用户名: 密码: 验证码:
基于UPFC的自愈配电环网及其潮流优化控制技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
供电可靠性用于表征供电系统持续供电的能力,是衡量电网性能的根本指标。传统的供电可靠性只关注停电时间大于3min的持续停电,对于短时间停电影响不大的传统负荷而言能够满足要求;而随着社会经济的发展,对供电可靠性要求较高的敏感设备得到了广泛应用,停电尤其短时停电引起的负荷损失越来越大。提高供电可靠性尤其解决短时停电问题已成为国内外电网企业乃至整个社会普遍关注的焦点。
     配电网处于电力系统的末端,直接面向用户,70%的负荷停电都源于中低压配电网故障,配电网是提高供电可靠性的关键环节。传统配电网一般遵循“闭环设计、开环运行”的原则,即使采用配网自动化等手段,依然无法解决负荷转供引起的短时停电;单电源配电环网配备差动保护技术,能够解决馈线故障引起的停电,但无法应对电源侧故障的影响;若采用双电源配电环网,能够同时应对电源侧以及馈线故障引起的停电问题,但需要采取潮流控制措施以解决循环功率过大导致的两侧电源出力不均甚至功率倒送问题,而传统的配电网潮流控制手段存在着调节次数、调节连续性等方面的弊端,无法及时有效保证配电环网的潮流控制效果。随着现代电力电子技术与先进控制理论的发展,统一潮流控制器(unified power flow controller, UPFC)在电力系统尤其输电系统中得到了成功应用,凭借其强大的潮流控制能力,能够有效提高系统运行稳定性、增强输电能力。若将其应用到配电网解决闭环运行潮流控制问题,技术上不存在难点,但需突破UPFC应用的经济性瓶颈。功率半导体技术的发展使得电力电子设备单位容量成本不断下降;且配电环网电压等级低、潮流调节量有限,所需UPFC容量较小;再者,停电对敏感负荷的损失巨大,用户关注的不仅仅是用电成本而更为关键的是停电损失,诸多因素均为UPFC应用到配电网创造了条件。
     本文从社会经济发展对提高供电可靠性的内在需求出发,以解决短时停电为核心目标,分别针对中低压自愈配电环网及其潮流控制技术进行研究。提出了基于中压双电源配电环网的故障无缝自愈供电系统实现方案,为保证环网稳定运行,利用UPFC对环网潮流进行控制,并着重对基于UPFC的中压配电环网潮流优化控制方法进行研究,以确保UPFC应用的经济性;针对低压多源并供系统存在的问题,提出了基于UPFC的低压母线潮流控制方法并初步进行了相关试验。具体研究内容如下:
     (1)中压双电源配电环网故障无缝自愈供电系统实现方法的研究。通过分析短时停电产生的原因以及传统供电可靠性提高措施存在的局限性,提出了基于UPFC的中压双电源配电环网故障无缝自愈供电系统实现方案,并与传统短时停电解决措施进行了技术经济性对比;给出了该供电系统的构成环节与关键实现技术,主要包括环网潮流控制技术与快速自愈保护算法两部分,而前者是确保系统稳定运行的前提。
     (2)基于UPFC的中压双电源配电环网潮流优化控制策略的研究。在分析中压配电环网潮流分布特征的基础上,得出了配电环网与输电网潮流控制机理之间的区别,给出了选择UPFC进行配电环网潮流控制的原因;为突破UPFC在中压配电网中应用的经济性瓶颈,在满足系统功率调节要求的前提下,分别提出了基于UPFC输出串联补偿电压最小、串联输出有功功率最小以及输出视在功率最小的潮流优化控制策略,从不同角度提高UPFC的应用经济性,建模仿真结果证明了三种优化方法的有效性。
     (3)基于UPFC的中压配电环网最优潮流控制策略的研究。推导出双电源配电环网中考虑网络损耗与节点电压偏差的最优潮流控制模型,并将该控制策略应用于含分布式电源的配电环网,仿真结果表明,网络损耗与节点电压能够得到进一步改善;为提高UPFC的经济性,构建了网络损耗、节点电压偏差与UPFC实现成本隶属函数,通过分配不同权值建立了潮流综合优化控制模型,实现了系统优化运行与UPFC应用经济性的有机结合;并对上述两种控制模型下的UPFC经济性进行了对比。
     (4)基于UPFC的低压多源并供系统潮流优化控制方法的研究。分析了低压多源并供点状网络的构成及其在提高供电可靠性方面的优势;推导出多个电源并供时各自的出力表达式,得到了电源出力与电压差、系统等值阻抗、低压负荷等诸多因素之间的关系,分析了导致电源出力不均衡甚至引起功率倒送的原因,提出了采用UPFC在低压母线侧进行潮流控制以均衡各电源出力的方法;针对系统参数未知情况,提出了基于扰动信号的阻抗参数在线辨识潮流优化控制方法,给出了参数辨识与潮流控制一体化实现流程;为使退出并供的电源能够及时满足并供操作条件,提出了基于UPFC的并供操作电压控制方法;简单给出了多源并供系统低压侧继电保护与基于UPFC的潮流控制之间的协调配合原则,以确保系统故障时UPFC能够主动配合继电保护动作,及时实现故障隔离;电源恢复正常后,UPFC能够主动进行电压控制,以确保待并入电源及时实现并供运行。
     (5)基于UPFC的潮流控制试验系统开发。结合实验室现有条件,设计开发了基于UPFC的物理试验系统,并针对低压多源并供点状网络进行了稳态潮流控制和并供操作电压控制试验,初步试验结果表明,该方式能够有效均衡电源出力、灵活控制并供操作点电压;且利用较小的UPFC容量即可实现大范围的系统潮流调节,并具有较高的调节精度。
     总之,本文提出的故障自愈配电环网供电系统能够有效解决短时停电问题;而基于UPFC的潮流优化控制方法在均衡潮流分布、确保环网系统稳定运行的基础上,能够有效提高UPFC应用的经济性。本文的研究为智能电网尤其智能配电网实现故障“无缝自愈”目标,提供了一种新的实现思路和方法。
