用户名: 密码: 验证码:
超高强石渣混凝土的研发、力学性能与抗火特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以活性粉末混凝土为代表的超高强混凝土由于具有质量比强度大、能源资源消耗少、全寿命周期的建筑成本低等优点,具有极为广阔的应用前景,是近几年研究的热点之一。但由于活性粉末混凝土所用的原材料稀缺、价格昂贵,制备工艺复杂,限制了其在工程实际中的应用。在福建省自然科学基金计划资助项目(2011J01327、2007J0163)和福建省莆田市科技计划项目(2007G26)的资助下,本文采用试验手段、试验成果分析与理论分析相结合的方法,为推广应用活性粉末混凝土解决一些关键的技术难题。本文的主要工作和创新点如下:
     (1)通过超高强石渣混凝土配制方法研究得出结论:
     以石渣替代河砂,利用普通的成型工艺,以低至350kg/m3的水泥消耗量完全可以制备抗压强度高达137.3MPa的超高强混凝土。在试验参数范围内,超高强石渣混凝土的单位质量水泥贡献的质强比约为普通混凝土的4.17倍,约为高强混凝土的2.49倍,活性粉末混凝土的2.02倍。
     以较少水泥消耗量配制的超高强石渣混凝土和聚丙烯纤维超高强石渣混凝土自收缩量小,将它们填充至钢管内可妥善解决钢管与核心混凝土界面间过早脱离的技术难题。
     (2)通过超高强石渣混凝土的抗火性能试验研究发现,素超高强石渣混凝土、钢纤维超高强石渣混凝土的抗爆裂性能较差,爆裂温度约为400℃;在超高强石渣混凝土中掺入聚丙烯纤维可显著地改善其抗爆裂性能;高温后超高强石渣混凝土的抗压强度的变化规律有其自身的特点:当经受低于360℃的高温后,素超高强石渣混凝土的抗压强度随温度的上升而增大,经受360℃高温后抗压强度达到常温时的1.47倍;聚丙烯纤维超高强石渣混凝土经受低于400℃的高温后,其抗压强度随温度的升高而略有提高,经受400℃高温后抗压强度为常温时的1.07倍,经受高于400℃的高温后抗压强度便随温度的升高而降低;最后分析了高温后超高强石渣混凝土的抗压强度随温度变化的机理。
     (3)通过14根钢管超高强石渣混凝土短柱和19根钢管聚丙烯纤维超高强石渣混凝土短柱的轴心抗压试验研究得出结论,在试验参数范围内,试件的套箍指标和混凝土强度是影响其静力特性的主要因素;试件受压时的荷载-平均应变曲线基本上都可以分为四个阶段,即弹性变形阶段、弹塑性变形阶段、承载力下降阶段和承载力回升阶段,套箍指标较小时,弹塑性段较短,下降段陡峭,承载力下降幅度较大;套箍指标较大时,弹塑性上升段和承载力下降变形曲线较平缓,承载力下降幅度较小;所有试件的破坏形态都呈剪切型的破坏特征,都具有较高的残余承载力和良好的延性;最后,分别推荐了经回归分析得到与试验结果比较吻合的短柱轴心受压承载力的计算公式。
     (4)提出预制钢管超高强石渣混凝土叠合柱这种新型的结构型式,并以核心混凝土类型、含钢管率、长径比等为试验参数进行了11根试件的轴心受压试验,研究结果表明,叠合柱具有较大的后期承载力和良好的延性性能,其极限应变是钢筋混凝土柱的极限应变的1.86-8.29倍,具有比钢筋混凝土柱优越的的轴压性能。最后推荐了预制钢管超高强石渣混凝土叠合柱短柱的极限承载力计算公式,经过比较,与实测数据吻合良好。
     (5)通过12根高温后钢管超高强石渣混凝土短柱的轴心受压试验研究得出结论,在试验参数范围内,高温后试件的荷载-轴向平均应变关系曲线与常温下的曲线相似,都可以分为弹性变形阶段、弹塑性变形阶段、承载力下降阶段和承载力回升阶段等四个阶段;但高温后曲线的弹性变形阶段明显缩短,弹性极限荷载与极限荷载的比值减小,刚度明显蜕化;极限应变增大,而最大压缩应变明显减小。
Being higher with the specific strength, and lower with the consumption of natural resource and the cost in their life cycle, Reactive Powder Concrete as the representative of green super high strength concrete is of a promising application and has become the focus of research and application on the modern concrete. However, raw materials being expensive and scarce, as well as complicated process technologies, RPC is limited in engineering practice. On the support by the Natural Science Foundation of Fujian Province of China (No.2011J01327,2007J0163) and the Scientific and Technological Planning of Putian of Fujian Province (No.2007G26), the dissertation has concentrated on tackling deal with the technological difficult problems concerning applying RPC to practice through experiment studies combined with theoretical analysis, and has achieved a few of creative works as following:
     (1) Based on The experimental studies on the mix technology of green super high strength concrete used local materials, it is shown that it is possible for us to make up the new type of environmentally friendly concrete, i.e., super-high strength concrete, with the strength being as high as137.3MPa by means of the general technical process with the cheap local materials, and at the lower consumption of ordinary Portland cement of350kg/m3. It was found that within the factor scope of this test, specific strength of per unit cement of Green Super high strength concrete used Stone-chip (abbreviated to GSHSCUS) was about4.17times as high as that of ordinary concrete, and2.49times that of HSC, and2.02times that of RPC.
