用户名: 密码: 验证码:
隔水管涡激振动抑制装置的流动控制实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陆地资源的日益衰竭使得海洋资源的开发力度越发引人关注。当波浪、海流流经隔水管时,在一定的流速下会使得隔水管尾迹产生周期性漩涡脱落,当隔水管的固有频率与漩涡脱落频率接近时会产生涡激振动现象。隔水管在持续涡激振动的作用下,会产生疲劳破坏,从而严重影响海洋作业,甚至带来严重的工程和环境事故。因此,针对隔水管涡激振动所提出的不同抑制装置的基础研究有重要的理论和实际意义。
     本文根据流动相似原理,通过与水洞实验及CFD计算结果的比较,验证了风洞实验作为隔水管流动控制研究手段的可行性。固定分离盘和附属管风洞实验和水洞实验结果比较显示在仅研究隔水管动力学特性及漩涡脱落的情况下,即将隔水管模型主体设置成固定安装,不考虑流体涡泄变化引起的振动,风洞实验与水洞实验的结果有很好的流动相似性。而附属管风洞实验和以水为介质的CFD计算结果也相差不大,变化趋势和范围基本一致,比较结果从侧面验证了此方案的可行性。
     试验研究了固定/旋转分离盘的脉动流体力特性及频谱特性。研究表明:当L/D<4.0时,旋转分离盘会在压差的作用下调整两个相互对称的平衡位置之一并以极小的振幅在此位置来回震荡。但对于L/D4.0时,仅有一个平衡位置,就是在=180°处。附加固定分离盘后,隔水管尾迹部分压力的都远远高于单隔水管情况,且背压C pb均提高至-1以上。而附加旋转分离盘后,短分离盘(L/D3.5)的时均压力分布不再关于=180°对称,压力在平衡位置e处有一个突变。而长分离盘(L/D4.0)的时均压力分布很明显与固定分离盘相似,背压处不存在压力突变。在所实验的0.5L/D6.0范围内,固定分离盘在L/D=6.0时能使C_d和C_l '获得最大30.3%和96.4%的降低;旋转分离盘同样在L/D=6.0时能使C_d和C_l '获得最大31.2%和91.4%的降低。附加固定分离盘后St均低于相应单隔水管,而附加旋转分离盘后,当L/D2.0时,漩涡脱落频率高于单隔水管情况,而对于L/D>2.0时,则小于单隔水管。
     试验研究了固定/旋转整流罩的脉动流体力特性及频谱特性。研究表明:旋转整流罩在流体力产生的力矩作用下旋转至一个偏离尾流中心线固定角度的动态平衡位置。附加固定整流罩尾流部分压力比较平稳且均高于单隔水管情况,而附加旋转整流罩后,相对单隔水管能够在180一侧提高尾迹区域压力。在所实验的3090范围内,相对单隔水管情况,固定整流罩分别在30和45时能使C d和Cl '获得最大36.1%和74.5%的降低;旋转分离盘分别在30和75时能使C d和Cl '获得最大43.5%和67.0%的降低。不管采用固定还是旋转整流罩之后,升力的功率谱均只有一个主频,且主频的幅值较之单隔水管有了数量级上的降低。对于固定整流罩,随着的减小St逐渐减小,而旋转整流罩则刚好相反。
     试验研究了首次提出的仿鱼尾整流罩的脉动流体力特性及频谱特性。研究表明:仿鱼尾整流罩在来流作用下,也会旋转至一个偏离尾流中心线固定角度的动态平衡位置。但相对于旋转整流罩而言,鱼尾柔性板的存在能够起到减小平衡位置偏转夹角δ的作用。在所实验的4590范围内,相对单隔水管情况,其在α=90°,L=1.5D时Cd能获得最大16.5%的降低,并且在α=60°,L=1.0D时Cl’获得最大25.7%的降低。仿鱼尾整流罩与单隔水管相比,主频峰值要低很多,几乎看不出特别明显的峰值。
     试验研究了沿隔水管周向对称布置的附属管的脉动流体力特性及频谱特性。研究表明:附加4mm和8mm两种直径附属管后,每种情况下隔水管表面的压力分布存在很大的差异,但多管数情况(N8)受来流角的影响要比少管数情况(N6)的小很多,而且是管数越多,对于来流角的敏感性越小。在所实验的3N12范围内, N8的附属管Cd对来流敏感性最小,且相对单隔水管情况降低Cd的效果最好,基本均能起到30%以上的减阻效果; N8的附属管Cl’对来流敏感性最小,且相对单隔水管情况降低Cl’的效果最好,基本均能起到80%以上的减升效果。两种直径附属管的PSD峰值只有少数几个高于单隔水管情况,包括(N=3,0)、(N=4,45)和(N=5,36)等,其他多数情况则低于单隔水管结果,这表明着附加附属管确实能够有效抑制交替的漩涡产生。
     对本文六种抑制装置的研究结果进行了对比分析,总结了各自的优缺点。一、固定分离盘和固定整流罩能起到最好的减阻减升以及抑制漩涡脱落的效果,但是存在无法适应流向的缺点,实际应用受限;二、旋转分离盘会导致时均升力的增加,减阻效果也比固定分离盘差,但由于其能自适应流向,也有着很好脉动升力和漩涡脱落抑制效果,有一定的实际应用价值;三、旋转整流罩能自适应流向,在30和45时,时均阻力、脉动升力及漩涡脱落抑制效果均不亚于固定整流罩,但时均升力有所增加,因此旋转整流罩有着不错的应用价值;四、仿鱼尾整流罩抑制脉动升力效果不如旋转整流罩,但由于能减小偏转角,在降低时均升力上有较好效果,同时漩涡脱落抑制效果也优于旋转整流罩,因此仿鱼尾整流罩具有很好的研究潜力,应用价值有待进一步验证;五、附属管由于利用了隔水管的附属管线,有着更好的操作性和经济性,不同管数和直径附属管的流向适应性、流体力和漩涡脱落抑制效果差异较大,因此选择优化的附属管布置方式对于隔水管流动控制有着非常好的应用价值。
     通过综合研究分析,对六种抑制装置的规格参数进行了优化选择:(1)虽然固定和旋转分离盘都是L/D4.0时效果最佳,但选择L=0.5D~1.5D的固定分离盘以及L=1.0D~2.0D的旋转分离盘也能达到不错的流动控制效果,且实际应用价值更高,故宜选择作为分离盘中较优化的模型;(2)宜选择=45的固定整流罩以及=60的旋转整流罩作为整流罩中较优化的模型;(3)宜选择(α=60°, L=1.5D)作为仿鱼尾整流罩中较优化的模型;(4)宜选择(d=4mm, N=10)和(d=8mm, N=12)作为附属管中较优化的模型。
Much attention has been paid to the development of marine resources due to the growingscarce of land resources. Wave and current flow causes periodic vortex shedding in the wakeof the riser under certain flow rate, and vortex-induced vibration (VIV) may occur when thenatural frequency of the riser is close to the vortex shedding frequency. Sustained VIV maycause fatigue failure of the riser, thereby affecting marine operations, and even lead to seriousengineering and environmental accidents. Therefore, the basic investigation of different VIVsuppression devices for riser is of important practical and theoretical significance.