The power supply reliability, which is the core index to reflect the performance of power system, characterizes the keeping power ability. The duration interruption (more than3min) is focused on in the traditional reliability evaluation code, which could meet the requirement of normal load that is lightly affected with poor power reliability. But with the development of digital economy, sensitive equipments to the interruption have been widely used and the load loss caused by interruption especially by the temporary interruption is enormous. So improving the reliability and particularly solving the temporary interruption has become the attention focus by the power enterprises and even the whole society.
     Distribution network lies in the end of power system, facing to the load directly, and70%of interruption is caused by fault in the distribution system, so the distribution is the key link to improve the supply reliability. Generally, distribution network is designed in closed loop and operated in open loop. Even though the advanced technical measure is taken, such as distribution automation system, the temporary interruption caused by the load transfer couldn't be avoided. Closed loop distribution network with single source could solve the fault in the feeder based on the differential protection, but it is helpless against the source fault. The closed loop distribution system with dual sources could cope with fault in the feeder and sources, in which there might be much circle power or even reverse power. But the traditional power flow control methods have some shortcomings, such as adjusting frequency and continuity, which couldn't ensure the controlling effect. With the development of power electronic and advanced control theory, UPFC is applied successfully in the transmission system, which could improve the system stability and transmission ability. If UPFC is used in the distribution system, the key issue is not technology but economy. With the development of power semiconductor technology, the unit cost has been reduced gradually. Moreover, the needed capacity of UPFC is limited because the power flow in the distribution system is relatively less than that in the transmission system. More importantly, interruption could bring about huge losses on sensitive load, and the electric customers pay more attention to the interruption loss than to the electricity consumption. Thus many positive factors have created conditions for the UPFC to be applied in the distribution.
