用户名: 密码: 验证码:
磁流微循环自补偿润滑的孔—楔效应理论及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运用仿生学原理对摩擦副进行结构设计以实现其自补偿润滑,有助于拓宽摩擦学技术的工业应用范围和功能部件的开发。
     本文探讨了多相润滑胶体孔-楔效应及其微循环机理,并以此为基础开展了孔结构特性及润滑胶体在孔胞中流动的充要条件研究,建立了其流变模型,分析了壁滑移对其流变特性的影响。研究表明:孔中孔道端压差的存在是实现润滑剂流动的必要性条件;且孔道半径越小,流动阻力越大;润滑剂的剪切稀化将在孔壁处产生一壁滑移层,壁滑移作用可有助于改善润滑剂在孔中的流动性。
     为了提高磁流润滑胶体的承载稳定性,建立了用于描述胶体构成相分布的二相楔滑模型,导出了该模型的求解办法,并对其进行了仿真验证性研究。结果表明:模型中构建的漂移抑制角和横向膨胀抑制角可有效地表征胶体中发生相漂移的变化趋势,推导出的胶体的最佳稳定组分体积比可用于指导多相润滑胶体的组分优化设计
     为了实现磁流润滑胶体在多孔摩擦副界面的可控润滑,建立了其在孔中传输的修正Bernoulli方程和在摩擦界面间的Reynolds方程,并开展了相关静力学实验。研究表明:磁流体在孔中的静态抬升高度主要由外磁场强度和孔道本身决定,与胶体中的磁粒子含量无关;顶部热源对磁流体从孔中流出的阻碍作用可通过降低环境温度梯度和提高外磁场强度的方式来消除;磁流体可在孔-楔耦合摩擦副中形成微循环,从而提高了磁流润滑膜的自补偿能力和抗载荷波动性。
     基于上述理论研究,设计并制备了微/纳米粒子添加磁流润滑胶体和磁流微循环推力轴承,并以此开展了一系摩擦学性能实验研究。结果表明:磁流润滑胶体对该轴承界面润滑膜的自补偿能力与倒锥摩擦副的锥高大小有关;磁流润滑膜厚度可进行载荷自适应调节,外磁场的存在可提高其承载能力;界面摩擦系数在非磁流胶体润滑时随转速的增大而增大,在磁流润胶体润滑时则随转速的增大而减小;该轴承较适用于高速重载场合,且转速越大,外载荷越大,减摩效果越明显。
The structure design of friction pairs based on the principle of bionics for realizing self-compensating lubrication is helpful to develop new tribological functional components.
     Based on the research on the hole-wedge effect and the micro-circulating theory of multiphase lubricant colloid in porous materials, the structural characteristics of pores and the necessity conditions of flow are discussed, the rheological model is established and its effect of wall-slip phenomenon is also analyzed,in this paper. The results show that the pressure difference existing at the two ends is the necessity condition of lubricant flowing in micro hole, and that the radius of hole is smaller, the resistance to flow is greater, and that a wall-slip layer occurs in lubricant and its wall-slip effect can help to improve flowing characteristics of lubricant through the holes.
     In order to improve the working stability of lubricant colloid, a two-phase wedge-sliding model is established and its computing method is given accordingly. Researches show that, the Drift-restraining Angle and Lateral Expansion-restraining Angle can effectively represent the phase-drift changing trend, and the optimal ratio of composing ingredients can be used to guide the optimization design of multiphase lubricant colloid.
     In order to realize the process controllability of ferrofluid, the revised Bernoulli Equation and Reynolds Equation in cylindrical coordinate system are established, the corresponding static and dynamic behaviors are also carried. The researches show that the static lifting height of ferrofluid in micro holes is mainly decided by the external magnetic field and the micro hole itself, however irrelevant to the content of magnetic particles in ferrofluid, a top heat source may restrain the flow of ferrofluid in micro holes, while such problem can be improved by reducing the environmental temperature gradient and increasing the strength of external magnetic field, the microcirculation of ferrofluid flowing in the hole-wedge coupled friction pair is proved and its existence can improve the self-compensating capability and the resistance to load fluctuation of ferrofluid lubrication film.
