用户名: 密码: 验证码:
考虑拘束效应的高温下含缺陷P92管道寿命评估方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拘束效应是影响含缺陷结构在高温下裂纹起裂和扩展的重要因素。裂纹深度和结构几何尺寸的变化都会引起裂纹尖端拘束效应的变化,从而影响含缺陷结构的剩余蠕变寿命。因此研究拘束效应对蠕变裂纹扩展的影响,建立考虑拘束效应的寿命评估方法,对保证高温下含缺陷结构的安全运行具有重要意义。本文以超超临界火电机组用钢P92钢为研究材料,结合试验手段以及数值模拟技术,定性和定量的研究了拘束效应对蠕变裂纹扩展的影响。
     利用小冲孔蠕变试验技术,通过和相应的单轴蠕变试验结果进行对比,建立了小冲孔蠕变的载荷和应力以及挠曲变形和应变之间的转换关系,获得了P92钢焊接接头各微区如母材、焊缝金属、粗晶区和细晶区的蠕变性能。
     采用初始裂纹位于焊接接头不同微区的蠕变裂纹扩展试验,获得了P92钢各微区抗蠕变裂纹扩展能力,得到了蠕变裂纹扩展速率和高温断裂参量C*的关系。在相同的C*值下,最大的蠕变裂纹扩展速率出现在细晶区中,细晶区的蠕变裂纹扩展速率值是母材的2倍左右,主要和这个区域具有比较低蠕变强度和较高的拘束程度相关。
     基于蠕变连续损伤力学,开发了蠕变裂纹扩展数值模拟技术。有限元计算的裂纹扩展情况和试验结果相一致,还清楚的反映了裂纹扩展过程中裂纹尖端区域蠕变损伤、应力以及应变的变化情况。
     利用不同裂纹深度以及不同几何尺寸的试样进行了蠕变裂纹扩展试验,结果表明:裂纹深度以及试样几何尺寸变化引起的拘束效应,对蠕变裂纹扩展速率a和C*的关系具有重要影响。随后,利用蠕变裂纹扩展数值模拟技术,获得了不同裂纹深度以及不同几何尺寸试样,在蠕变裂纹扩展过程中裂纹尖端应力以及拘束参量Q的变化情况。建立了基于C*-Q双参量法的修正的蠕变裂纹扩展速率预测方法。与单参量C*的预测结果相比,在同样的C*值下,双参量预测的蠕变裂纹扩展速率值和试验结果具有较好的一致性,可以用来为含缺陷结构提供更准确的剩余蠕变寿命,保证其高温结构完整性。
The constraint level could affect the incubation and propagation of crack in thecomponents containing defects at high temperature. The variation of crack depth andstructure size would induce the variation of crack tip constraint. As a result, theresidual creep life of the components would be changed. Hence, understanding theeffect of constraint on creep crack behavior and establishing the correspondingresidual life assessment approach played an important role in assuring the reliabilityof the component with the presence of defects at elevated temperature. In this paper,the effect of constraint on the creep crack growth property was qualitatively studiedand quantitatively characterized, which were carried out on ASME P92steel mainlyapplied in Ultra Supercritical Power Plants Components by experimental investigationand numerical simulation.
     The creep properties of distinct zones of P92steel welded joint, i.e. base metal(BM), welded metal (WM), coarse grain heat affected zone (CGHAZ) and fine grainheat affected zone (FGHAZ), were obtained using small punch creep test method.This was achieved by establishing the relationship of load in small punch creep testand stress in uniaxial creep test and by determining the correlation of deflection andstrain on the basis of the comparison of uniaxial creep results and small punch creepresults.
     The creep crack growth tests were carried out on the specimens with initial crackslocated in the welded joint distinct zones to determine the creep crack growthproperties of micro zones of P92steel welded joint. The relationships between creepcrack growth rate a and high temperature parameter C*for micro zones of weldedjoint were obtained. The results revealed that at the same value of C*, the highestcreep crack growth rate occurred in the FGHAZ specimen while the lowest presentedin the BM specimen. This was due to the fact that the creep properties of FGHAZspecimen was low and the constraint in it was high compared with those of othermicro zones.