     Wind tunnel experiments were used as an important method for studying the flow controland vortex shedding of riser in the paper. Comparison among the wind tunnel experiments,water tunnel experiment and CFD calculation results verified the feasibility of this method.Wind and water tunnel results of the fixed splitter plates and axial-rod shrouds show that, theflow similarity of the two methods is very good when only considering dynamiccharacteristics and vortex shedding behavious, namely without considering vortex inducedvibration. While CFD calculation results of axial-rod shrouds are also close to that of the windtunnel, which indicates the feasibility of this method in another aspect.
     Characteristics of fluctuating forces and spectrum of fixed/rotatable splitter plates wereexperimentally studied. The results show that: Rotatable splitter plates oscillate slightly withvery small amplitude in some certain equilibrium position when L/D<4.0. But it wouldoscillate slightly at=180°instead of deflecting to a stable angle on one side when L/D4.0.Base pressure of the riser with fixed splitter plates are much higher than that of the bare riser.The time-averaged pressure distribution of the short rotatable splitter plates is no longersymmetrical to=180°. While the results of long rotatable splitter plates are similar to thefixed ones. Within the studied range of0.5L/D6.0, a maximum time-averaged drag Cdand fluctuating lift Cl' reduction up to30.3%and96.4%was obtained for fixed splitter plates when L/D=6.0, and31.2%and91.4%for rotatable ones also when L/D=6.0. St of fixed splitter plates are all lower than that of bare riser. But St of rotatable ones are higher than that of bare riser when L/D≤2and get lower than that when L/D>2.
     Characteristics of fluctuating forces and spectrum of fixed/rotatable fairings were experimentally studied. The results show that:Rotatable fairing rotates to an equilibrium position (on either side of the wake with equal probability) rather than align itself with free stream due to the integrated effect of the pressure difference along the either side of the fairing. Near wake pressure of the riser is relative stable and higher than that of the bare riser when fixed fairings attached, but it is higher on only one side when rotatable fairings attached. Further, it is concluded that both of the time-averaged drag coefficients and the fluctuating lift coefficients are less than the corresponding bare riser. Within the studied range of30°≤α≤90°, a maximum time-averaged drag Cd and fluctuating lift Cl' reduction up to36.1%and74.5%was obtained for fixed fairings when α=30°and α=45°, respectively; and43.5%and67.0%for rotatable ones when α=30°and α=75°, respectively. No matter fixed or rotatable fairings, there is only one main frequency in each power spectrum of lift, and the peak values are all much lower than that of the bare riser. St gets smaller with the decreasing of α when fixed fairings attached, but the trend is opposite for rotatable ones.