     Based on the theoretical researches above, the ferrofluid colloid by adding micro/nano magnetic particales and a ferrofluid lubrication porous thrust bearing are designed, and a series of tribological contrast experiments are carried. The researches show that the adaptive compensation ability of ferrofluid lubricating film is relative to the height of reversed cone of friction pair, the thickness of ferrofluid lubrication film can be adaptive adjusted along with the variation of load, and the existence of external magnetic field can improve its bearing capacity, the friction coefficient when non-ferrofluid lubrication increases however decreases when ferrofluid lubrication along with the increase of circumferential shear velocity. This thrust bearing is more suitable for high speed and heavy load occasions, and with the bigger load and higher circumferential shear velocity, the antifriction effect is more notable.
引文
[1]石子源.石墨颗粒铝基复合材料的研制[J].热加工工艺,1998,2:50-51.
    [2]骆灼旋,陈华信,陈春光等.铸造锌石墨复合材料的摩擦学特性[J].摩擦学学报,1992(10):325-334.
    [3]曹占义,刘勇兵,杨晓红,连建设.铝基石墨复合材料的摩擦特和机理分析[J].摩擦学学报,1999(4):327-330.
    [4]黄来铀,王伟.铝基轴承复合材料的研究[J].中国铸造装备与技术,1997,4:20-22.
    [5]王连超,朱正色.钢背-铜基自润滑减摩复合材料的研究[J].机械工程材料,1997(4):33-35.
    [6]吴运新等.往复摩擦下热压镍-二硫化钥自润滑复合材料的自润滑性能及其耐磨机理研究[J].摩擦学学报,1995(1):10-18
    [7]涂政文,赵源.磨损自补偿润滑添加剂的摩擦学效应[J].材料保护.1998,8:12-14.
    [8]方建,赵源.润滑添加剂的磨损自补偿摩擦学效应[J].材料保护.2006,3:19-20.
    [9]莫易敏等.基础油粘度对摩擦自补偿性能影响研究[J].润滑与密封.1998,1:34-36.
    [10]莫易敏等.滑动速度对摩擦自补偿性能影响研究[J].材料保护.1998,4:11-12
    [11]田娥,莫易敏,李毅.自补偿润滑油作用下丝杆螺母副表面硬度研究[J].润滑与密封.2007,5:88-89
    [12]付尚发等.ZS添加剂在不同油品中对不同摩擦副的适应性研究[J].摩擦学学报,2007,7:56-58
    [13]游中流.自补偿添加剂及其修复和摩擦学效应研究[D].博士学位论文,机械科学研究院,2002.
    [14]Patel R. M., Deheri G. M., Vadher P. A. Magnetic fluid-based squeeze film performance between porous infinitely long parallel plates with porous matrix of non-uniform thickness and effect of transverse surface roughness[J]. JOURNAL OF THE BALKAN TRIBOLOGICAL ASSOCIATION,2011,17:3.5-318
    [15]Nicodemus E. R. and Sharma S. C. Influence of Wear on the Performance of Multirecess Hydrostatic Journal Bearing Operating With Micropolar Lubricant[J]. JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME,2010,132(2):021703
    [16]Frishberg I. V. etc. Effect of ultrafine powders in lubricants on performance of friction pairs[J]. WEAR,2003,254(7-8):645-651.
    [17]张建华,陶德华.仿生润滑技术研究及其应用探索[J].润滑与密封,2004,6:99-100.
    [18]刘国敏,邹猛,李建桥.蚯蚓体表自润滑仿生应用试验研究[J].江西农业大学学报,2010,32(2):0378-0382.
    [19]王绍敏.仿生结构化船体表面减阻性能分析[J].舰船科学技术,2010,32(5):11-14
    [20]李永奇.类细胞结构摩擦材料的研究[D].长春:吉林大学,2008.
    [21]孙喜龙.拟蜂巢结构摩擦材料研究[D].长春:吉林大学,2005.