     Based on creep continuum damage mechanics and coupled with finite elementmethod analysis, the virtual creep crack growth technique was achieved. The creepcrack growth behaviors calculated by numerical simulation exhibited agreement withthose of experimental data. Furthermore, the evolution of the creep damage and the variation of stress and strain in the crack tip zone during creep crack propagationprocess were also obtained.
     Creep crack growth tests with specimens of various crack depths and specimensizes were carried out to investigate the effect of constraint on the creep crack growthbehavior. The tested results revealed that the constraint induced by crack depth andspecimen size could affect the relationship between creep crack growth rate a andC*. Then, the variations of the crack tip stress distribution and the constraintparameter Q during creep crack growth process were obtained using creep crackgrowth numerical simulation. Furthermore, a modified creep crack growth predictionapproach based on the C*-Q theory was proposed. Compared with conventionalpredictions provided by single C*parameter, the creep crack growth rate determinedby the modified C*-Q approach exhibited agreement with experimental results andnumerical results as the value of C*was the same. These phenomena meant that thisapproach could be employed to give a more accurate residual creep life and to assurethe reliability for the in-service components with defects at elevated temperature.
引文
[1] Kern T-U, Staubli M, Scarlin B, The European efforts in material development for650°C USCpower plants-COST522, ISIJ International,2002,42(12SPEC.):1515-1519
    [2]林华,大型火力发电厂超超临界机组主蒸汽管sa335-P92钢焊接工艺研究,装备制造技术,2008,10(1):69-72
    [3] Zhang Z, Holloway G B, Marshall A W, Properties of T/P92steel weld metals for ultra SuperCritical (USC) power plant, Welding in the World,2008,52(SPEC. ISS.):455-466
    [4] Fa zio C, Alamo A, Almazouzi A, et al., European cross-cutting research on structural materialsfor G eneration IV and transmutation systems, Journal of Nuclear Materials,2009,392(2):316-323
    [5] Vaillant J C, Vandenberghe B, Hahn B, et al., T/P23,24,911and92: New grades for advancedcoal-fired power plants--Properties and experience, International Journal of Pressure Vessels andPiping,2008,85(1-2):38-46
    [6]涂善东,轩福贞,王卫泽,高温蠕变与断裂评价的若干关键问题,金属学报,2009,45(7):781-787
    [7] Cadek J, Creep in Metallic Materials, Amsterdam: Elsevier,1988
    [8] Lai J K, Wickens A, Microstructural changes and variations in creep ductility of3casts of type316sta inless steel, Acta Metallurgica,1979,27(2):217-230
    [9] Dyson B F, Constraints on diffusional cavity growth rates, Metal Science,1976,10(10):349-353
    [10] G ting M, R ler J, A finite element creep crack growth model for Waspaloy, Computers&Structures,2007,85(3-4):225-232
    [11] Jie Z, Dong-Ming L, Yuan-Yuan F, Application of Manson-Haferd and Larson-Miller Methods inCreep Rupture Property Evaluation of Heat-Resistant Steels, Journal of Pressure Vessel Technology,2010,132(6):064502(064504pp.)
