用户名: 密码: 验证码:
压电共振型隔膜泵的设计理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隔膜泵是流体泵的一个重要种类,主要满足小型化、低输出性能方面的需求,近年在医药生物、精细化工、航空航天、微机电系统等领域的应用越来越广泛,显示着良好的发展前景。目前隔膜泵主要有利用电机凸轮机构驱动的隔膜泵(简称“电磁隔膜泵”)与压电振子驱动的薄膜泵(简称“压电泵”)两大类,其中压电泵对液体类介质的输出效果好,对气体的输出效果很差,同时存在输出压力低、压电晶片易发热、碎裂等问题,还没有广泛的市场应用;电磁隔膜泵则存在结构复杂、成本高、噪音大等问题,应用受到一定限制。本文将压电泵的结构简单的特点与系统谐振技术相结合,提出一种利用压电振动激励隔膜共振而形成驱动能力的新型压电共振型隔膜泵(简称“压电共振泵”),研究这种压电共振泵的基本原理与构成方法,进行相关的样机设计与试验,是国家自然科学基金项目《压电型气体隔膜泵设计理论与关键技术研究》(项目编号:51175213)研究工作的一部分。总体内容如下:
     1.对压电共振泵中所用圆形压电振子平衡条件与弯曲变形挠度进行了分析计算。通过压电振子有限元模型的建立,获取了其多阶模态的振型;使用解析的方法求解了周边固定支撑条件下压电振子中心点的挠度公式,通过实验测试的方法,得到了驱动电压对圆形压电振子中心点的挠度的影响示意图。最后对压电振子进行阻抗分析,测得了压电振子的阻抗特性及其固有频率。
     2.将压电共振泵的主要结构划分为激振单元和泵送单元两部分,分别描述了两个单元的作用与工作原理;对激振单元,建立了动力学模型并解析了各构成部件的刚度,获得了共振系统的放大倍数;对泵送单元,推导了隔膜膜片的挠度和及其对流体的近似输出流量计算公式;最后对激振单元的共振频率和振动位移进行了试验测量。
     3.针对压电共振泵中圆形共振板弹簧不易换取的缺点,利用磁力弹簧刚度可变的特性,设计了磁力弹簧式压电共振型隔膜泵(简称“磁力式压电共振泵”)。首先对磁力弹簧的特性进行了研究,建立了磁力弹簧的数学模型,通过计算得到了磁力弹簧轴向刚度与轴向间距的关系式,并使用电子称与精雕机台面搭成的试验台,对磁力弹簧轴向力进行了测量;其次,描述了磁力式压电共振泵的工作原理,并建立了其动力学模型,从计算可知,调整磁力弹簧的轴向间距即可改变共振泵的共振频率;通过对磁力式压电共振泵有限元建模分析,得知当激振单元处于一阶模态工作时,质量块的中心振幅最大;最后,对磁力式压电共振泵进行结构设计并制作了样机,对其激振单元进行了共振频率和振动位移的测量,最后对振动幅值比进行了测量。
     4.针对压电共振泵和磁力式压电共振泵进行了两部分工作,第一部分,试验、测试对不同粘度液体的输出性能;首先搭建了针对液体流量测试的试验台,其次选取性质稳定、几乎不挥发、不会对试验环境产生污染的甘油作为配比溶液;通过实验的方法对两种共振泵激振单元和泵送单元的各结构参数进行了最优选择,得到了其最大输出流量和输出压力;第二部分,试验、测试了对气体的输出性能;通过构建的气体输送试验平台进行了气体的输送实验,得到了对气体的输送流量;最后对同等工作条件下共振泵输送液体和气体出现的流量差异进行了分析说明。
     5.根据压电共振泵的工作特性,设计了专用驱动电源,主要包括其整体结构设计、核心处理器的选用、逆变式驱动电路的选择等。
In recent years,as an important species of fluid pump, diaphragm pump has widelyapplication in pharmaceutical and biotech, fine chemical, aerospace,micro-electromechanical systems and show good prospects for development,which are metin the miniaturization、low output performance requirements.At present,there are two maintype of diaphragm pump, piezoelectric diaphragm pump driven by piezoelectric vibratorand electromagnetic diaphragm pump driven by motor cam mechanism.The drive capacityof traditional piezoelectric air pump is much lower than the liquid piezoelectric pump ofthe same volume, but also problems of piezoelectric wafer heating, easily broken, and noisewhich seriously affect the life and reliability work. Electromagnetic diaphragm pump hasproblems of complex structure, high cost, noise and other issues.Combing with thecharacteristics of existing piezoelectric pump and the system resonance technology, thispaper puts forward a new kind of piezoelectric resonant diaphragm pump driven by thediaphragm resonance with piezoelectric vibration excitation, researchs the basic principleand composition method and designs prototype for testing.The work is a part of StateNatural Sciences Foundation Monumental Projects (Project No.511175213).Specificcontent as follows:
     1. Analyzed the equilibrium conditions of the circular piezoelectric vibrator whichpiezoelectric resonant pump used and the bending deformation deflection. This paperobtained the vibration mode of multistage modal piezoelectric vibrator through establishingthe FEM model and solved the deflection formula of the piezoelectric vibrator centerthrough the analytical method.Through the experiment test, relationship of the drivingvoltage and the annular piezoelectric vibrator center deflection was obtained. Finally, impedance characteristics and natural frequency of the piezoelectric vibrator weremeasured by impedance analysis.