    [22]张文彦等.纳米孔结构金属多孔材料研究进展[J].稀有金属材料与工程,2008,37(7):1129-1132
    [23]吴晓森,张学鹜,吴文健.无机有序多孔材料研究进展[J].材料导报,2005,19(6):8-11
    [24]白青龙,张春花,王冀敏.多孔材料的研究进展[J].内蒙古民族大学学报(自然科学版),2004,19(5):528-531
    [25]吴刚,赵春华,秦红玲,赵新泽.多孔材料的摩擦学性能研究及展望[J].材料导报A,2011,25(9):75-77
    [26]潘文.自润滑高温发汗体结构模型及扩散特性研究[D].武汉:武汉理工大学,2006.
    [27]王砚军,刘佐民.腺汗式孔结构金属陶瓷烧结体的制备及其性能[J].机械工程学报,2006,42:27-32.
    [28]王砚军,刘佐民.汗腺孔烧结体孔结构特征分析模型的研究[J].中国机械工程,2006,17:414-417.
    [29]王砚军,刘佐民.孔贯通型高温自润滑金属陶瓷的摩擦磨损性能研究[J].摩擦学学报,2006,26:347-352.
    [30]Liu Zuomin. Elevated temperature diffusion self-lubricating mechanisms of a novel cermet sinter with orderly micro-pores, Wear,2007,262:600-606.
    [31]杨丽颖,王砚军,刘佐民.Ti-Al合金高温自润滑材料抗摩擦磨损模型[J].中国机械工程,2008,19:602-605.
    [32]张一兵,肖大雪,刘佐民.自润滑烧结体材料介观表层应力数值分析[J].润滑与密封,2008,33:39-43.
    [33]张一兵,燕松山,刘佐民.高温自润滑包覆体胞热驱模型的研究[J].武汉理工大学学报,2006,28,20-23.
    [34]燕松山.高温自润滑发汗体胞热驱模型研究[D].武汉:武汉理工大学,2006.
    [35]郭红,刘佐民.BN-C-硅油超微/纳米高温润滑胶体及其性能研究[J].润滑与密封,2008,33(4):33-36.
    [36]郭红,刘佐民,南旭东.BN-硅油复合胶体润滑特性的研究[J].润滑与密封,2007,32(5):34-36.
    [37]郭红.BN-C-硅油高温润滑复合胶体制备及其性能研究[D].武汉:武汉理工大学,2008.
    [38]Jacqueline Krim. Surface science and the atomic-scale origins of friction:what once was old is new again. Surface Science.2002.
    [39]万轶,熊党生等.纳米粒子作为润滑添加剂的研究与展望[J].2005年国际材料科学与工程学术研讨会论文集.
    [40]郭太勤,蒋明俊等.高温润滑脂的发展现状[J].润滑与密封.2006.1。
    [41]李玉峰,欧阳家虎,周玉等.高温固体润滑材料研究的发展现状[J].热处理技术与装备.2007.12。
    [42]乔红斌,郭强等.高分子固体润滑耐磨涂层研究进展[J].机械工程材料.2004.2。
    [43]孔晓丽,刘勇兵,陆有,霍福祥.粉末冶金高温金属基固体自润滑材料[J].粉末冶金技术.2001。
    [44]C.Q.Yuan, Z. Peng et al.. The characterization of wear transitions in sliding wear process contaminated with silica and iron powder. Tribology International.2005
    [45]Hisakado T, T sukizoe T,Y oshikawa. Lubrication mechanism of solid lubricants in oil. ASME J.Lubr.Tech..1983,105:245-253
    [46]Teterin G. A. Activation of oil-insoluble friction-reducing additives. Khim.Tekhnol.Topl. Masel.1991,3,17-19
    [47]何峰,张正义,肖耀福,王润.新一代润滑剂超细金属粉固体润滑剂.润滑与密封[J].1997,
    [48]Xu Tao,Zhao Jiazheng,Xu Kang.The ball-bearing effect of diamond nanoparticles as an oil additive.J Phys.D:Appl.. 1996,29:2 932-2 938
    [49]张军,薛群基,纳米摩擦学进展[J].95纳米摩擦学研讨会论文集.北京.清华大学出版社.1996:85-90
    [50]Risdon T J, Sargent D J. Comparison of Commercially Available Grease With and without Molybdenum Disulfide [J]. NLGI Spokesman,1971,24(10):7-12.