     Characteristics of fluctuating forces and spectrum of tail-fairings were experimentally studied. The results show that:Tail-fairing also rotates to an off-axis equilibrium position (on either side of the wake with equal probability) rather than align itself with free stream. But compared to the corresponding rotatable fairing, the existence of flexible tail-plate plays a role in reducing off-axis angle δ. Within the studied range of45°≤α≤90°, a maximum time-averaged drag Cd reduction up to16.5%was obtained for tail-fairings when α=90°, L=1.5D; and a maximum fluctuating lift Cl' reduction up to25.7%when α=60°, L=1.0D. There is no obvious main frequency in each power spectrum of lift for tail-fairings, and the peak values are extremely lower than that of the bare riser.
     Characteristics of fluctuating forces and spectrum of axial-rod shrouds were experimentally studied. The results show that:For axial-rod shrouds with two rods diameters4mm and8mm, there are great differences between the pressure distributions of all shrouds. More rods cases (N>8) are less affected by inflow angle than less rods cases (N<6), and the more rods the less sensitive to inflow angle. Within the studied range of3≤N≤12, N≥8shrouds are least sensitive to inflow angle, over30%and80%reductions of time-averaged drag Cd and fluctuating lift Cl' were obtained for these shrouds, respectively. The peak values of few cases, including (N=3, α=0°(N=4, α=45°) and (N=5, α=36°), are higher than that of the bare riser, while the peak values are lower for most cases. It illustrates that the alternating Karman type vortex is effectively suppressed with axial-rod shrouds attached.
     The advantages and disadvantages of these devices were summarized after a comparative analysis. First, fixed splitter plate and fixed fairing have the best effects of drag and lift reduction and vortex shedding suppression. But the shortcoming of not having flow direction adaptive ability limits their engineering application. Second, rotatable splitter plate develops a time-averaged transverse force, but due to flow direction adaptive ability and fine fluctuating lift and vortex shedding suppression effects, it shows certain practical value. Third, time-averaged drag, fluctuating lift and vortex shedding suppression effects of rotatable fairing are not less than the corresponding fixed fairing when α=30°and α=45°Considering its flow direction adaptive ability, rotatable fairing also have good practical value. Forth, although fluctuating lift suppression effect of tail-fairing is worse than that of rotatable fairing, the better performances on time-averaged lift and vortex shedding ensure its potential research value. Fifth, axial-rod shroud has advantages in maneuverability and economy. It shall have broad application prospects in case of optimal geometric parameters selected.
     Optimized selection of all parameters of the tested devices has been made through a comprehensive analysis:(1) Although suppression effect of L/D=4.0cases for fixed and rotatable splitter plates are the best, L=0.5D~1.5D fixed and L=1.0D~2.0D rotatable splitter plates also can achieve good effect and possess higher practical value. As a result, the latter ones were recommend as optimized selection in all splitter plates;(2) Finally, α=45°fixed fairing and α=60°rotatable fairing were recommend as optimized selection in all fairings;(3) Finally,(α=60°, L=1.5D) tail-fairing was recommend as optimized selection in all tail-fairings;(4) Finally,(d=4mm, N=10) and (d=8mm, N=12) axial-rod shrouds were recommend as optimized selection in all shrouds.
引文
[1]金伟良.海洋工程中的若干力学问题.科技通报.1997,13:86-92.
    [2] Gao, Y., Zong, Z., Sun, L. Numerical Prediction of Fatigue Damage in Steel Catenary Riser due toVortex-Induced Vibration. Journal of Hydrodynamics.2011,23(2):154-163.
    [3]蔡杰,尤云祥,李巍,等.均匀来流中大长径比深海立管涡激振动特性.水动力学研究与进展A辑.2010,25(1):9.
    [4] Wang, J.S. High resolution numerical simulation for control of vertex-induced vibration on marineriser with splitter plates. The9th National Congress on Hydrodynamics and22nd National Conferenceon Hydrodynamics.2009, Chengdu, China (in Chinese).
    [5] Wang, J.S. Flow around a Circular Cylinder Using a Finite-Volume TVD Scheme Based on a VectorTransformation Approach. Journal of Hydrodynamics.2010,22(2):221-228.
    [6] BP世界能源统计年鉴2011年6月.2011.