     2. It described respectively the principle of operation for the two parts of piezoelectricresonance pump: the vibration unit and pumping unit. It also established the dynamicsmodel, calculated the stiffness for the structure of the vibration unit, and calculated themagnification of resonance system. In the analysis of the pumping unit, the diaphragmdeflection of diaphragm and the pump output flow calculation formula for pumping fluidwere deduced. Finally the resonance frequency of piezoelectric resonance vibration andvibration displacement were took experimental measurements.
     3. According to the circular rensonance plate spring in piezoelectric resonance pumpnot easy to change, piezoelectric resonance pump of magnetic spring is designed using thecharacteristics of the variable stiffness of magnetic spring. And through the establishmentof mathematical model of magnetic spring, it achieved the relation between the axialmagnetic spring stiffness and the axial spacing. Furthermore, the magnetic spring axialforce was measured by using the electronic scale and carved the machine surface of test rig.Second, it described the principle of operation for magnetic spring type piezoelectricresonance pump, and its dynamics model was established. From the calculation results, itcan be obtained that adjusting the magnetic spring axial spacing can change the resonancefrequency of resonance pump. Through taking FEM model of the magnetic springresonance pump, we can know that, when vibration unit in first-order modal, the center ofmass position amplitude is the largest. Finally, it took the structure design for the magneticspring piezoelectric resonance pump and made a prototype, and carried on the resonancefrequency and the vibration displacement measurement for vibration unit on the designprototype, then its vibration amplitude ratio were measured at the end.
     4. Taking the piezoelectric resonance pump and magnetic spring type piezoelectricresonance pump as the research objects, this paper carried two works. In the first part,experiment test for driving different viscosity of the liquid. First of all, a test bench forliquid flow measurement was built, then selected properties of stability which almost novolatilization, and also make no pollution to the environment as a proportion for solution ofglycerol test. Through the experimental method, it made the optimal selection of the structure parameters of resonance pump vibration unit and pumping unit. And two kinds ofresonance to the maximum pump output flow rate the pressure were obtained. The secondpart is aimed at conveying experiment for gas. Construct the experimental platform fordelivering gas, then took the conveying experiment respectively for the piezoelectricresonance pump and the magnetic spring type piezoelectric resonance pump.In addition,the flow difference between pumping liquid and gas under the same working conditions ofthe resonance pump were analyzed and explained.
     5. According to the characteristics of operation for piezoelectric resonance pump, itdesigned the drive controller of the resonance pump which mainly includes the overallstructure of the controller design, the selection of core processors and inverter type drivecircuit.