    [51]Risdon T J. Evaluation of MoS2 in Newer Grease Thickener Systems [J]. NLGI Spokesman, 1986,50(6):211-214.
    [52]Risdon T J, Gresty D A. The Effect of MoS2 on Wear with Greases Containing an Abrasive Conta-minaret[J]. NLGI Spokesman,1978,46(6):182186.
    [53]Cron A, Fatikin J. Graphite in Lubrication:Fundamental Parameters and Selection Guide[J]. NLGI Spokesman,1989,45(4):137147.
    [54]Albert V The Effect of Graphite Type, Purity and Concentration on the Performance of a Clay Filled Polyalphaolefin Grease, Based on Four Ball Wear (ASTM D2269) with Coefficient of Friction, and Load Wear Index (ASTM D2596) [J]. NLGI Spokesman,2002, 65(12):10-25.
    [55]Anuj Mistry, Ron Bradbury. Investigation into the Effect of Molybdenum Disulfide and Graphite on the load Carrying Capacity of a Grease [J]. NLGI Spokesman,2002,66(3): 25-29.
    [56]Anthony Gaskell. New Life for Old Technology [J]. Lubricants World,1998,8.
    [57]Unger, Klaus. Spherical Silica Particles [P]. DE 3534143,1985.
    [58]Murugan P, Kumar Vijay, Kawazoe Yoshiyuki, et al. Atomic Structures and Small Magnetism in MoS2 and WS2 Clusters [J]. Physical Review A-Atomic, Molecular, and Optical Physics,2005.
    [59]Jaroslav S, Gunnar S. Ion Bombardment of Solid Lubricating Nanoparticle Coatings [J].Nuclear Instruments and Methods in Physics Research B,1997.
    [60]Baranov N GS Ageeva V S, H'nitskaya A I, et al. Structure and Tribological Characteristics of Copper-Tungsten Disulfide Powder Composite Material[J].Soviet Powder Metallurgy and Metal Ceramics,1991
    [61]Z S Hu,J X Dong,Z W Ou,et al. Preparation of beryllium borate with supercritical carbon dioxide drying[J]. Powder Technology.2000,114(1-3):163-165
    [62]J X Dong,Z S Hu.A Study of the anti-wear and friction-reducing properties of the lubricant additive,nanometer zinc borate[J]. Tribology Int..1998,31(5):219-223
    [63]胡泽善.纳米粒子及烷氧基硼酸盐润滑油抗磨减摩添加剂的研究.博士后工作报告.重庆.解放军后勤工程学院.1998:1-100
    [64]胡泽善,欧忠文,陈国需等.油溶性硼酸钠的制备及其抗磨减摩性能[J].摩擦学学报.2001,21(4):279-282
    [65]胡泽善,王立光,陈国需等.十二烷基硼酸锌的合成及其抗磨减摩性能研究[J].摩擦学学报.2000,20(2):150-152
    [66]胡泽善,王立光,黄令等.纳米硼酸铜颗粒的制备及其用作润滑油添加剂的摩擦学性能[J].摩擦学报.2000,2(4):292-295
    [67]叶毅,董俊修,陈波水等.纳米硼酸镧对润滑油抗磨性能影响的研究[J].润滑与密封.2000,2:22-24
    [68]李积彬,李瀚,孙伟安.C60的摩擦学特性研究[J].摩擦学学报.2000
    [69]段标.聚合物微球润滑添加剂的合成及摩擦学特性的研究[D].博士学位论文,武汉.华中理工大学.1997
    [70]邢鹏飞,翟玉春,田彦文等.WS:在空气中氧化动力学的研究[J],金属学报.1996
    [71]石深,毛大恒,傣颢..二硫化钨发动机油的摩擦学性能研究[J],润滑与密封.2007
    [72]王海斗,庄大明,王昆林等.高速钢离子渗硫层的摩擦磨损性能研究[J],摩擦学学报,2002
    [73]Mao Daheng, Feng Hao, Sun Xiaoya. Study on A Hyper thermal Lithium Complex Grease [J]. Transactions of Nonferrous Metals Society of China,2005
    [74]傣颢,毛大恒.一种二硫化钨高温润滑脂的研制与性能研究[J].重庆师范大学学报(自然科学版),2004
    [75]傣颢,毛大恒,刘巧红等.二硫化钨超细粉末对高温复合理基润滑脂性能的影响[J].四川大学学报(工程科学版),2005
    [76]熊文.WS:高温铿基润滑脂摩擦学性能的研究(硕士学位论文].长沙:中南大学,2004.