    [12] Manson S S, Haferd A M, A linear time-temperature relation for extrapolation of creep andstress-r upture data, United States. National Advisory Committee for Aeronautics: National AdvisoryCommittee for Aeronautics,1953
    [13]涂善东,高温结构完整性原理,北京:科学出版社,2003
    [14] Shinozaki K, Dejun Li H K, Harada H, et al., Observation of type IV cracking in welded joints ofhigh ch romium ferritic heat resistant steels, Science and Technology of Welding and Joining,2003,8(4):289-295
    [15] Zhao L, Jing H-Y, Xu L-Y, et al., Investigation on mechanism of Type IV cracking in P92steel at650°C, Journal of Materials Reasearch,2011,26(7):934-943
    [16] Te zuka H, Sakurai T, A trigger of Type IV damage and a new heat treatment procedure tosuppress it. Microstructural investigations of long-term ex-service Cr-Mo steel pipe elbows,International Journal of Pressure Vessels and Piping,2005,82(3):165-174
    [17] Sh inozaki K, Li D-J, Kuroki H, et al., Analysis of degradation of creep strength in heat-affectedzone of weldment of high Cr heat-resisting steels based on void observation, ISIJ International,2002,42(12SPEC.):1578-1584
    [18] Watanabe T, Tabuchi M, Yamazaki M, et al., Creep damage evaluation of9Cr-1Mo-V-Nb steelwelded joints showing Type IV fracture, International Journal of Pressure Vessels and Piping,2006,83(1):63-71
    [19] Fa lat L, Vyrostkova A, Homolova V, et al., Creep deformation and failure of E911/E911andP92/P92similar weld-joints, Engineering Failure Analysis,2009,16(7):2114-2120
    [20] Francis J A, Mazur W, Bhadeshia H K D H, Estimation of type IV cracking tendency in powerplant steels, ISIJ International,2004,44(11):1966-1968
    [21] Sa wada K, Hongo H, Watanabe T, et al., Analysis of the microstructure near thecrack tip ofASME Gr.92s te el after creep crack growth, Materials Characterization,2010,61(11):1097-1102
    [22] Andersson H C M, Sandstr m R, Creep crack growth in service-exposed weld metal of2.25Cr1Mo, International Journal of Pressure Vessels and Piping,2001,78(11-12):749-755
    [23] Gampe U, Seliger P, Creep crack growth testing of P91and P22pipe bends, International Journalof Pressure Vessels and Piping,2001,78(11-12):859-864
    [24] Tan M, Celard N J C, Nikbin K M, et al., Comparison of creep crack initiation and growth in foursteels tested in HIDA, International Journal of Pressure Vessels and Piping,2001,78(11-12):737-747
    [25] L e Mat Hamata N, Shibli I A, Creep crack growth of seam-weldedP22and P91pipes withartificial defects. Part II. Data analysis, International Journal of Pressure Vessels and Piping,2001,78(11-12):827-835
    [26] Siverns M J, Price A T, Crack growth under creep conditions, Nature,1970,228(5273):760-761
    [27] Bradley W, Cantwell W J, Kausch H H, Viscoelastic creep crack growth: a review of fracturemechanical analyses, Mechanics of Time-Dependent Materials,1997,1(3):241-268
    [28] Floreen S, Kane R H, An investigation of the creep-fatigue-environment interaction in a Ni-basesuperalloy, Fatigue of Engineering Materials and Structures,1979,2(4):401-412
    [29] Dogan B, Saxena A, Schwalbe K H, Creep crack growth in creep-brittle Ti-6242alloys, Materialsat High Temperatures,1992,10(2):138-143
    [30] Ni kbin K M, Smith D J, Webster G A, Prediction of Creep Crack Growth from Uniaxial CreepData, Proceedings of The RoyalSociety of London, Series A: Mathematical and Physical Sciences,1984,396(1810):183-197
    [31] Taira S, Ohtani R, Kitamura T, Application of J-integral to high-temperature crack propagation.Creepcrack propagation, Journal Of Engineering Materials And Technology-Transactions Of TheASME,1979,101(2):154-161
    [32] Nicholson R D, Formby C L, The validity of various fracture mechanics methods at creeptemperatures, International Journal of Fracture,1975,11(4):595-604
    [33] Nikbin K M, Smith D J, Webster G A, An engineering approach to the prediction of creep crackgrowth, Transactions of the ASME Journal of Engineering Materials and Technology,1986,108(2):186-191
    [34] Hyde T H, Kubba B, Low K C, et al., Experimental investigation of creep crack growth in a leadalloy, Journal of Strain Analysis for Engineering Design,1985,20(2):101-110
    [35] Yamamoto M, Miura N, Ogata T, Applicability of C*parameter in assessing Type IV creepcrackin g in Mod.9Cr-1Mosteel welded joint, Engineering Fracture Mechanics,2010,77(15):3022-3034
    [36] Tang S, Guo T F, Cheng L, C*-controlled creep crack growth by grain boundary cavitation, ActaMaterialia,2008,56(18):5293-5303
    [37] Shibli I A, Le Mat Hamata N, Creep crack growth in P22and P91welds--overview from SOTAand HIDA projects, International Journal of Pressure Vessels and Piping,2001,78(11-12):785-793
    [38] Jeong C S, Bae S Y, Lim B S, Creep crack growth in P92and P122alloy steel weldment,Advances in Fracture and Strength, Pts1-4,2005,297-300(446-451
    [39] Hy de T H, Saber M, Sun W, Creep crack growth data and prediction for a P91weld at650°C,International Journal of Pressure Vessels and Piping,2010,87(12):721-729
    [40] Hyde T H, Sun W, Becker A A, Creep crack growth in welds: a damage mechanics approach topredicting initiation and growth of circumferential cracks, International Journal of Pressure Vessels andPiping,2001,78(11-12):765-771
    [41] Dean D W, Gladwin D N, Creep crack growth behaviour of Type316H steels and proposedmodifications to standard testing and analysis methods, International Journal of Pressure Vessels andPiping,2007,84(6):378-395
    [42] Tabuchi M, Watanabe T, Kubo K, et al., Creep crack growth behavior in the HAZ of weldmentsof W containing high Cr steel, International Journal of Pressure Vessels and Piping,2001,78(11-12):779-784
    [43] Yokobori A T, Jr., Yokobori T, New concept to crack growth at high temperature creep andcreep-f atigue; proceedings of the Advances in Fracture Research Proceedings of the7th InternationalConference on Fracture (ICF7),20-24March1989, Oxford, UK, F,1989. Pergamon.