引文
[1] Spence, W., W. Corbett, and L. Dominguez. An electronically controlled piezoelectricinsulin pump and valves[C]. IEEE Trans. Sonics Ultrasonics, SU-25.1978:153-156.
    [2] Petersen, K.E. Silicon as a mechanical material[C]. Proceedings of the IEEE.1982,70(5):420-457.
    [3] Olsson, Anders; Stemme, Goran; Stemme, Erik.Valve-less planar fluid pump with twopump chambers[J].Sensors and Actuators, A: Physical,1995,47:549-556
    [4] Gerlach, T. Pumping gases by a silicon micro pump with dynamic passive valves[C].Sensors and Actuators, TRANSDUCERS '97Chicago International Conference on1997.
    [5] Koch, M., N. Harris, R. Maas, et al. A novel micropump design with thick-filmpiezoelectric actuation[J]. Measurement Science and Technology.1997,8:49.
    [6] Ullmann, A. The piezoelectric valve-less pump—performance enhancement analysis[J].Sensors and ActuatorsA: Physical.1998,69(1):97-105.
    [7] Kamper, K.P., J. Dopper, W. Ehrfeld, et al. A self-filling low-cost membranemicropump[C].1998. IEEE.
    [8] Choi, J.P., K.S. Kim, Y.H. Seo, et al. Design and fabrication of synthetic air-jetmicropump[C]. International Journal of Precision Engineering and Manufacturing.2011,12(2):355-360.
    [9] Smits, J.G. Piezoelectric mircropump for peristaltic fluid displacement[P]. Patent NL8302860.15August,1983.
    [10]Esashi, M., S. Shoji, and A. Nakano. Normally closed microvalve and mircopumpfabricated on a silicon wafer[J]. Sensors and Actuators.1989,20(1–2):163-169.
    [11]Hsu, Y., N. Le. Equivalent electrical network for performance characterization ofpiezoelectric peristaltic micropump[J]. Microfluidics and Nanofluidics.2009,7(2):237-248.
    [12]Ohuchi, K., K. Tsuchiya, and Y. Uetsuji. Configuration design of piezo actuator forHollow tube type micropump[C].2010. IEEE.
    [13]Jang, L.-S., Y.-J. Li, S.-J. Lin, et al. A stand-alone peristaltic micropump based onpiezoelectric actuation[J]. Biomedical Microdevices.2007,9(2):185-194.
    [14]Goldschmidtb ing, F., A. Doll, M. Heinrichs, et al. A generic analytical model formicro-diaphragm pumps with active valves[J]. Journal of Micromechanics andMicroengineering.2005,15:673.
    [15]Stehr, M., S. Messner, H. Sandmaier, et al. The VAMP—a new device for handlingliquids or gases[J]. Sensors and ActuatorsA: Physical.1996,57(2):153-157.
    [16]Johnston, I., J. Davis, R. Richter, et al. Elastomer-glass micropump employing activethrottles[J]. Analyst.2004,129(9):829-834.
    [17]Johnston, I., M. Tracey, J. Davis, et al. Micro throttle pump employing displacementamplification in an elastomeric substrate[J]. Journal of Micromechanics andMicroengineering.2005,15:1831.
    [18]Johnston, I., M. Tracey, J. Davis, et al. Microfluidic solid phase suspension transportwith an elastomer-based, single piezo-actuator, micro throttle pump[J]. Lab Chip.2005,5(3):318-325.
    [19]Maillefer, D., S. Gamper, B. Frehner, et al. A high-performance silicon micropump fordisposable drug delivery systems[C].2001. IEEE.
    [20]Dinh, T.X., V.T. Dau, S. Sugiyama, et al. Fluidic device with pumping and sensingfunctions for precise flow control[J]. Sensors and Actuators B: Chemical.2010,150(2):819-824.
    [21]Nguyen, N.T., T.Q. Truong. A fully polymeric micropump with piezoelectricactuator[J]. Sensors and Actuators B: Chemical.2004,97(1):137-143.