     It was found that both GSHSCUS and Polypropylene fiber reinforced super high strength concrete used stone-chip (abbreviated to PFRSHSCUS) shew excellent perfomance on the self-shrinkage, and it is possible to eliminate the disengaging at interface of steel and the core concrete by filling GSHSCUS or PFRSHSCUS with the reduced consumption of cement.
     (2) A series of experiments on the fire behavior of GSHSCUS with the two different parameters including temperature and fiber type were carried out in the laboratory, experimental results show that, GSHSCUS without fiber has a weak refractory performance as well as GSHSCUS mixed with the steel fiber, with being about400℃of cracking temperature, and that GSHSCUS mixed with polypropylene fiber exhibits excellent resistance to high temperature, and that after the high temperature all of them show distinguished characteristic different from that of ordinary concrete, HSC or HPC, namely the strength of GSHSCUS without fiber increases with the elevated temperature under360℃at which strength was as high as1.47times of that at room temperature, and GSHSCUS mixed with the polypropylene fiber show slowing growth of strength by400℃at which strength was1.07times of that at room temperature, then keeps declining. Also analyzed is the mechanism of the strength changing with elevated temperature.
     (3) Based on the experimental studies of14short steel tubular columns filled with GSHSCUS and19with PFRGSHSCUS, it is found that within the factor scope of these tests, both the confinement index and the concrete strength of the specimens have great influence on their features of specimen subjected to axial load. Experiment results show that the load&average strain curves of the specimens might be divided into four stages:elastic deformation process, elastic-plastic deformation process, the descent process and the recovery process of its carrying capacity, and that specimens with the lower confinement index exhibits a rapid softening process in the post-peak region with a towering peak and a shorter incremental portion plus the weak recovery in the forth stage, while specimens with the higher confinement index exhibits a gradual softening process in the post-peak region with a chubby curve and a longer incremental portion plus the strong momentum of recovery in the forth stage. The experimental phenomena indicate that all specimens are typical of the higher residual load capacity and excellent ductility. Then the formula of its ultimate load capacity was built by regression based on experimental results at the end, by which the calculated results have a good coincidence with those from the experiments.
     (4) Composition columns reinforced with the prefabricated GSHSCUS filled with steel tubes was put forward, and based on the experimental studies on the12short composition columns reinforced with the prefabricated GSHSCUS filled with steel tubes with1RC as reference. The experimental parameters were the concrete type inner steel tubes, and L/D ratio, steel ratio and so on. Experiment results show that mechanical properties of composition columns reinforced with the prefabricated GSHSCUS filled with steel tubes is superior to that of RC columns, with the higher residual load capacity and excellent ductility with ultimate strain being1.86~8.29times that of RC columns. Then the hypothesis was put forward based on experimental phenomena observed, and the formula of its ultimate load capacity was suggested based on superposition method, by which the predicted values have a good coincidence with those from the experiments.