    [44] Yokobori A T, Uesugi T, Yokobori T, et al., Estimation of creep crack growth rate in IN-100basedon the Q*parameter concept, Journal of Materials Science,1998,33(6):1555-1562
    [45] Ka ji Y, Kikuchi K, Comparison and evaluation of creep crack growth rate and fracture time forAlloy800by the Q*parameter, International Journal of Pressure Vessels and Piping,1998,75(15):1065-1074
    [46] Su giura R, Yokobori Jr AT, Tabuchi M, et al., Comparison of creep crack growth rate in heataffected zon e of welded joint for9%Cr ferritic heat resistant steel based on C*, dδ/dt, K and Q*parameters, Engineering Fracture Mechanics,2007,74(6):868-881
    [47] Yatomi M, Yokobori Jr A T, Nikbin K M, Comparison of two creep crack growth parameters, C*and Q*, with FE analysis, Strength, Fracture and Complexity,2006,4(2):83-92
    [48] ASME. ASME N-47, Rules for construction of nuclear power plant components. New York;ASME.1995.
    [49] R5. Assessment procedure for the high temperature response of structures. Gloucester, UK;Nuclear Electric Ltd.1997.
    [50]轩福贞,涂善东,高温环境下在用压力容器检测与安全评估技术研究进展(二)―评估方法,压力容器,2002,19(10):1-5
    [51] Ew ald J, Sheng S, Klenk A, et al., Engineering guide to assessment of creep crack initiation oncomponents by two-criteria-diagram; proceedings of the Advances in Defect Assessment in HighTemperature Plant Based on the papers presented at the Second International`HIDA' Conference,4-6Oct2000, UK, F,2001. Elsevier.
    [52] Ewald J, Sheng S, Two criteria diagram for creep crack initiation and its application to anip-turbine, Materials at High Temperatures,1998,15(3-4):323-330
    [53]轩福贞,涂善东,高温环境下在用压力容器检测与安全评估技术研究进展(一)――检测技术及数据库,压力容器,2002,19(9):1-4
    [54]轩福贞,涂善东,王正东,高温含缺陷结构与时间相关的失效评定图,核动力工程,2003,24(6):508-513
    [55]涂善东,轩福贞,高温承压设备结构完整性技术,压力容器,2005,22(11):39-47
    [56]轩福贞,涂善东,王正东,高温金属结构缺陷免予蠕变失效评定的条件,中国机械工程,2004,15(10):928-931
    [57] Hutchinson J W, Singular behaviour at the end of a tensile crack in a hardening material, Journalof the Mechanics and Physics of Solids,1968,16(1):13-31
    [58] Rice J R, Rosengren G F, Plane strain deformation near a crack tip in a power-law hardeningmateria l, Journal of the Mechanics and Physics of Solids,1968,16(1):1-12
    [59] Dodds R H, Fong Shih C, Anderson T L, Continuum and micromechanics treatment of constraintin fracture, International Journal of Fracture,1993,64(2):101-133
    [60] Al-Ani A M, Hancock J W, J-dominance of short cracks in tension and bending, Journal of theMechanics and Physics of Solids,1991,39(1):23-43
    [61] Be tegon C, Hancock J W, Two-parameter characterization of elastic-plastic crack-tip fields,Journal of Applied Mechanics, Transactions ASME,1991,58(1):104-110
    [62] Du Z Z, Hancock J W, The effect of non-singular stresses on crack-tip constraint, Journal of theMechanics and Physics of Solids,1991,39(4):555-567
    [63] O' Dowd N P, Applications of two parameter approaches in elastic-plastic fracture mechanics,Engineering Fracture Mechanics,1995,52(3):445-465
    [64] O'Dowd N P, Shih C F, Two-parameter fracture mechanics: theory and applications, ASTMSpecial Technical Publication,1995,1207):21-47