    [22]阚君武,曹仁秋,杨志刚,程光明.压电薄膜泵结构设计与性能分析[J],压电与声光,2002,24(5):368-371
    [23]曾平,刘国君,杨志刚等.球阀式压电薄膜泵的初步研究[J].压电与声光.2005,27(002):118-120.
    [24]杨兴,周兆英,叶雄英,李楠等.压电驱动膜片式微型气泵[J],压电与声光,2005,27(4):365-368.
    [25]刘收,姚立强,王益红,陈志同.一种医用微型同心压电薄膜泵[J],压电与声光,2005,27(6):651-654.
    [26]王蔚,刘晓为,陈伟平,鲍志勇.压电膜片的优化设计及在微泵中的应用[J],压电与声光,2006,28(2):153-158.
    [27]李欣欣,方科,程光明等.压电薄膜喷流泵研究[J].光学精密工程.2006,14(5):858.
    [28]杨志刚,张德君,程光明,曾平.双作用压电薄膜泵[J],哈尔滨工业大学学报,2009,41(11):173-177.
    [29]程光明,姜德龙,孙晓峰,杨志刚.双腔体四振子压电泵设计及试验[J],排灌机械工程学报,2010,28(3):190-193.
    [30]程光明,何丽鹏,曾平等.圆形双振子式主动阀压电泵设计与性能实验[J].农业机械学报.2010,41(5).
    [31]王蔚,刘晓为,陈伟平等.压电膜片的优化设计及在微泵中的应用[J].压电与声光.2006,28(002):153-155.
    [32]孙健,孙启健,刘彦菊等.一种基于柔性放大机构的压电叠堆泵设计[M].复合材料:创新与可持续发展(下册).2010.
    [33]国海峰,肖站,李生.压电泵的驱动电源研制及其特性研究[J].微特电机.2011,39(4):36-39.
    [34]王蔚,田丽,鲍志勇等.一种新型压电式双向无阀微泵的研制[J].传感技术学报.2008(5):2018-2021.
    [35]张保柱,张永立,吴建康.生物芯片压电微流体泵扩散管液体流量效率分析[J].机械科学与技术.2004,23(7):802-804.
    [36]张永立,吴健康.生物芯片无阀压电微流体泵流场数值研究[J].应用数学和力学.2005,26(8):937-944.
    [37]鲁立君,吴健康.生物芯片压电微流体泵液-固耦合系统模态分析[J].固体力学学报.2005,26(004):459-465.
    [38]鲁立君,吴健康.压电微流体泵液-固耦合系统流动特性[J].水动力学研究与进展:A辑.2006,21(004):512-518.
    [39]何秀华,蒋权英,张睿等.被动阀压电泵的动力学模型及其求解[J].排灌机械.2007,25(006):4-6.
    [40]何秀华,邓许连,杨嵩等.涡旋阀压电泵内部空化流动的数值分析[J].排灌机械.2009,27(6).
    [41]王沫然,李志信.基于MEMS的微泵研究进展[J].传感器技术.2002,21(6):59-61.
    [42]张卫平,陈文元,吴校生等.动态被动阀微泵的设计优化和制造[J].机械设计与研究.2003,19(002):64-66.
    [43]崔琦峰,刘成良.串联压电微泵特性研究[J].传感技术学报.2008(5):1974-1977.
    [44]夏齐霄,张建辉,王大康.压电泵振动放射噪声的两种理论模型[J].现代制造工程.2003,1
    [45]张建辉,王大康,王守印等.压电泵的研究——泵阀滞后性[J].机械工程学报.2003,39(005):107-110.
    [46]张建辉,路计庄,夏齐霄等.压电振子及流体对泵近场噪声的影响[J].光学精密工程.2006,14(4):628-634.
    [47]张建辉,寇杰,夏齐霄等.压电泵立体阻网法的研究[J].机械工程学报.2006,42(5):55-59.
    [48]张建辉,王大康,夏齐霄等.压电泵振动放射噪声的研究[J].压电与声光.2005,27(001):37-39.
    [49]谢海波,陈远玲,傅新等.微型无阀泵的数值仿真与参数设计[J].流体机械.2002,30(1):11-14.