    [77]熊文,毛大恒,吴尔京.二硫化钨在高温铿基润滑脂中摩擦学性能的研究[J].润滑与密封,2005
    [78]傣颢,毛大恒,刘巧红等.超声波对润滑脂中固体添加剂分散作用的研究[J].河北化工,2006
    [79]陈爽.表面修饰纳米微粒的制备结构表征及摩擦学性能研究[D].博士学位论文.甘肃兰州.中国科学院兰州化学物理研究所.2000
    [80]Shuang Chen,Weimin Lui,Laigui Yu. Preparation of DDP-coated PbS nanoparticles and investigation of the antiwear ability of the prepared nanoparticles as additive in liquid paraffin[J].Wear.]998
    [81]Shuang Chen,Weimin Lui,Laigui Yu.Study on the structure of PbS nanoparticles coated with dialkyldithiophosphate[J].J.Mater.Res..1999
    [82]陈爽,刘维民.DDP表面修饰PbS纳米微粒的合成及结构表征[J].化学物理学报.1999
    [83]Shuang Chen,Weimin Lui,Laigui Yu.Preparation and thermal stability of the coated ZnS nanoparticles[J].The Fifth IUMRS International Conference on Advanced Materials.1999
    [84]Shuang Chen,Weimin Lui.Study on the structure of surface-coated ZnS nanoparticles[J]. Langmuir.1999
    [85]Weimin Lui,Shuang Chen.Study on the tribological behaviour of the surface-modified ZnS nanoparticles in liquid paraffin[J].Wear.2002
    [86]周静芳.油溶性纳米微粒的制备及作为润滑油添加剂的摩擦学性能研究[D],中国科学院兰州化学物理研究所博士论文,甘肃兰州,2000
    [87]孙磊,周静芳,张治军等.季铵盐修饰的磷钼酸铵纳米微粒作用液体石蜡添加剂的摩擦学性能[J].摩擦学学报.2001
    [88]赵彦保,周静芳,张治军等.聚合物纳米微球的合成及摩擦学行为[J].应用化学.1999
    [89]赵彦保,周静芳,张治军等.油酸/PS/TiO2复合纳米微球对液体石蜡抗磨性能的影响研究[J].摩擦学学报.2001
    [90]张治军.表面修饰纳米微粒的化学制备及摩擦学行为的研究[D].博士学位论文.甘肃兰州.中国科学院兰州化学物理研究所.1996
    [91]Zhijun Zhang,Qunji Xue,Jun Zhang.Synthesis,structure and lubricating ptoperies of dialkyldithiophosphate-modified Mo-S compound nanoclustures[J].Wear.1997
    [92]ZhiJun Zhang,Jun Zhang,and Qun Ji Xue.Synthesis and characterization of a molybdenum disulfide nanocluster[J].J Phys.Chem..1994
    [93]梁起,张治军,薛群基.LaPO4纳米微粒的制备及表征[J].物理化学学报.1998
    [94]阎逢元,薛群基.C60/C70作为润滑油添加剂的摩擦学行为[J].摩擦学学报,1993
    [95]张军,薛群基,纳米摩擦学进展95纳米摩擦学研讨会论文集[C].北京.清华大学出版社.1996
    [96]张军,薛群基.C60-硬脂酸LB膜的润滑特性[J].科学通报.1994
    [97]Xue Q J,Zhang J.Friction and wear mechanisms of C60/steric-acid Langmuir Blodgett fiIms[J].Tribology International.1995
    [98]戴干车,陈敏恒.化工流体力学[M].北京工业出版社,1988
    [99]Rein S W. McGahey D C. Predicting grease flow in large pipes[J]. NLGL spokesman,1965
    [100]Rein S W. Solution of problems involving grease flow in straight pipe or tubing[J]. NLGL spokesman,1967
    [101]Verhoeff A. Flow of Greases in pipes:The temperature limit for centralized systems[J]. NLGL Spokesman,1973