     (5) Based on the experimental studies of12GSHSCUS filled with steel tubes short columns, it was found that within the factor scope of this test, the load&average strain curves of the specimens may be divided into four stages:elastic deformation, elastic-plastic deformation, the descent process and the recovery process of its carrying capacity, which is similar to that at room temperature, but elastic deformation stage was shorter with the lower stiffness and the ratio of elastic limiting load to ultimate load being lower, and with the peak strain increasing and the maximum strain decreased.
引文
[1]姚宽一.中国建筑业产业竞争力研究:[博士学位论文].西安:西安建筑科技大学,2006.
    [2]李华一.建筑业农民工问题研究:[博士学位论文].哈尔滨:东北财经大学,2007.
    [3]白玮.民用建筑能源需求与环境负荷研究:[博士学位论文].上海:同济大学,2007.
    [4]尹海鹏.再生混凝土框架—剪力墙抗震性能试验及理论研究:[博士学位论文].北京:北京工业大学,2010.
    [5]姚燕,低碳时代水泥混凝土发展方向[DB/OL]. http://news.dichan.sina.com.cn/business/2010/03/31/140737 all.html.
    [6]Pierre Richard,M.Cheyrezy. Reactive powder concrete with high ductility and 200-800MPa compressive strength (C), Proceeding of V.M. Maltra. symposium on concrete technology:past and future,Detroit.1994:507-518.
    [7]Pierre Richard, Marcel Cheyrezy. Composition of Reactive Powder Concretes[J]. Cement and Concrete Research,1995,25 (7):1501-1511.
    [8]Altcin. Mechanical Properties and Durability of Two Industrial Reactive Powder Concretes [J]. ACI Materials Journal,1997,94(4):286-290.
    [9]Yves F. Houst, Paul Bowen, Francois Perche, etc. Design and function of novel superplasticizers for more durable high performance concrete(superplast project))[J], Cement and Concrete research,2008,38(10):1197-1209.
    [10]Pierre Richard. Reactive Powder Concrete:A new ultra-high strength cementitious material, In the 4th international symposium on utilization of high strength/high performance concrete. Paris.1996.1343-1349.
    [11]Marcel Cheyrezy, Vincent Maret, Laurent Frouin. Micro structural Analysis of RPC (Reactive Powder Concrete). Cement and Concrete Research.1995, 25(7):1491-1500.
    [12]Halit Yazici, MertYucei Yardimci, Serdard Aydm, etc. Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes[J].Construction and Building Materials,2009,23(3):1223-1231.
    [13]Halit Yazici. The effect of curing conditions on compressive strength of ultra high strength concrete with high volume admixtures[J].Building and Environment,2007,42(5):2083-2089.
    [14]Allan C.L.Wong, Paul A.Childs, Richard Berndt, etc. Simultaneous measurement of shrinkage and temperature of reactive powder concrete at early-age using fiber Bragg grating sensors[J]. Cement and Concrete Composites,2007, 29(6):490-497.
    [15]U.Schneider, U.Diederiehs, J.Horvath.Behaviour of Ultra High performance Concrete (UHPC) under fire exposure(abstract). Beton-und Stahlbetonbau 2003,98(7):408-417.
    [16]Chin-Tsung Liu, Jong-Shin Huang. Fire performance o f highly flowable reactive powder concrete.Construction and Building Materials,2009, 23(5):2072-2079.
    [17]O.Bayard, O.Ple.Fracure mechanics of reactive powder concrete: material modeling and experimental investigations [J].Engineering Fracture Mechanics, 2003,70(7-8):839-851.
    [18]V. Matte, M.Moranville. Durability of Reactive Powder Composites: influence of silica fume on the leaching properties of very low water/binder pastes. Cement & Concrete Composites,1999,21:1-9.
    [19]M. Castellote, L Llorente, C. Andrade, et al. Accelerated leaching of ultra high performance concretes by application of electrical fields to simulate their natural degradation [J]. Materials and Structures.2003,36(3):81-90.
    [20]Pierre Claude Aitcin. Pierre Richard. The Pedestrian/Bike way Bridge of Sherbrooke, In:the 4th international symposium on utilization of high strength/high performance concrete. Paris,1996.1399-1403.
    [21]Pierre Y. Blais, Marco Couture, "Precast, Prestressed Pedestrian Bridge-World's First Reactive Powder Concrete Structure",PCI Journal September-October 1999:60-71.