     From the internal demand of digital economy to improve the power supply reliability, the fault self-healing supply system and it's power flow control method in the low and medium voltage distribution network is studied in this thesis.The fault seamless self-healing system of medium voltage closed-loop distribution with dual sources is presented to solve the temporary interruption, and the power flow is adjusted by UPFC to ensure the stable operation of the closed-loop system. The optimal control method of power flow is the focus to ensure the application economy of UPFC. A power flow control method of the low-voltage bus is presented based on UPFC to decrease the reverse power in the spot network with multi low-voltage sources parallel supplying. The main contents are as following.
     (1) Research on the fault seamless self-healing system of the medium voltage closed-loop distribution network with dual sources. Based on the analysis of the reason of temporary interruption and the limitation of the traditional measurement to improve the supply reliability, the fault seamless self-healing system of the medium voltage closed-loop distribution network with dual sources is presented, compared with the traditional method in technology and economy. The constitution and the key technology is given, including the power flow control method and the fast self-healing algorithm. And the control of power flow is the foundation to ensure the stable operation of the system.
     (2) Research on the optimal control strategy of the power flow in the medium voltage distribution system with closed-loop operation based on UPFC. The characteristic of power flow in the closed-loop distribution network is deduced and the difference between the distribution and transmission system is analyzed. Against the traditional power flow control measurement, the control method based on UPFC is presented, as the foundation of closed loop operation. In order to break the neck bottle of UPFC's application economy, with the precondition of adjusted demand on power flow of the system, the optimal power flow control strategy based on UPFC is studied. And three optimal strategies are presented, including the minimum compensated voltage, the minimum active power, the minimum capacity of UPFC, thus ensuring the economy from various angles. And the simulation results prove the validity of the presented methods.
     (3) Research on the optimal power flow control method based on UPFC. The optimal power flow model considering the loss and nodal voltage in the closed loop distribution network is deduced, which is available for the active distribution system. And the simulation results prove that the loss and nodal voltage could be further improved. In order to combine the economy of UPFC application with the optimal power flow, the membership function of the loss, nodal voltage and UPFC's cost is designed individually. And the comprehensive objective function is founded by weighted average, transforming the multi-objective problem into a single-objective one. And the application economy of UPFC with above strategies is compared.
     (4) Research on the power flow control method of the spot network with multi low-voltage sources parallel operation system based on UPFC. The constitution of spot network and it's advantages in improving supply reliability are introduced. The output power expression of any source is deduced, describing the relationship between the output of the source with source voltage, system equivalent impedance and load at the low voltage bus. The reason causing the unbalanced output power, even reverse power is analyzed and the power flow control method at the low voltage bus based on UPFC is presented to balance the output power among the sources. In case the system parameter is unknown, the parameter identification based on disturbing signal on line and power control method is presented. In order to ensure the exited source to operate in parallel in time, the control method of the parallel spot voltage is introduced based on UPFC. And the simple match principle between the power flow control and protective relay is presented, ensuring the normal operation of multi sources in parallel and the exited source going back to work in time.
     (5) The development of testing system based on UPFC. Considering the laboratory condition, the physical experimental platform is designed and relative experiment about stable power flow control and voltage control as operating to parallel in the spot network is carried out. The results show that this method could balance the output power, and adjust the voltage at the parallel operation spot flexibly. Besides, a significant amount of power could be adjusted by a little of UPFC's capacity with high accuracy.
     In a word, the fault seamless self healing system of the closed loop distribution network with dual sources could avoid the temporary interruption effectively, and the power flow control method considering the economy of UPFC could balance the power flow distribution, establishing the foundation for the normal closed loop distribution network and spot network to operate stably. The research conclusion of this thesis offers a new solution to improve the supply reliability and achieve the fault seamless self-healing target for smart grid, especially for smart distribution grid.