    [102]Froishteter G B, Smorodinskii E L, Yurtin L O, Radionova N V. Calculation of hydraulic resistance in transport of lubricating greases through Pipelines[J]. Chemistry and technology of fuels and oils,1976
    [103]Buehler F A, Raich H. Low-temperature flow limits for greases[J]. NLGL Spokesman,1967
    [104]Shigeki K, Ren I. Flow properties of lubricating greases at high temperature em dash 1. apparent viscosity at high temperature[J]. Journal of Japan Society of lubrication Engineers,1975
    [105]Shigeki K, Ren I. Flow properties of lubricating greases at high temperature em dash 2..Relative viscosities and thermal history of apparent viscosities[J]. Journal of Japan Society of lubrication Engineers,1975
    [106]周超. 膏体推进剂流变与输送特性研究[D].南京理工大学博士学位论文,2008。
    [107]李琦芬.低温推进剂管道输送系统特性研究[D].浙江大学博十学位论文,2005。
    [108]牛会永.防灭火胶体的管道流动特性实验研究[D].西安科技大学硕士学位论文,2004。
    [109]孟令杰,章民耀.高浓度水煤浆流动的滑移现象及对其管内流动特性的影响[J].热能动力工程,1996,3
    [110]籍丽娟,白培康等.硅基微粉料浆的流变性研究[J].硅酸盐通报.2009,12
    [111]王战民、陈卢等.刚玉质自流浇注料流变性和流动性的关系[J].耐火材料.2009,12
    [112]单达文,饶平根等.Al2O3料浆流变性能的研究[J].中国陶瓷。2009,3
    [113]霍国胜、夏德宏.管内流体产生滑移时的减阻率计算[J].油气储运,1999
    [114]李公让,赵怀珍等.超高密度高温钻井液流变性影响因素研究[J].钻井液与完井液.2009,1
    [115]赵会军.成品油管道顺序输送特性研究[D].中国石油大学博士学位论文.2008
    [116]Rabinow J., The magnetic fluid clutch. AIEE Trans.1948:1307-1315.
    [117]Kumar D, etc. Ferrofluid squeeze film for spherical and conical bearings[J]. Int. J. Eng. Sci.1992,30(5):645-656
    [118]Shukla, J.B, etc. A theory for ferromagnetic lubrication[J]. J.Magn. Magn. Mater.1987,65(2-3):375-378
    [119]Deheri G.M., Patel, R.M.. Squeeze film based magnetic fluid in between porous circular disks with sealed boundary[J]. International Journal of Applied Mechanics and Engineering, 2006,11:810-811.
    [120]Chao P.C., Huang J.S. Calculating rotordynamic coefficients of a ferrofluid-lubricated and herringbone-grooved journal bearing via finite difference analysis[J]. Tribology Letters,2005, 19(2):99-109.
    [121]池长青.铁磁流体润滑中的非牛顿流影响[J].北京航空航天大学学报,2001,27(1):87-92.
    [122]朱润生,张建斌等.电场影响铁磁流体摩擦系数的试验研究[J].北京航空航天大学学报,1999,25(5):581-584
    [123]王利军,郭楚文,杨志伊等.磁场作用下的Fe304磁流体承载能力的试验研究[J].润滑与密封,2006,177(5):22-24
    [124]王利军,郭楚文,杨志伊等.Fe304磁流体润滑摩擦因数试验研究[J].润滑与密封,2006,7:142-157
    [125]李健,汤云峰.磁流体应用于滑动摩擦的润滑理论及实验研究[J].电工材料,2004,(3):29-34.