    [22]刘撕凤,孙伟,林玮,赖建中,掺天然超细混合料高性能混凝土的制备及耐久性研究,硅酸盐学报,2003,31(11):1080-1085.
    [23]蒲心诚, 王冲, 刘芳,等.特超强高性能混凝土的研制与展望[J],混凝土与水泥制品,2008,2008(2):1-5.
    [24]朱春银,张云升,高建明.超高性能混凝土的制备与物理力学性能研究 [J].混凝土与水泥制品,2010,2010(1):13-15.
    [25]李丽娟,谢伟锋,刘锋,等.100MPa超高强高性能混凝土的研配及其性能研究[J],混凝土,2007,2007(7):1-8.
    [26]郭佩玲,史冬青,朱新强,等.C100超高强泵送混凝土在沈阳远吉大厦工程中应用[J].混凝土,2003,2003(7):48-51.
    [27]顾国荣.广州西塔工程C100及C100自密实混凝土配制、生产及其超高泵送技术[J].混凝土世界,2009,2009(1):33-41.
    [28]敖长江.工业厂房扩建工程RPC构件预制施工技术[J].山西建筑.2005,31(18):127-128.
    [29]阎培渝,余成行.薄层活性粉末混凝土的现场免振捣浇筑施工[J].混凝土2009,2009(8):1-2.
    [30]檀军锋.活性粉末混凝土(RPC)在铁路预制梁工程中的应用[J].上海铁道建筑2007,2007(2):54-55.
    [31]鲍鲔.45场建筑特大火灾排行榜[J].中华民居,2009,2009(6):80-87.
    [32]Jon Axel Jonsson. Durability and temperature related characteristics of high-performance concrete:[A Thesis for the degree of PHD]. Purdue:Purdue University,2002
    [33]Cheng En Zhou. Nonlinear finite element analysis of reinforced concrete structures subjected to transient thermal loads. [A Thesis for the degree of MA]. Toronto:Toronto University,2004.
    [34]V. K. R. Kodur. Strategies for improving the performance of high-strength concrete columns under fire hazard[J]. STRUCTURAL CONTROL AND HEALTH MONITORIN,2008,2008(15):921-938.
    [35]Rovnanikova P, Bayer P, Rovnanik P, Novak J. Properties of alkali activated aluminosilicate materials with fire resistant aggregate after high temperature loading. Cement Combinations for Durable Concrete, Proceedings of the International Conference, Dundee, U.K.,2005.
    [36]吴波,唐贵和.近年来混凝土结构抗火研究进展[J],建筑结构学报,2010,31(6):110-121.
    [37]PHAN L T.Pore pressure and explosive spalling in concrete[J].Materials and Structures,2008(41):1623-1632.
    [38]C.E.Majorana, F. Pesavenio. Damage and spalling in HP and UHF concrete at high temperature (abstract). Structures and Materials, v6, Damage and Fracture Mechanics V1:Computer Aided Assessment and Control,2000, pp.105-117.
    [39]李丽娟,谢伟锋,刘锋,等.100 MPa高强混凝土高温后性能研究[J].建筑材料学报,2008,11(1):100-104.
    [40]刘红彬,李康乐,鞠杨,等.钢纤维活性粉末混凝土的高温爆裂试验研究[J].混凝土,2010,2010(8):6-8.
    [41]杨少伟,刘丽美,王勇威,等.高温后钢纤维活性粉末混凝土SHPB试验研究[J].四川大学学报,2010,42(1):25-29.
    [42]杨少伟, 巴恒静,杨英姿.钢纤维活性粉末混凝土高温后动态压缩性能研究[J].低温建筑技术,2009,2009(3):1-3.
    [43]庞宝君,王立闻,何丹薇,等.活性粉末混凝土高温后的扫描电镜试验研究[J].混凝土,2010,2010(12):27-30.
    [44]陈强.高温对活性粉末混凝土高温爆裂行为和力学性能的影响:[硕士学位论文].北京:北京交通大学,2010.
    [45]M.Behloul, G.Chanvillard, P.Casanova.G.Orange.FIRE RESISTANCE OF DUCTAL ULTRA HIGH PERFORMANCE CONCRETE. Development of new materials, Session7,PR421-430.