    [7]杨泽伟.中国能源安全问题:挑战与应对.世界经济与政治.2008,08:52-60.
    [8]2010年我国海洋石油装备制造业捷报频传.国际船舶服务网. http://www.yeship.com.cn.
    [9]黄悦华,任克忍.我国海洋石油钻井平台现状与技术发展分析.35.2007,9:157-161.
    [10]海洋中的奇珍异宝.中国科普博览. http://www.kepu.net.cn/gb/book/ocean/3_2.html.
    [11]全国海洋经济发展规划纲要.2003.
    [12]“海洋石油981”南海首钻成功.齐鲁晚报.2012, A03.
    [13] Blevins, R.D. Flow-induced vibration. New York: Van Nostrand Reinhold Co.1990.
    [14]聂武,刘玉秋.海洋工程结构动力分析.哈尔滨:哈尔滨工程大学出版社.2002.
    [15] Sarpkaya, T. A critical review of the intrinsic nature of vortex-induced vibrations. Journal of Fluidsand Structures.2004,19(4):389-447.
    [16] Williamson, C.H.K., Govardhan, R. Vortex-Induced Vibrations. Annual Reviews of Fliud Mechanics.2004,36:413-455.
    [17] Gabbai, R.D., Benaroya, H. An overview of modeling and experiments of vortex-induced vibration ofcircular cylinders. Journal of Sound and Vibration.2005,282(3-5):575-616.
    [18] Rockwell, D. Vortex-body Interactions. Annual Reviews of Fluid Mechanics.1998,30:199~229.
    [19] Nishiharaa, T., Kanekob, S., Watanabe, T. Characteristics of fluid dynamic forces acting on a circularcylinder oscillated in the streamwise direction and its wake patterns. Journal of Fluids and Structures.2005,20(4):505~518.
    [20]周光炯,严宗毅,许世雄,等.流体力学(第二版).北京:高等教育出版社.2000.
    [21] Blevins, R.D.(吴恕三王觉等译,1983)流体诱发振动.北京:机械工业出版社.1977.
    [22] Paul, S. Overview of Deepwater Drilling and Production Risers.2006.
    [23] Bai, Y., Bai, Q. Subsea Pipelines and Risers. Kidlington: Elsevier Science Ltd.2005.
    [24] Fowler, L. Marine Riser Regulatory Overview. AADE DEEPWATER INTEREST GROUP.2004.
    [25] T.Sarpkaya. A critical Review of the intrinsic nature of vortex-induced vibrations. Journal of Fluidsand Structures.2004,19:389-447.
    [26] Howard, C. Risers: A Key Challenge for Deepwater Developments. SPE DISTINGUISHEDLECTURER SERIES.2004.
    [27] Iwan, W.D. The vortex induced oscillation of elastic structural elements. ASME, Transactions, SeriesB-Journal of Engineering for Industry.1975,97:1378-1382.
    [28] Vandiver, J.K. Drag coefficients of long flexible cylinders. Proceedings of the Offshore TechnologyConference.1983, Houston, USA.
    [29] Vandiver, J.K., Chung, T.Y. Predicted and measured response of flexible cylinders in sheared flow.Proceedings of the ASME Winter Annual Meeting, Symposium on Flow-Induced Vibration.1988,Chicago, USA.
    [30] Triantafyllou, G., Tein, D., Ambrose, B. Pragmatic riser VIV analysis. Offshore TechnologyConference.1999. Houston, USA.
    [31] Karanth, D., Rankin, G.W., Sridhar, K. Computational study of flow past a cylinder with combinedin-line and transverse oscillation. Computational mechanics.1995,16:1-10.
    [32] Chaplin, J.R., Bearman, P.W., Cheng, Y., et al. Blind predictions of laboratory measurements ofvortex-induced vibrations of a tension riser. Journal of Fluids and Structures.2005,21(1):25-40.
    [33] KIM, W.J., PERKINS, N.C. Two-dimensional vortex-induced vibration of cable suspensions. Journalof Fluids and Structures.2002,16(2):229-245.
    [34] Lu, X.Y., Dalton, C. Calculation of the timing of vortex formation from an oscillating cylinder.Journal of Fluids and Structures.1996,10(5):527-541.
    [35] Sarpkaya, T. A critical review of the intrinsic nature of vortex-induced vibrations. Fluids of Structure.2004,19(4):389-447.
    [36] Lucor, D., Foo, J., Karniadakis, G. Vortex mode selection of a rigid cylinder subject to VIV at lowmass-damping. Journal of Fluids and Structures.2005,20(4):483-503.
    [37] Trim, A.D., Braaten, H., Lie, H., et al. Experimental investigation of vortex-induced vibration of longmarine risers. Journal of Fluids and Structures.2005,21(3):335–361.