引文
[1]徐丙垠,李天友,薛永端.智能配电网与配电自动化[J].电力系统自动化.2009,33(17):38-41
    [2]Kristina Hamachi LaCommare and Joseph H. Eto. Cost of Power Interruptions to Electricity Consumers in the United States (U.S.) (EB/OL), http://eetd.lbl.gov/ea/EMS/EMS_pubs.html
    [3]EPRI's Consortium for Electric Infrastructure for a Digital Society. The Cost of Power Disturbances to Industrial & Digital Economy Companies[R],2001
    [4]中华人民共和国电力行业标准.供电系统用户可靠性评价规程(送审稿)[Z].国家能源局.2010
    [5]陶顺,肖湘宁,刘晓娟.电压暂降对配电系统可靠性影响及其评估指标的研究[J].中国电机工程学报,2005,25(21):63-69
    [6]王平,余昆,李振坤,陈星莺,等.采用多代理技术提高高压配电网的供电可靠性[J].中国电机工程学报.2009,29(S1):50-54
    [7]余贻鑫,栾文鹏.智能电网述评[J].中国电机工程学报.2009,29(34):1-8
    [8]刘健,负保记,崔琪,等.一种快速自愈的分布式智能馈线自动化系统[J].电力系统自动化.2010,34(10):62-66
    [9]Li Bin, Yu Xuan, Bo Zhi-qian, etc. Investigation of protection schemes for closed loop distribution network with distributed generators[J]. Automation of Electric Power Systems. 2010,34(7):79-84
    [10]Kun-Yuan Shen, Jyh-Cherng Gu. Protection Coordination analysis of closed-loop distribution system[C]. Power Con,2002
    [11]Tsai-Hsiang Chen, Wei-Tzer Huang, Jyh-Cherng Gu, etc. Feasibility study of upgrading primary feeders from radial and open-loop to normally closed-loop arrangement[J]. IEEE Trans. on Power Systems,2004,19(3):1308-1316.
    [12]Xu Bingyin, Gao Mengyou, Enrique Spitze. Self-healing of MV Distribution Network Based on Distributed Control[C]. International Congress on Electricity Distribution. Buenos Aires, Argentina,2010.9.
    [13]杨志栋,刘一,张建华,等.北京10KV配网合环试验与分析[J].中国电力.2006,39(3):66-69
    [14]叶清华,唐国庆,王磊,等.配电网合环操作环流分析系统的开发和应用[J].电力系统自动化.2002,26(22):66-69
    [15]赵建军,郭剑波,周孝信.利用附加节点注入电流法设计静止同步串联补偿器的潮流控制器[J].中国电机工程学报.2005,25(23):1-6
    [16]唐爱红.统一潮流控制器运行特性及其控制的仿真和实验研究[D].武汉:华中科技大学,2007
    [17]黄方能,黄成军,陈陈,等UPFC稳定控制器的研究及应用[J].电力自动化设备.2009,29(3):101-105
    [18]Mahmoud A. Sayed, Nobuyuki Inayoshi, Takaharu Takeshita,etc.Line loss minimum control of loop distribution systems using UPFC[J]. IEE Trans. on Industry Applications. 2008,128(4):508-515
    [19]Y. Hanai, Y. Hayashi, J. Matsuki. Voltage control for a loop distribution system with renewable energy sources[C]. International Conference on Renewable Energies and Power Quality. 2010
    [20]Sayed, M.A., Takeshita, T. All nodes voltage regulation and line loss minimization in loop distribution systems using UPFC[C]. Energy Conversion Congress and Exposition.2009
    [21]宋云亭,张东霞,吴俊玲,彭冬,等.国内外城市配电网供电可靠性对比分析[J].电网技术,2008,32(23):13-18
    [22]范明天.我国与国外城市电网供电安全性标准的比较[J].供用电.2007,24(5):5-7
    [23]周莉梅,范明天.城市电网用户停电损失估算与评价方法的研究[J].中国电力.2006,39(7):70-73
    [24]Turan Gonen. Electric power distribution system engineering(second edition)[M]. CRC Press,2007
    [25]T.A. Short. Electric power distribution handbook[M]. CRC Press,2004
    [26]徐政译.配电可靠性与电能质量[M].北京:机械工业出版社.2008,6
    [27]肖湘宁.电能质量分析与控制[M].北京:中国电力出版社.2004
    [28]IEEE Standard 1366, IEEE guide for electric power distribution reliability indices.
    [29]EN-50160, Voltage characteristics of electricity supplied by public distribution systems.