    [46]王冲,材料Liza O'Moore.超高强微钢纤维增韧混凝土的制备及其力学性能研究[J].土木工程学报,2009,42(6):1-7.
    [47]刘日鑫,胶粉/废砂/水泥混凝土材料的研究:[博士学位论文],昆明:昆明理工大学.2007.
    [48]吴炎海,林震宇.钢管活性粉末混凝土轴压短柱受力性能试验研究[J],中国公路学报,2005,18(1):57-62.
    [49]钟善桐.钢管混凝土[M].北京:清华大学出版社.2003.第三版.1-80.
    [50]G. Campione 1, L. La Mendola I, L. Sanpaolesi, el al. Behavior of fiber reinforced concrete-filled tubular columns in compression[J]. Materials and Structures.2002.35(7):332-337.
    [51]中国工程建设标准化协会标准CECS28:90.钢管混凝土结构设计与施工规程[S].北京:中国计划出版社,1990.
    [52]中国工程建设标准化协会标准CECS104:99高强混凝土结构技术规程[S].北京:中国计划出版社,1999.
    [53]Eurocode 4 Design of composite steel and concrete structures[S],1994.
    [54]BS 5400-5 Stee,l concrete and composite bridges[S].British Standards Institution,1979.
    [55]Yan Peiyu,Feng Jianwen.Mechanical Behaviour of UHPC and UHPC Filled Steel Tubular Stub Columns. Proceedings of 2nd International Symposium on Ultra High Performance Concrete 355-364,5-7 March 2008,Kassel Germany.
    [56]孟世强,陈广智,覃维祖.钢管活性粉末混凝土初步研究[J].混凝土与水泥制品,2003,2003(1):5-8.
    [57]张静,钢管活性粉末混凝土短柱受力学性能研究研究:[硕士学位论文],福州:福州大学,2003.
    [58]杨吴生,钢管活性粉末混凝土力学性能及其极限承载力研究:[硕士学位论文],长沙:湖南大学,2003.
    [59]吴捧捧.自密实钢管RPC柱基本力学性能研究:[硕士学位论文].北京:北京交通大学,2010.
    [60]田志敏,张想柏,冯建文,等.钢管超高性能RPC短柱的轴压特性研究[J].地震工程与工程振动,2008,28(1):99-107.
    [61]冯建文.钢管活性粉末混凝土柱的力学性能研究:[硕士学位论文].北京:清华大学,2008.
    [62]谭克锋,蒲心诚,蔡绍怀.钢管超高强混凝土的性能与极限承载能力[J].建筑结构学报,1999,20(1):10-20.
    [63]谭克锋,蒲心诚.钢管超高强混凝土长柱和偏压柱的性能与极限承载力的研究[J].建筑结构学报.2000,21(2):12-19.
    [64]林拥军,程文瀼,徐明,等. 配有圆钢管的钢骨混凝土柱轴压比限值的试验研究[J].土木工程学报.2001,34(6):23-28.
    [65]康洪震,钱稼茹.钢管高强混凝土组合柱轴心抗压数值分析[J],混凝土,2009,2009(7):4-10.
    [66]蔡健,谢晓锋,杨春等.核心高强钢管混凝土柱轴压性能的试验研究[J].华南理工大学学报(自然科学版),2002,30(6):81-85.
    [67]龙跃凌,蔡健.核心高强钢管混凝土组合柱轴压承载力计算新方法[J].华南理工大学学报(自然科学版),2010,38(11):26-31.
    [68]杨春,蔡健,张学文,等.劲性钢管混凝土组合柱轴压性能试验研究[J].东南大学学报(自然科学版),2002,32(5):715-718.
    [69]聂建国,柏宇,李盛勇等.钢管混凝土核心柱轴压组合性能分析[J].土木工程学报,2005(9):9-13.
    [70]聂建国,赵洁,柏宇等.钢管混凝土核心柱轴压极限承载力[J].清华大学学报(自然科学版)2005(9):1153-1156.
    [71]陈周熠,易伟建,赵国藩,等.带圆钢管的劲性高强混凝土轴压短柱的承载力及可靠度分析[J].湖南大学学报(自然科学版),2005,32(4):6-11.
    [72]幸坤涛,赵国藩,岳清瑞.高强钢管混凝土核心柱轴压短柱的承载力研究[J].钢结构,2002,17(57):18-21.