    [38] Baarholm, G.S., Larsen, C.M., Lie, H. On fatigue damage accumulation from in-line and cross-flowvortex induced vibrations on risers. Journal of Fluids and Structures.2006,22(1):109-127.
    [39]陆夕云,凌国灿.圆柱振荡绕流的三维不稳定性研究.应用数学与力学.2003,7:699-707.
    [40]李军强,方同.海洋钻井隔水管随机振动的理论分析.石油机械.2000,28:47-50.
    [41]石晓兵,郭昭学,聂荣国,等.海洋深水钻井隔水管动力分析.天然气工.2003,23:81-83.
    [42]畅元江,陈国明,许亮斌.海洋钻井隔水管固有频率的简化计算.中国海上油气.2005,15:352-355.
    [43]杨进,刘书杰,周建良,等.风浪流作用下隔水导管强度及安全性计算.中国海上油气(工程).2006,3:198-200.
    [44] Zhou, C.Y., So, R.M.C., Lam, K. Vortex-Induced Vibrations of an Elastic Circular Cylinder. Journal ofFluids and Structures.1999,13(2):165-189.
    [45]唐友刚,谷家杨,左建立,等.隔水套管波流联合作用小非线性动力响应.应用数学与力学.2005,8:951-956.
    [46]闵建琴,宋峥嵘,唐友刚,等.隔水套管波流联合作用下涡激振动计算.中国海上油气(工程).2003,3:25-27.
    [47]谢彬,段梦兰,秦太验,等.海洋深水立管的疲劳断裂与可靠性评估研究进展.石油学报.2004,25(3):95-100.
    [48]孙友义.海洋钻井隔水管系统涡激振动安全评估研究[硕士学位论文].中国石油大学,2007.
    [49]吕林.洋工程中小尺度物体的相关水动力数值计算[博士学位论文].大连理工大学,2006.
    [50] Assi, G.R.S., Bearman, P.W., Kitney, N. Low drag solutions for suppressing vortex-induced vibrationof circular cylinders. Journal of Fluids and Structures.2009,25(4):666-675.
    [51]王嘉松.附加分离盘控制隔水管涡激振动的高分辨率数值模拟研究.第九届全国水动力学学术会议暨第二十二届全国水动力学研讨会.2009,成都.
    [52]谭波,王嘉松,谷斐,等.利用分离盘控制隔水管涡激振动的数值模拟.水动力学研究与进展A辑.2009,24(1):6.
    [53] Wang, J.S., Liu, H., Gu, F., et al. Numerical simulation of flow control on marine riser with attachedsplitter plate.29th International Conference on Ocean, Offshore and Artic Engineering.2010,Shanghai, China.
    [54]钟庆.附加分离盘控制隔水管涡激振动的研究.煤炭技术.2010,29(9):177-179.
    [55] Wang, S., Shao, C.P. Suppression of Downstream Vortex‐Street of an Oscillating Cylinder by aSplitter Plate.2011, Guangzhou, China.
    [56] Zhang, L., Ding, L. Effect of Inclination Angle of Splitter Plate on Flow Over a Circular Cylinder.ASME2011Power Conference.2011, Denver, Colorado, USA.
    [57] Unal, M.F., Rockwell, D. On vortex formation from a cylinder. Part2. Control by splitter-plateinterference. Journal of Fluid Mechanics.1988,190:513-529.
    [58] Texier, A., Bustamante, A.S.C., David, L. Contribution of a short separating plate on the control of theswirling process downstream a half-cylinder. Experimental Thermal and Fluid Science.2002,26(5):565-572.
    [59] Akilli, H., Sahin, B., Tumen, N.F. Suppression of vortex shedding of circular cylinder in shallowwater by a splitter plate. Flow Measurement and Instrumentation.2005,16(4):211-219.
    [60]谷斐,王嘉松,钟庆,等.利用分离盘抑制隔水管涡激振动的风洞实验研究.第九届全国水动力学学术会议暨第二十二届全国水动力学研讨会.2009,成都.
    [61] Roshko, A. On the Development of Turbulent Wakes from Vortex Street. NACA Technical Note.1953,2913.
    [62] Apelt, C.J., West, G.S., Szewczyk, A.A. Effects of wake splitter plates on flow past a circular cylinderin range104    [63] Apelt, C.J., West, G.S. Effects of wake splitter plates on bluff-body flow in range104    [64] Allen, D.W., Henning, D.L. Ultrashort Fairings for Suppressing Vortex-Induced Vibration.2001:US6223672B1.
    [65] Grant, R., Patterson, D. Riser fairing for reduced drag and vortex suppression. Offshare TechnologyConference.1977, Houston, Texas, U.S.A.
    [66] Masters, R.H., Griffith, B.L. Apparatus and Method for Securing a Fairing around a Marine Element.2012: US2012/0243944.