    [30]IEEE-std.1159-95, Recommended practice for monitoring electric power quality,1995
    [31]IEEE-std.1250-95, IEEE Guide for Service to Equipment Sensitive to Momentary Voltage Disturbances,1995
    [32]2008城市供电可靠性[R].中国电力可靠性管理中心,2009.5
    [33]徐丙垠,李天友.配电自动化若干问题的探讨[J].电力系统自动化,2010,34(9):81-86
    [34]胡小正,王鹏.2009年全国城市用户供电可靠性现状分析[J].供用电.2010,27(5):15-18+30
    [35]WATON C M, FRIEL R. Benefits of large scale urban distribution networks automation and their role in meeting enhanced customer expectation and regulatory regimes[C]. Proceedings of the 16th International Conference & Exhibition on Electricity Distribution, Amsterdam, Netherlands,2001
    [36]Billinton R, Allan R N. Reliability evaluation of power systems (second edition) [M]. New York and London:Plenum Press,1996
    [37]EPRI EL-2018,RP-1356-1. Development of distribution system reliability and risk analysis models[R]. Pittsburgh, PA (USA),1981.
    [38]Willis H L. Power distribution planning reference book[M]. New York: Marcel Dekker, 2004:1-10.
    [39]Richard E B. Electric power distribution reliability[M]. New York:Marcel Dekker,2002:2-8
    [40]李天友,赵会茹,乞建勋,欧大昌.短时停电及其影响分析[J].中国电力.2012,45(5):48-51
    [41]张子富.化工企业连续供电方式的实现[J].电气应用.2006,25(6):95-98
    [42]王松岑,于坤山,汤广福.10kV固态电源切换开关的研制[J].电力电子技术.2008,42(3):37-38+56
    [43]韩民晓,尤勇,刘昊.线电压补偿型动态电压调节器DVR的原理与实现[J].中国电机工程学报.2003,23(12):49-53
    [44]N. H.Woodley, L.Morgan, A.Sundaram. Experience with An Inverter-Based Dynamic Voltage Restorer[J]. IEEE Trans. On Power Delivery,1999,14(3)
    [45]黄瀚,杨潮,等.配电网动态电压调节器控制策略的研究[J].电网技术.2002,26(1):1-4
    [46]Arindam Ghosh, Amit Kumar Jindal, Avinash Joshi, Design of a capacitor-supported dynamic voltage restorer (DVR) for unbalanced and distorted loads[J]. IEEE transactions on power delivery,2004,19(1):405-413
    [47]赵艳雷.动态电压恢复器逆变单元的研究与实现[D].北京:中国科学院电工研究所,2006
    [48]周静,韦统振,赵艳雷,齐智平.低压配电网中单相动态电压恢复器与电力系统之间的能量流动[J].电力自动化设备.2010,30(4):26-30
    [49]李天友,金文龙,徐丙垠.配电技术[M].北京:中国电力出版社.2008
    [50]孙福杰,何俊佳,邹积岩.基于重合器和分段器的10 kV环网供电技术的研究与应用[J].电网技术.2000,24(7):33-36
    [51]刘健,张伟,程红丽.重合器和电压—时间型分段器配合的馈线自动化系统的参数整定[J].电网技术.2006,30(16):45-49
    [52]徐丙垠.馈线自动化技术[J].电网技术.1998,22(3):54-60
    [53]刘健,倪建立,邓永辉.配电自动化系统[M].北京:中国水利水电出版社,1999
    [54]陈盛燃,邱朝明.国外城市配电自动化概况及发展[J].广东输电与变电技术.2008,(4):64-67
    [55]刘东,丁振华,滕乐天.配电自动化实用化关键技术与进展[J].电力系统自动化.2004,28(7):16-19
    [56]P.M.Van Oirsovw, F.Provoost. Fault location in MV distribution networks[C].19th International Conference on Electricity Distribution. Barcelona, May 2003.
    [57]Juancarlo Depablos. Internet Peer-to-Peer Communication Based Distribution Loop Control System[C]. MSC thesis of Virginia Tech Polytechnic Institute. May 2003
    [58]袁钦成.配电系统故障处理自动化技术[M].北京:中国电力出版社,2007.