    [73]幸坤涛,赵国藩,易伟建.带圆钢管劲性高强混凝土轴压短柱试验研究[J].大连理工大学学报,2005,45(5):687-691.
    [74]周君,楼文娟,孙军华.内配圆钢管的钢骨混凝土核心柱承载性能参数分析[J].工程力学.2007,24(7):128-133.
    [75]Kodur V K R. Performance of high strength concrete-filled steel columns exposed to fire[J], Canadian Journal of Civil Engineering,1998,1998, 25(7):975-981.
    [76]Kour V K R,Sultan M A. Enhancing the fire resistance of steel columns through composite construction [C]. Proceedings of the 6th ASCCS Conference ASCCS, Los Angels, U.S.A:279-286.
    [77]Lie T T. Fire resistance of circular steel columns filled with bar-reinforced concrete[J]. Journal of the structural Engineering,1994,120(5): 1489-1509.
    [78]Patterson N L, Zhao X L, Wong B M, ect, al. Elevated temperature testing of composite columns[J].Advances in Steel Structures, Chan,S L and Teng,J.G.(eds),EIsevier, Oxford:1045-1054.
    [79]European Committee for Standardisation(CEN) pr EN 1994-1-2, Eurocode 4:Design of composite steel and concrete structures part 1.2:Structure fire design,British Standards Institute, London,2001
    [80]韩林海.钢管混凝土结构—理论与实践[M].北京:科学出版社,2007.
    [81]韩林海,贺军利.钢管混凝土柱耐火性的试验研究[J].土木工程学 报,2000,33(3):31-35,63.
    [82]韩林海,杨有福,霍静思.钢管混凝土柱火灾后剩余承载力的试验研究[J].工程力学,2001,18(6):100-109.
    [83]冯九斌,韩林海等.钢管高强混凝土轴压柱耐火极限的试验研究[J].消防科学与技术,2001,20(1):7-9.
    [84]韩林海,霍静思.火灾作用后钢管混凝土柱的承载力研究[J].土木工程学报,2002,35(4):25-35.
    [85]林晓康.火灾后钢管混凝土压弯构件的滞回性能研究:[博士学位论文].福州:福州大学.2006.
    [86]丁发兴,余志武.恒高温后圆钢管混凝土轴压短柱弹塑性分析[J].建筑科学与工程学报,2006,23(1):34—38.
    [87]姜绍飞,于清海,李跃武.高温后方钢管混凝土双向压弯构件的承载力计算方法[J].沈阳建筑大学学报(自然科学版),2009,25(3):495—499.
    [88]姜绍飞,牛德生,于清海.高温后矩形钢管混凝土双向压弯构件力学性能试验研究[J],建筑结构学报2008,29(5):13-19.
    [89]金伟良,袁伟斌.离心钢管混凝土短柱火灾下与火灾后的极限承载力[J].浙江大学学报(工学版),2006,40(7):1206-1210.
    [90]余鑫,陶忠.中空夹层钢管混凝土轴压短柱火灾后剩余承载力的试验研究[J].工业建筑,2009,39(4):9-13.
    [91]孙伟.现代混凝土材料的研究和进展[J].商品混凝土,2009,2009(1):1-6.
    [92]孙伟.现代混凝土材料与结构服役特性的研究进展[J].混凝土世界,2009,2009(1):20-30.
    [93]覃维祖.混凝土材料与结构在低碳经济新形势下的发展方向[J].施工技术,2010,39(3):6-7.
    [94]冯乃谦.高性能混凝土与超高性能混凝土的发展和应用[J].施工技术,2009,38(4):1-6.
    [95]蒲心诚.超高强高性能混凝土[M].重庆:重庆大学出版社,2004.8-60.
    [96]陈国灿.低碳超高性能石渣混凝土的配制技术研究[J],湘潭大学自然 科学学报,2010,32(4):58-63.
    [97]蔡基伟.石粉对机制砂混凝土性能的影响及机理研究:[博士学位论文].武汉:武汉理工大学,2006.
    [98]中华人民共和国国家质量监督检验检疫总局.GB/T146842001中华人民共和国国家标准.北京:中国标准出版社,2001-07-13.