    [67] Ramamurti, V., Rajarajan, S., Rao, G.V. Effect of cylinder height of a typical payload fairing on thedisplacement response due to separation force. Communications in Numerical Methods inEngineering.2000,16(1):21-35.
    [68]谭波.深水隔水管涡激振动控制装置的数值模拟[硕士学位论文].上海:上海交通大学,2009.
    [69]赵鹏良.隔水管及附属整流罩涡激振动的流固耦合模拟研究[硕士学位论文].上海:上海交通大学,2011.
    [70] Coakley, D.B., Knutson, R.K. Inflatable vibration reducing fairing.2003: US6517289B1.
    [71] Shukla, S., Govardhan, R.N., Arakeri, J.H. Flow over a cylinder with a hinged-splitter plate. Journal ofFluids and Structures.2009,25(4):713-720.
    [72] Cimbala, J.M., Garg, S. Flow in the wake of a freely rotatable cylinder with splitter plate. Aiaa Journal.1991,29(6):1001-1003.
    [73] Cimbala, J.M., Chen, K.T. Supercritical Reynolds number experiments on a freely rotatablecylinder/splitter plate body. Physics of Fluids.1994,6(7):2440-2445.
    [74] Lee, S.J., Kim, H.B. The effect of surface protrusions on the near wake of a circular cylinder. Journalof Wind Engineering and Industrial Aerodynamics.1997,71:351-361.
    [75] Baarholm, G.S., Larsen, C.M., Lie, H. Reduction of VIV using suppression devices-An empiricalapproach. Marine Structures.2005,18(7-8):489-510.
    [76] Zhang, H., Han, Y., Chen, F., et al. Experimental Investigation on the Vortex-Induced Vibration of theCylinders with Helical Strakes. Applied Mechanics and Materials.2011,117-119:747-750.
    [77] LUBBAD, R.K., L SET, S., MOE, G. Experimental Investigations of the Efficiency ofRound-Sectioned Helical Strakes in Suppressing Vortex Induced Vibrations. Journal of offshoremechanics and Arctic engineering.2011,133(4):041102.1-041102.10.
    [78] Korkischko, I., Meneghini, J.R. Experimental investigation of flow-induced vibration on isolated andtandem circular cylinders fitted with strakes. Journal of Fluids and Structures.2010,26(4):611-625.
    [79] Esselbrugge, M., Van Belkom, A., Zuidhof, W. Suppression element for Vortex-Induced Vibrations,construction kit, apparatus for extracting minerals, and mold.2004: WO2004/020777A1.
    [80] Allen, D.W., Henning, D.L., Haws, J.H., et al. Partial helical strake for Vortex-Induced Vibrationsuppression.2003: US6561734B1.
    [81] Gilchrist, R.T.J., McDaniel, R.B., McMillan, D.W. System for reducing vortex induced vibration of amarine element.2000: WO00/61433A1.
    [82] Allen, D.W., Lee, L., Henning, D.L. Fairings versus helical strakes for suppression of vortex-inducedvibration: technical comparisons. Offshare Technology Conference.2008, Houston, Texas, U.S.A.
    [83]邹琳,林玉峰.亚临界雷诺数下波浪型圆柱绕流的数值模拟及减阻研究.水动力学研究与进展A辑.2010,25(1):6.
    [84] Zou, L., Lin, Y.F. Force Reduction of Flow around a Sinusoidal Wavy Cylinder. Journal ofHydrodynamics.2009,21(3):8.
    [85] Lam, K., Lin, Y.F., Zou, L., et al. Investigation of turbulent flow past a yawed wavy cylinder. Journalof Fluids and Structures.2010,26(7-8):1078-1097.
    [86] Lam, K., Lin, Y.F. Effects of wavelength and amplitude of a wavy cylinder in cross-flow at lowReynolds numbers. Journal of Fluid Mechanics.2009,620:195-220.
    [87] Zhao, R., Xu, J., Yan, C., et al. Scale-adaptive simulation of flow past wavy cylinders at a subcriticalReynolds number. Acta Mechanica Sinica.2011,27(5):660-667.
    [88] Lam, K., Wang, F.H., Li, J.Y., et al. Experimental investigation of the mean and fluctuating forces ofwavy (varicose) cylinders in a cross-flow. Journal of Fluids and Structures.2004,19(3):321-334.
    [89]王沣浩.波状圆柱绕流减阻的实验研究.西安交通大学学报.2006,40(1).
    [90]王沣浩.流体横掠波状圆柱的动特性研究.西安交通大学学报.2006,40(3).
    [91] Lesage, F., Gartshore, I.S. A method of reducing drag and fluctuating side force on bluff bodies.Journal of Wind Engineering and Industrial Aerodynamics.1987,25(2):229-245.