    [59]董新洲,施慎行,王宾,等.新型配电线路自动化模式[J].电力系统及其自动化学报,2007(3):78-80.
    [60]Waton C M, Friel R. Benifits of Large Scale Urban Distribution Network Automation and Their Role in Meeting Enhanced Customer Expectation and Regulator Regimes[C].16th International Conference on Electricity Distribution. Amsterdam, June 2001.
    [61]任震,邹兵勇,万官泉,黄雯莹.考虑馈线自动化的用户停电时间计算[J].电力系统及其自动化学报.2005,17(5):42-46.
    [62]Kariuki K K, Allan R N. Evaluation of Reliability Worth and Value of Lost Load[J]. IEE Proceedings Generation, Transmission, Distribution. Vol.143, No.2, March 1996. p171-180.
    [63]周莉梅,范明天.城市电网用户停电损失估算与评价方法的研究[J].中国电力.2006,39(7):70-73.
    [64]IEEE Application Guide for IEEE Std 1547, IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems,2003
    [65]IEEE Application Guide for IEEE Std 1547, IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems,2008
    [66]肖湘宁,陶顺,徐永海译.电能质量手册[M].北京:中国电力出版社.2010,3
    [67]Power distribution systems[R]. EATON,2011,9
    [68]Spot network substation (EB/OL). http://en.wikipedia.org/wiki/Spot_network_substation
    [69]Kariuki K K, Allan R N. Evaluation of Reliability Worth and Value of Lost Load[J]. IEE Proceedings Generation, Transmission, Distribution.1996,143(2):171-180.
    [70]国家电网公司Q/GDW370-2009城市配电网技术导则[Z].2009
    [71]中国南方电网有限责任公司.Q/CSG10012-2005中国南方电网公司城市配电网技术导则[Z].2005
    [72]范明天,张祖平,岳宗斌译.配电网络规划与设计[M].北京:中国电力出版社,1999
    [73]黄维泽.配电馈线由放射型升级为常闭环路型之研究[D].台湾:国立台湾科技大学,2005.
    [74]宣科,张富刚,李传虎,祝洪博.配电网合环操作决策支持系统的开发与研究[J].供用电.2010,27(1):30-32+48
    [75]龙娓莉.配电网合环操作的研究及决策软件的开发[D].北京:华北电力大学(北京),2005
    [76]吴长兰,孙朝晖,李继森.配电网的合环运行[J].农村电气化.2009(1):15-16
    [77]陈霄,王磊,李扬.配电网合环冲击电流的分析[J].电力自动化设备,2005,25(4)40-42.
    [78]谢清锐.深圳供电局10 kV配电网合环试验分析[J].广东电力.2010,23(3):60-62
    [79]孙宏斌,张伯明,相年德.配电潮流前推回推法的收敛性研究[J].中国电机工程学报.1999,19(7):26-29
    [80]强兴华.地区电网合环操作的潮流近似计算[J].江苏电机工程.2002,21(5):39-40
    [81]付轲,蔡泽祥,邱建,邹俊雄.10kV电网电磁合环操作安全性评估方法[J].电力系统及其自动化学报.2010.22(4):71-76
    [82]邹俊雄,周冠波,付轲,蔡泽祥.10kV配网合环转电计算模型与试验分析[J].电力系统保护与控制.2010,38(8):144-148
    [83]钱兵,程浩忠,杨镜非,等.电网合环辅助决策软件研究[J].电力自动化设备,2002,22(3):8-11.
    [84]葛少云,李晓明.基于戴维南等值的配电网合环冲击电流计算[J].电力系统及其自动化学报,2007,19(6):124-127.
    [85]曹亮,孔峰,陈昆薇.一种配电网的实用潮流算法[J].电网技术,2002,26(11):58-60.