    [126]Uhlmann E,Spur G,Bayat N,Patzwald R. Application of magnetic fluids in tribotechnical systems[J]. Journal of Magnetism and Magnetic Materials,2002,252 (1-3):335-340
    [127]赵猛,邹继斌,胡建辉.磁场作用下磁流体粘度特性的研究[J].机械工程材料,2006,30(8):64-65
    [128]Wei H, Cong S, Sijie L, et al. Study on the Ferrofluid Lubrication with an External Magnetic Field[J]. Tribology Letters,2011,41:145-151
    [129]Kuzhir P. Free boundary of lubricant film in ferrofluid journal bearings[J]. Tribology International, v 41, n 4, p 255-268, April 2008
    [130]Shah R.C.,Bhat M.V. Ferrofluid squeeze film in a long journal bearing[J]. Tribology International, v 37, n 6, p 441-446, June 2004.
    [131]Zhang Y. Static characteristics of magnetized journal bearing lubricated with ferrofluid[J]. Journal of Tribology, v 113, n 3, p 533-538, Jul 1991.
    [132]Zakaria, Kadry; Sirwah, Magdy A.; Fakharany, M. Theoretical study of static and dynamic characteristics for eccentric cylinders lubricated with ferrofluid[J]. Journal of Tribology, v 133, n 2,2011
    [133]Shah R. C.,Bhat M.V. Porous secant shaped slider bearing with slip velocity lubricated by ferrofluid[J]. Industrial Lubrication and Tribology, v 55, n 2-3, p 113-115,2003
    [134]Xu G Y and Zhang Y Z 2005 Study on Rheological and Transport Properties of Grease (1st ed) (Nanjin:China university of Mining and Technology Press) p53-66(in Chinese)
    [135]Cho Y I, Choi E. Rheology and hydrodynamic analysis of grease flows in a circular pipe[J]. Tribology Transactions,1993,36(4).
    [136]Sanae W, Masafumi T. Elastohydrodynamic lubrication ofspueeze films en dash I:Two spherical bodies lubircated with grease[J]. Bulletin of the JSMW,1978,21(9).
    [137]Sanae W, Masafumi T. Elastohydrodynamic lubrication ofspueeze films en dash II:Two spherical bodies lubircated with grease[J]. Bulletin of the JSMW,1980,23(3).
    [138]Yoo J G, Kim K W. Numerical analysis of grease thermal elastohydrodynamic lubrication problems using the Herschel-Bulkley model[J]. ASLF Transactions,1972,15(4).
    [139]Wen S Z, Ying T N. Theoretical and experimental study of EHL lubricated with grease. Journal of tribology[J]. Transactions of the ASME,1988,110(1).
    [140]Tudor A, Nasui G V. The tribology and rheology analysis of additivated grease against solid wall (Part Ⅰ). Scientific Bulletin, Series D:Mechanical Engineering,2000,62(1).
    [141]Tudor A, Nasui G V. The tribology and rheology analysis of additivated grease against solid wall (Part Ⅱ). Scientific Bulletin, Series D:Mechanical Engineering,2000,62(1).
    [142]Utsugi H, Kim K, Ree T, Eyring H. Thixotropic property of lubrication grease[J]. NLGI spokesman,1961(10)
    [143]Gleiter H. Progress in Meter. Sci.1989,33:223
    [144]Tanizaki H, Otsuka A. Production of Ti-A1203Composite Ultrafine Particles by Radio-frequency Plasma and Their Charterication[J]. Mater Sci Eng A,1996,A215(1-2):157-163
    [145]Kiyotaka M, Kenneth J K. Clustering of Metal Atons in Organic Media:9. High-Activity Ni/MgO Catalysts Prepared byMetal VaporMethods Surface Area and Particle Size Effects[J]. Journal of Catalysis,1982,(73):215-227.
    [146]Frank A C. Nanoscale Hexagonle Gallium Nitride from Single molecule Precursors Microstructure and Crystallite Size Dependent Photoluminescence [J].Phy Status Solid A,1998,165(1):239-245.
    [147]Tikkanen J. Characteristics of the Liquid Flame Spray Process [J]. Surf Coat Technol,1997, 90(3):210-216.