    [92] Bouak, F., J., L., Lepage, B. Passive control of mean lift and drag forces on a circular cylinder.Sherbrooke Proc. Flucome.2000:1-6.
    [93] Strykowski, P.J., Sreenivasan, K.R. On the formation and suppression of vortex 'shedding' at lowReynolds numbers. Journal of Fluid Mechanics.1990,218:71-107.
    [94] Lee, S.-J., Lee, S.-I., Park, C.-W. Reducing the drag on a circular cylinder by upstream installation ofa small control rod. Fluid Dynamics Research.2004,34(4):233-250.
    [95] Sakamoto, H., Haniu, H. Optimum suppression of fluid forces acting on a circular cylinder. Journal ofFluids Engineering.1994,116(2):221-227.
    [96] Woodrow, T.J. Marine riser.2002: US6401825B1.
    [97]宋吉宁,吕林,张建侨,等.三根附属控制杆对海洋立管涡激振动抑制作用实验研究.海洋工程.2009,27(3):7.
    [98] Song, J.N., Lv, L., Zhang, J.Q., et al. Experimental investigation of suppression of vortex-inducedvibration of marine risers by three control rods. The Ocean Engineering.2009,27(3):23-29.
    [99]赵卓茂.附属管抑制隔水管涡激振动的流体动力学特性研究[硕士学位论文].上海:上海交通大学,2012.
    [100] Brown, A.J. Device and method for suppressing vortex-induced vibrations.2012: US8152414.
    [101] Lim, H.C., Lee, S.J. Flow control of a circular cylinder with O-rings. Fluid Dynamics Research.2004,35(2):107-122.
    [102] Kwon, S.H., Cho, J.W., Park, J.S., et al. The effects of drag reduction by ribbons attached tocylindrical pipes. Ocean Engineering.2002,29(15):1945-1958.
    [103] Stansby, P.K., Pinchbeck, J.N., Henderson, T. Spoilers for the suppressionof vortex-inducedoscillations (Technical Note). Applied Ocean Research.1986,8(3):169-173.
    [104] Allen, D.W., Henning, D.L. Partial shroud with Perforating for VIV suppression, and method of using.2004: US66853944B1.
    [105] Wong, H.Y., Kokkalis, A. A comparative study of three aerodynamic devices for suppressingvortex-induced oscillation. Journal of Wind Engineering and Industrial Aerodynamics.1982,10(1):21-29.
    [106] Owen, J.C., Bearman, P.W., Szewczyk, A.A. Passive control of viv with drag reduction. Journal ofFluids and Structures.2001,15(3-4):597-605.
    [107] Bearman, P.W., Owen, J.C., Szewczyk, A.A. Vortex shedding and drag force reduction.2005:US6908063B2.
    [108] Kumar, R.A., Sohn, C.-H., Gowda, B.H.L. Passive Control of Vortex-Induced Vibrations: AnOverview. Recent Patents on Mechanical Engineering.2008,1(1):1-11.
    [109] Gad-el-Hak, M., Bushnell, D.M. Separation control: review. Journal of Fluids Engineering.1991,113(1):5-30.
    [110] Griffin, O.M., Hall, M.S. Review: vortex shedding lock-on and flow control in bluff body wakes.Journal of fluids engineering.1991,113(4):526-537.
    [111] Zdravkovich, M.M. Review and classification of various aerodynamic and hydrodynamic means forsuppressing vortex shedding. Journal of Wind Engineering and Industrial Aerodynamics.1981,7(2):145-189.
    [112] Zdravkovich, M.M. Flow around Circular Cylinders, Vol.1: Fundamentals. Oxford: Oxford SciencePublications.1997.
    [113] Wang, J.S. A two-dimensional TVD scheme for incompressible turbulent flows withpseudo-compressibility method. Progress in Computational Fluid Dynamics.2009,9(2):86-95.
    [114] Chorin, A.J. A numerical method for solving incompressible viscous flow problems. Journal ofComputational Physics.1967,2:12-26.
    [115]王勋年.低速风洞试验.北京:国防工业出版社.2002.
    [116] Gerrard, J.H. A disturbance-sensitive Reynolds number range of the flow past a circular cylinder.Journal of Fluid Mechanics.1954,22:187-196.
    [117] Fox, T.A., West, G.S. On the use of end plates with circular cylinders. Experiments in Fluids.1990,9:237-239.
    [118] Szepessy, S., Bearman, P.W. Aspect ratio and end plate effects on vortex shedding from a circularcylinder. Journal of Fluid Mechanics.1992,234:191-217.
    [119]王维新,谢壮宁.测压传压管路系统动态特性的试验分析.西北大学学报(自然科学版).2005,35(4):293-693.