    [99]陈国灿.低碳超高强石渣混凝土的抗火性能研究[J],武汉工程大学学报,2010,32(11):36-41.
    [100]陈国灿,徐志胜,杨智硕,等.钢管超高强石渣混凝土轴压短柱的静力性能试验研究[J],建筑结构学报,2011,32(3):82-89.
    [101]陈国灿.钢管聚丙烯纤维超高强石渣混凝土短柱的静力特性[J],武汉大学学报(工学版),2010,43(5):617-622.
    [102]蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社,2003.
    [103]陈国灿,徐志胜.预制钢管超高强石渣混凝土叠合柱的轴压试验[J],厦门大学学报(自然科学版),2010,49(6):819-825.
    [104]孙树,缪昌文,刘加平等.客运专线灌注桩高性能混凝土施工中常见的问题及解决措施[J].混凝土与水泥制品,2007,2007(4):14-17.
    [105]陈国灿,徐志胜.高温后钢管超高强石渣混凝土的轴压性能研究[J],三峡大学学报(自然科学版).2010,32(6):36-41.
    [106]郑文忠,李莉.活性粉末混凝土配制及其配合比计算方法[J].湖南大学学报(自然科学版),2009,36(2):13-17.
    [107]田予东,杜修力,李悦.超高强混凝土的配制及基本力学性能试验研究[J],混凝土,2008,2008(4):77-80.
    [108]吴中伟,廉惠珍.高性能混凝土[M],北京:中国铁道出版社1999.62-108.
    [109]邓聚龙.灰色预测与决策[M].武汉:华中科技大学出版社.2002.1-80.
    [110]陈国灿.低碳超高强石渣混凝土的力学性能试验研究[J],佳木斯大学学报(自然科学版),2010,28(5):693-697.
    [111]王睿,王信刚,齐瑞文.高性能混凝土的抗氯离子渗透性与耐久性评估[J].混凝土,2010,,2010(6):28-30.
    [112]Li G Q, Zhao Y, Pang S S. Four-phase Sphere Modeling of Effective Bulk Modulus of Concrete[J]. Cement and Concrete Research,1999,29(6):839-845.
    [113]Li G Q, Zhao Y, Pang S S, et al. Effective young's modulus estimation of concrete[J]. Cement and Concrete Research,1999,29(9):1455-1462.
    [114]过镇海,时旭东.钢筋混凝土的高温性能极其计算[M].清华大学出版社2003.1-30.
    [115]SIDERIS K K, MANITA P, PAPAGEORGIOU A, et al. Mechanical characteristic of High Performance Fiber reinforced concretes at elevated temperatures[R].ACI Special Publication,2006:212-60,973-988.
    [116]Venkatesh Kodur,Richard McGrath.Fire Endurance of High Strength Concrete Columns[J]. Fire Technology.2003,39(1):73-87.
    [117]Sammy Y. N. Chan t, Gai-fei Peng, and John K. W. Chan. Comparison between high strength concrete and normal strength concrete subjected to high temperature[J]. Materials and Structures.1996,29(10):616-619.
    [118]Chi-sun Poon, Hung Hom, Salman Azhar. Deterioration and Recovery of Metakaolin Blended Concrete Subjected to High Temperature[J].Fire Technology, 2003,39(1):35-45.
    [119]O. Kayali. Effect of high volume fly ash on mechanical properties of fiber reinforced concrete[J]. Materials and Structures.2004.37(6):318-327.
    [120]陈魁.试验设计与分析(第二版)[M].北京:清华大学出版社,2005.20-26.
    [121]陈国灿.聚丙烯纤维超高强石渣混凝土的力学性能研究[J],四川理工学院(自然科学版),201 1,24(1):14-17.
    [122]JCJ01——89钢管混凝土结构施工与验收规程[S].
    [123]中国工程建设标准化协会.CECS 188:2005.钢管混凝土叠合柱结构技术规程[S].北京:中国计划出版社,2005:6-46.
    [124]中华人民共和国国家标准编写组.GB50068-2001建筑结构可靠度设计统一标准[S].北京:中国建筑工业出版社,2001:1-7.
    [125]姜绍飞,刘明.高温后不同截面钢管混凝土轴压构件的实验研究[J].东北大学学报(自然科学版),2002,23(9):891-894.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700