    [86]刘磊,禹化然,金鑫.合环潮流的暂态过程分析[J].机电工程.2008,25(10):74-76
    [87]李晓柯,李祥发.配电网合环冲击电流的暂态过程分析与仿真[J].机电工程.2010,27(5):67-70
    [88]车仁飞,李仁俊.一种少环配电网三相潮流计算新方法[J].中国电机工程学报,2003,23(1):74-79
    [89]陈根军,王磊,唐国庆.一种求解环状配电网潮流的有效算法—两阶段法[J].电力系统及其自动化学报,2001,13(5):5—9
    [90]王秀云,杨劲松,熊谦敏,张迎新.一种配电网合环实用潮流算法[J].电力系统保护与控制.2009,37(6):23-26+31
    [91]夏翔,熊军,胡列翔.地区电网的合环潮流分析与控制[J].电网技术,2004,28(22):76—80.
    [92]Chao-Shun Chen, Cheng-Ta Tsai, Chia-Hung Lin, Wei-Lin Hsieh, etc. Loading Balance of Distribution Feeders With Loop Power Controllers Considering Photovoltaic Generation [J]. IEEE Transactions on Power System.2011,26(3):1762-1768
    [93]Xu, Bingyin; You, Weihan; Ma, Shicong; Gao, Mengyou; Gale, Phil, Fault location of active network based on the phase angle comparison of fault currents[C].10th IET International Conference on Developments in Power System Protection.DPSP 2010,Manchester, United kingdom.2010,3
    [94]Amit Jain, Karan Joshi, Aman Behal, and Ned Mohan. Voltage Regulation with STATCOMs: Modeling, Control and Results[J]. IEEE Trans.Power Delivery,2006,21(2):726-735
    [95]Zhengping Xi, Babak Parkhideh, and Subhashish Bhattacharya. Improving Distribution System Performance with Integrated STATCOM and Supercapacitor Energy Storage System[C]. Power Electronics Specialists Conference(PESC), Rhodes-Greece,2008.
    [96]Hideaki Fujita, Hirofumi Akagi. Voltage-Regulation Performance of a Shunt Active Filter Intended for Installation on a Power Distribution System[J]. IEEE Trans. Power Electronics, 2007,22(3):1046-842
    [97]Yasser Abdel-Rady, Ehab F. El-Saadany. A Control Method of Grid-Connected PWM Voltage Source Inverters to Mitigate Fast Voltage Disturbances[J] IEEE Trans. Power systems, 2009,24(1):489-491
    [98]Yasser Abdel-Rady, Ehab F. El-Saadany. A Control Scheme of the DG Interface for Fast Load Voltage Regulation and Effective Mitigation of Unbalanced Voltage Disturbances[C]. Power Electronics Specialists Conference(PESC), Rhodes-Greece,2008.
    [99]Osman S. Senturk, Ahmet M. Hava. High Performance Harmonic Isolation and Load Voltage Regulation of the Three-Phase Series Active Filter Utilizing the Waveform Reconstruction Method[C]. Industry Applications Society Annual Meeting (IAS'08), Alberta-Canada,2008.
    [100]Seyed Hosseini, Mohammed Reza Banaei. Performance of Active Power Line Conditioner for Loss Reduction in the Power Distribution System[C]. TENCON 2004, Chiang Mai, Thailand, 2004.
    [101]Takaharu Takeshita, Yuji Hayashi, Nobuyuki Matsui. Load Voltage Compensation Using Series-Shunt Power Converter[J]. Trans. IEE Japan.2000,120(5):725-732
    [102]Rejeki Simanjorang, Yushi Miura, Toshifumi Ise. A Series Type BTB Converter for Controlling Voltage Profile in Loop Distribution System with Distributed Generations[J]. Trans. IEE Japan,2008,128(5):769-778
    [103]唐爱红,卢俊,周新民,等.基于UPFC的配电网线路损耗控制研究[J].武汉理工大学学报.2011,33(8):142-146
    [104]Mahmoud A. Sayed, Nobuyuki Inayoshi, Takaharu Takeshita. Series Compensation for Voltage Regulation and Line Loss Minimization of Loop Distribution Systems Using UPFC [C]. Technical Meeting on Semiconductor Power Converter and Industry Electric and Electronic Application, IEE Japan,2007.
