等教育出版社,1999.
    [166]林建忠,阮晓东等.流体力学[M].北京:清华大学出版社,2005.
    [167]傅政.橡胶材料性能与设计应用[M].北京:化学工业出版社,2003.
    [168]刘亮,双腔型气体压电泵设计理论与关键技术研究[D].吉林大学机械科学与工程学院, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700