    [148]Zhu W. The Effect of Diffusion Flame Configuration in Aerosol Synthesis of Nanosize Titan and Silica Powder [J].CeramTrans,1996,62:83-90.
    [149]王作山,李凤生等.C/Zr02复合纳米粉体的快速制备及其机理研究[J].高压物理学报.2008.6.
    [150]Boutonner M, Kiziling J, et al. Colloids and Surfaces.1982,5:209
    [151]Henglein A. In:Topics in Current Chemistry. Vol.143.Beilin:Springer.1988,113 and references therein.
    [152]Kurihara K, Kizling J, et al. J. Am. Chem. Soc.1983,105:2574
    [153]Barnickel P, Wokaun A, et al. J. Colloid interface Sci.1992,148(1):80
    [154]Hopwood J D. Synthesis of Barium Sulfate Nanoparticles and Nanofilament in Reverse Micelles and Microemulations[J].ChemMater,1997,9(8):1 819-1 828.
    [155]张岩,邹炳锁,肖良质,等.微乳胶法制备单分散Fe203超微粒子及其表征[J].吉林大学自然科学学报,1990,(4):115-116
    [156]严玉清、温玉刚、刘胜等.Ag0.9Li0.1(Nb0.7Ta0.3)O3纳米粉体的制备及性能研究.华北科技学院学报.2008年7月
    [157]Shigu P H,Huang B, Nishitani S R, et al.Suppl. Japan Inst, Metals,1988,29:3.
    [158]梁国宪,王尔德,王晓琳,高能球磨制备非晶态合金研究的进展[J].材料科学与工程,1994,12(1):47-50。
    [159]Morris D G, Morris MA, Mator. Sci. and Engn. A,1991,137:418
    [160]M. L. Trudeau, L. Dignard Bailey, R. Schulz. Nanostructured materials,1993,2(4):316.
    [161]Eckert J, Halzer J C, Krill C E, et al. Adv. Powder Metal.1989,1:11
    [162]Huang J Y. Thermal Decomposition of Mechanically Alloyed Nano crystalline Fe60Cu40 [J]. J Mater Res,1996,11(11):2717-2724.
    [163]李同信,李萌等;机械合金化制备负载型非晶态Ni—Nb纳米粒子催化材料[J];无机材料学报;1996.01期.
    [164]陈锦毅,林贤科等.以机械合金法制备(Mg2Ni)100-xAgx粉体与其储氢性质之研究[J].中国顺粒学会2006年年会暨海峡两岸颗粒技术研讨会.2006.8
    [165]李凤生,杨毅等.纳米/微米复合技术应用[M].北京:国防工业出版社.2002.8
    [166]袁颖.功能陶瓷超微细粉体的制备及应用研究[D].成都:成都电子科技大学.2005.
    [167]李群等.纳米材料的制备与应用技术[M].北京:化学工业出版社.2008.9
    [168]张德庆,张东兴等.高分子材料科学导论[M].哈尔滨:哈尔滨工业大学出版社.1999.8
    [169]敏世雄,王芳等.纳米级二氧化钛粉体的制备方法研究进展[J].河西学院学报.2007
    [170]匡洞庭等.超微粒子制备方法进展[J].大庆石油学院学报.2000.06.
    [171]李智慧.纳米BaTI03粉体的制备及其性能研[D]究.郑州:郑州大学.2006.05.
    [172]余双平等.超微粉体的表面改性技术进展[J].广东工业大学学报.2003.6
    [173]L.Neuringer, R.E.Rosensweig. Ferrohydrody-namics, The Physics of Fluids,vol.7,No.12,p.1927,1964.
    [174]池长青等,王之珊,赵丕智编著.铁磁流体力学.北京航空航天大学出版社.1993,12
    [175]刘佐民编著摩擦学原理及设计基础.武汉理工大学出版计.2003,2.
    [176]Bouzidane A. and Thomas M.. An electrorheological hydrostatic journal bearing for controlling rotor vibration[J]. Comput. Struct.2008; 86:463-472.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700