    [50]陈坚美,应济.压电微泵性能的终端特性分析及其模拟研究[J].工程设计学报.2003,10(004):179-182.
    [51]阚君武,吴一辉,宣明等.泵用两叠片圆形压电振子的弯曲振动分析[J].机械工程学报.2005,41(001):54-60.
    [52]程光明,刘国君,杨志刚等.基于悬臂梁阀的微型压电泵的实验研究[J].机械科学与技术.2005,24(010):1181-1183.
    [53]阚君武,杨志刚,刘品宽等.两腔体串联压电驱动微型泵的输出特性[J].哈尔滨工业大学学报.2004,36(010):1347-1350.
    [54]刘勇,杨志刚,吴越等.压电泵吸程出流现象及其成因研究[J].光学精密工程.2011,19(5):1110.
    [55]吴博达,林敬国,曾平等.压电泵增频流量骤减现象的解释[J].压电与声光.2006,28(005):588-590.
    [56]阚君武,彭太江,唐可洪等.两腔压电泵结构与特性[J].压电与声光.2006,28(001):39-42.
    [57]吴博达,赵永军,杨志刚等.多腔体并联锥形管无阀压电泵输出流量研究[J].压电与声光.2004,26(006):460-463.
    [58]刘国君.迭片式系列微型压电泵的设计理论及实验研究[D].吉林大学,2006.
    [59]林敬国.整体开启阀式压电泵理论与实验研究[D].吉林大学,2005.
    [60]刘凯.压电驱动式主动阀压电泵理论与试验研究[D].长春:吉林大学机械科学与工程学院,2004
    [61]程光明,朱志伟,曾平等.压电泵自适应神经网络预测控制的仿真研究[J].压电与声光.2010,32(005):870-873.
    [62]孙晓锋.双振子压电泵设计理论与结构优化技术研究[D].吉林大学,2009.
    [63]彭太江.多腔体有阀压电泵设计理论及应用研究[D].长春:吉林大学,2006.
    [64]张志宇.大粘度压电泵的理论和试验研究[D].长春:吉林大学机械科学与工程学院,2006
    [65]吕刚.压电晶片驱动式主动阀压电泵的研究[D].长春:吉林大学机械科学与工程学院,2008
    [66]田萃.圆形压电振子与压电叠堆驱动式主动阀压电泵的研究[D].长春:吉林大学机械科学与工程学院,2007
    [67]李鹏.主动阀压电泵的理论与试验研究[D].长春:吉林大学机械科学与工程学院,2007
    [68]吴丽.萍单振子双腔体压电泵的理论与试验研究[D].长春:吉林大学机械科学与工程学院,2004
    [69]董景石.悬臂梁阀压电泵理论及应用研究[D].长春:吉林大学机械科学与工程学院,2004
    [70]崔继英.单腔体双振子压电泵的理论与试验研究[D].长春:吉林大学机械科学与工程学院,2006
    [71]杨树臣.喷流压电泵的理论分析与试验研究[D].长春:吉林大学机械科学与工程学院,2006
    [72]高冬冬.结构对压电泵性能影响的理论和试验研究[D].长春:吉林大学机械科学与工程学院,2007
    [73]张德君.双腔体四振子压电薄膜泵的理论与试验研究[D].长春:吉林大学机械科学与工程学院,2007
    [74]袁又春.收缩管扩张管型无阀压电泵的研究[D].长春:吉林大学机械科学与工程学院,2006
    [75]段浩.双振子气体压电泵结构设计与实验研究[D].长春:吉林大学机械科学与工程学院,2009
    [76]接勐,刘焱,谢海峰,杨志刚,杨鲁义.压电驱动共振式高频疲劳试验机构的设计与实验[J],光学精密工程,2012,20(9):2029-2034
    [77]接勐,谢海峰,刘焱,李秀娟,杨志刚.适用于工程仿生的压电驱动高精度疲劳试验机构的研究[J],纳米技术与精密工程,2013,11(2):134-139
    [78]Meng Jie, Haifeng Xie, Yan Liu, Zhigang Yang. Design of high frequency fatiguetesting machine driven by piezoelectric vibrator[C].2nd International Conference onAdvanced Design and Manufacturing Engineering. Applied Mechanics and Materials,220-223:543-548
    [79]Meng Jie, Haifeng Xie, Yan Liu, Zhigang Yang. Design and experiment of fatiguetesting apparatus driven by piezoelectric bimorph[C].2nd International Conference onMechanical Engineering, Materials and Energy. Applied Mechanics and Materials281:319-323
    [80]Meng Jie, Haifeng Xie, Yan Liu, Zhigang Yang. Study on a high frequency resonancefatigue apparatus using a piezoelectric vibrator[C].2012Global Conference on DigitalDesign and Manufacturing Technology. Key Engineering Materials,546:76-80
    [81]深津博一,田中博幸.バイモルフ振動子共振型ポンプ:日本,5-126036[P].1993-05-21.