    [120]郭明旻,黄东群.脉动压力分布同步测量的探讨.实验力学.2005,20(1):123-127.
    [121]郭明旻.双圆柱表面压力分布的同步测量及脉动气动力特性2004.
    [122]魏利.实时采集数据绘图及多种数据保存方式程序设计.电子测试.2008,5:44-47.
    [123] Ueda, H., Hibi, K., Tamura, Y., et al. Multi-channel simultaneous fluctuating pressure measurementsystem and its applications. Journal of Wind Engineering and Industrial Aerodynamics.1994,51(1):93-104.
    [124] Norberg, C. Fluctuating lift on a circular cylinder: review and new measurements. Journal of Fluidsand Structures.2003,17(1):57-96.
    [125]侯国屏,王珅,叶齐鑫. LabVIEW7.1编程与虚拟仪器设计.北京:清华大学出版社.2005.
    [126]岳光俊,李筠.运用声卡的虚拟信号发生器设计.数据采集与处理.2008,23:221-223.
    [127]丁硕.基于LabVIEW的虚拟函数信号发生器的研究.计算机与现代化.2008,5:107-110.
    [128]徐有恒,黄东群.改进测压管系动态性能的一种方法.应用力学学报.1985,2:91-99.
    [129]徐有恒,黄东群,穆晟.一种测试压力传感器容腔动态特性的简易方法.上海力学.1981,4:47-55.
    [130] Irwin, H.P.A.H., Cooper, K.R., Girard, R. Correction of distortion effects caused by tubing systems inmeasurements of flucuating pressures. Journal of Wind Engineering and Industrial Aerodynamics.1979,5:93-107.
    [131]杨乐平,李海涛,赵勇,等. LabVIEW高级程序设计.北京:清华大学出版社.2003.
    [132]谢壮宁,倪振华,石碧青.脉动风压测压管路系统的动态特性分析.应用力学学报.2002,19(1):5-10.
    [133]谢壮宁,顾明.脉动风压测压系统的优化设计.同济大学学报.2002,30(2):356-361.
    [134]胡广书.数字信号处理——理论、算法与实现.北京:清华大学出版社.1997.
    [135] Cantwell, B., Coles, D. An experimental study of entrainment and transport in the turbulent near wakeof a circular cylinder. Journal of Fluid Mechanics.1983,136:321-374.
    [136] Fage, A., Falkner, V.M. Further experiments on the flow around a circular cylinder. BritishAeronautical Research Council Reports and Memoranda.1931,1369:1-13.
    [137] Weidman, P.D. Wake transiton and blockage effects on cylinder base pressures [AeronauticalEngineer]. Pasadena, California: California Institute of Technology,1968.
    [138] Norberg, C. Investigation between free-stream turbulence and vortex shedding for a single tube incross-flow. Journal of Wind Engineering and Industrial Aerodynamics.1986,23:501-514.
    [139] Nishimura, H., Taniike, Y. Aerodynamic characteristics of fluctuating forces on a circular cylinder.Journal of Wind Engineering and Industrial Aerodynamics.2001,89(7-8):713-723.
    [140] Surry, D. Some effects of intense turbulence on the aerodynamics of a circular cylinder at subcriticalReynolds number. Journal of Fluid Mechanics.1972,52:543-563.
    [141] Kiya, Y., Suzuki, M.A., Hagino, M. A contribution to the free-stream turbulence effect on the flowpast a circular cylinder. Journal of Fluid Mechanics.1982,155:151-563.
    [142] Wieselsberger, C. Neuere Feststellungen Uber die Gesetze des Flussigkeits-und Luftwiderstands.Physikalische Zeitschrift.1921,22(11):321-328.
    [143] Gerrard, J.H. The mechanics of the formation region of vortices behind bluff bodies. Journal of FluidMechanics.1966,25(02):401-413.
    [144] Bearman, P.W. Investigation of the flow behind a two-dimensional model with a blunt trailing edgeand fitted with splitter plates. Journal of Fluid Mechanics.1965,21(02):241-255.
    [145] Gu, F., Wang, J.S., Qiao, X.Q., et al. Pressure distribution, fluctuating forces and vortex sheddingbehavior of circular cylinder with rotatable splitter plates. Journal of Fluids and Structures.2012,28(0):263-278.
    [146] Alam, M.M., Sakamoto, H., Moriya, M. Reduction of fluid forces acting on a single circular cylinderand two circular cylinders by using tripping rods. Journal of Fluids and Structures.2003,18(3-4):347-366.
    [147] Wang, J., Zhang, P., Lu, S., et al. Drag Reduction of a Circular Cylinder Using an Upstream Rod. Flow,Turbulence and Combustion.2006,76(1):83-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700