    [105]Mahmoud A. Sayed, Takaharu Takeshita. All Nodes Voltage Regulation and Line Loss Minimization in Loop Distribution Systems Using UPFC[J]. IEEE Transactions on Power Electronics,2011,26(6):1694-1703
    [106]Naotaka Okada, Hiromu Kobayashi, Kiyoshi Takigawa, Masahide Ichikawa, Kosuke Kurokawa. Loop Power Flow Control and Voltage Characteristics of Distribution System for Distrbuted Generation Including PV System[C].3rd World Conference on Photovoltaic Energy Conversion,2003:2284-2287.
    [107]Naotaka Okada. Verification of Control Method for a Loop Distribution System Using Loop Power Flow Controller[C]. Power Systems Conference and Exposition(PSCE), Atlanta-USA, 2006.
    [108]Naotaka Okada,Takasaki M., Sakai H., Katoh S., Development of a 6.6 kV-1 MVA Transformerless Loop Balance Controller[C]. Power Electronics Specialists Conference(PESC), Florida-USA,2007.
    [109]赵渊,杨晓嵩,谢开贵.UPFC对电网可靠性的灵敏度分析及优化配置[J].电力系统自动化.2012,36(1):55-60
    [110]Shaheen, H.I., Rashed, G.I., Cheng, S.J. Optimal location and parameters setting of unified power flow cont roller bas ed on evolutionary optimization techniques[C]. Proceedings of IE EE Power Engineering Society General Meeting, Tampa, FL, USA,2007
    [111]李立,鲁宗相,邱阿瑞.基于新负荷削减模型的UPFC优化配置[J].电力系统自动化.2010.34(13):6-10+15
    [112]Cai L.J., Erlich I., Stamtsis G.. Optimal choice an d allocation of FACTS devices in deregulated electricity market using genetic algorithms [C]. Proceedings of 2004 Power Systems Conference and Ex posit ion, NewYork,2004
    [113]于晓军,王丽敏.基于蒙特卡洛法的FACTS最优配置及其对发输电系统可靠性影响[J].电网与清洁能源.2011,27(7):31-35
    [114]Habur K, O'Leary. DFACTS:flexible alternating current transmission system, for cost effective and reliable transmission of electrical energy[R]. Erlangen, Germany:Siemens Power Transmission and Distribution Group,2005.
    [115]钱峰,汤广福,贺之渊.基于智能帕雷托解的FACTS装置多目标优化配置[J].中国电机工程学报.2010,30(22):57-63
    [116]董力.基于可靠性成本/效益分析的FACTS元件优化配置模型研究[D].重庆:重庆大学,2011
    [117]仲跻极,杜松怀,苏娟.考虑FACTS及成本的输电阻塞管理方法[J].现代电力.2009,26(2):80-84
    [118]刘方.关于电力系统动态最优潮流的几种模型与算法研究[D].重庆:重庆大学,2007
    [119]梁伟宸,唐爱红.分布式电源的配电网重构和电容器优化投切[J].中国电力.2011,44(8):26-30
    [120]S.Y.Ge,T.S.Chung. Optimal active power flow incorporating power flow control needs in flexible AC transmission systems [J]. IEEE Trans on Power Systems,1999,14(2):738-744
    [121]Carsten Lehmkoster. Security constrained optimal power flow for an economical operation of FACTS-devices in liberalized energy markets [J]. IEEE Trans on Power Systems, 2002,17(2):603-608
    [122]阎博,藏玉清,江道灼,吴兆麟,等.限流式统一潮流控制器的动态分析与实验[J].电力系统自动化.2012,36(13):101-105.
    [123]阎博,江道灼,吴兆麟,藏玉清,等.具有短路限流功能的统一潮流控制器设计[J].电力系统自动化.2012,36(4):69-73.
    [124]王首相,王成山.现代配电系统分析[M].北京:高等教育出版社,2007.
    [125]徐政.瞬时功率理论及其在电力调节中的应用[M].北京:机械工业出版社.2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700