    [82]Jung-Ho PARK, Kazuhiro YOSHIDA, Shinichi YOKOTA. Resonantly drivenpiezoelectric micropump Fabrication of a micropump having high power density[J].Mechatronics1999,9:687-702.
    [83]Jung-Ho PARK, Kazuhiro YOSHIDA, Yoshihiro NAKASU, et al.. AResonantly-Driven Piezoelectric Micropump for Microfactory[C]. Proc. of ICMT2002,2002:417-422.
    [84]Jung-Ho PARK, Kazuhiro YOSHIDA, Shinichi YOKOTA, et al.. Development ofMicromachines Using Improved Resonantly-Driven Piezoelectric Micropumps[C].Proc.of the Fourth International Symposium on Fluid Power Transmission and Control(ISFP’2003),2003:536-541.
    [85]Lyndon B. Johnson Space Center. Diaphragm Pump With Resonant PiezoelectricDrive[DB/OL].
    [2011-12-17].http://www.techbriefs.com/component/content/article/2182.
    [86]王龙.共振型压电泵的设计理论与试验研究[D].长春:吉林大学机械科学与工程学,2011
    [87]吴越,杨志刚,刘勇,王龙,谢海峰.一种新型共振式气体压电泵[J].排灌机械工程学报2012,30(4): p390-394
    [88]谢海峰,接勐,康晓涛,杨志刚,王龙.压电共振型隔膜气泵设计[J].农业机械学报,2013,43(1):246-250
    [89]Xie,Hai-Feng; Yang, Zhi-Gang; Jie, Meng. Design and test of piezoelectric resonantdiaphragm air pump[C].Applied Mechanics and Materials,v220-223,2012:539-542
    [90]王兴元.磁力弹簧式共振型压电气泵研究[D].长春:吉林大学机械科学与工程学,2012
    [91]谢海峰;吴越;接勐;杨志刚;王兴元.磁力弹簧式压电共振型气泵的设计[J].光学精密工程,2012,20(7):1573-1579
    [92]Yang, Zhi-Gang;Xie, Hai-Feng. Design and dynamic modeling of piezoelectricresonant air pump with magnetic spring[C]. Advanced Materials Research,v531,2012:630-633
    [93]张卫珂,张敏,尹衍升,谭训彦.材料的压电性及压电陶瓷的应用[J].现代技术陶瓷,2005(1):38-41
    [94]方岱宁,刘金喜.压电与铁电体的断裂力学[M].北京:清华大学出版社,2008.
    [95]徐灏.机械设计手册[M].北京:机械工业出版社,2001
    [96][美]铁摩辛柯,沃承斯基.板壳理论[M].北京:科学出版社,1977
    [97]Junwu Kan, Kehong Tang, Yu Ren, Guoren Zhu, Peng Li. Study on a piezohydraulicpump for linear actuators[J]. Sensors and Actuators A,2009,149:331–339.
    [98]蔡长春,徐志峰,庄建平,余欢.磁力弹簧的工作特性分析[J].现代制造工程,2003(6):73-74
    [99]杨安全.一种径向永磁轴承的磁力计算和刚度分析[D].南京:东南大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700