    [65] O'Dowd N P, Shih C F, Family of crack-tip fields characterized by a triaxiality parameter. I.Structu re of fields, Journal of the Mechanics and Physics of Solids,1991,39(8):989-1015
    [66] O'Dowd N P, Shih C F, Family of crack-tip fields characterized by a triaxiality parameter. II.Fracture applications, Journal of the Mechanics and Physics of Solids,1992,40(5):939-963
    [67] Ya ng S, Chao Y J, Sutton M A, Higher order asymptotic crack tipfields in a power-law hardeningmaterial, Engineering Fracture Mechanics,1993,45(1):1-20
    [68] Chao Y J, Yang S, Sutton M A, On the fracture of solids characterized by one or two parameters:Theory and practice, Journal of the Mechanics and Physics of Solids,1994,42(4):629-647
    [69] Ch ao Y, Zhu X K, J-A2Characterization of Crack-Tip Fields: Extent of J-A2Dominance andSize Requi rements, International Journal of Fracture,1998,89(3):285-307
    [70] ASTM. ASTM E1457-07, Standard Test Method for Measurement of Creep Crack Growth Timesin Metals. ASTM International.2007:1012-1035.
    [71] R6. Assessment of the integrity of structures containing defects Gloucester, UK; Nuclear ElectricLtd.1997.
    [72] Bettinson A D, O'Dowd N P, Nikbin K M, et al., Experimental investigation of constraint effectson creep crack growth; proceedings of the Computational Weld Mechanics, Constraint and WeldFractur e (2002ASME Prssure Vessels and Piping Conference), August5,2002-August9,2002,Vancouver, BC, Canada, F,2002. American Society of Mechanical Engineers.
    [73] Tabuchi M, Kubo K, Yagi K, Effect of specimen size on creep crack growth rate using ultra-largeCT specimens for1Cr-Mo-V steel, Engineering Fracture Mechanics,1991,40(2):311-321
    [74] Budden P, Ainsworth R, The effect of constraint on creep fracture assessments, InternationalJournal of Fracture,1999,97(1):237-247
    [75] KN, Justification for meso-scale modelling in quantifying constraint during creep crack growth,Materials Science and Engineering: A,2004,365(1-2):107-113
    [76] Chao Y J, Zhu X K, Zhang L, Higher-order asymptotic crack-tip fields in a power-law creepingmaterial, International Journal of Solids and Structures,2001,38(21):3853-3875
    [77] Nguyen B-N, Onck P, van der Giessen E, Crack-tip constraint effects on creep fracture,Engineering Fracture Mechanics,2000,65(4):467-490
    [78] Ng uyen B N, Onck P R, Van Der Giessen E, On higher-order crack-tip fields in creepingsolids,Journal of Applied Mechanics, Transactions ASME,2000,67(2):372-382
    [79] Wang G Z, Liu X L, Xuan F Z, et al., Effect of constraint induced by crack depth on creepcrack-tip stress field in CT specimens, International Journal of Solids and Structures,2010,47(1):51-57
    [80] Wang G Z, Li B K, Xuan F Z, et al., Numerical investigation on the creep crack-tip constraintinduced by loading configuration of specimens, Engineering Fracture Mechanics,2012,79(0):353-362
    [81] Yamamoto M, Miura N, Ogata T, Effect of constraint on creep crack propagation of mod.9CR-1Mo steel weld joint; proceedings of the2009ASME Pressure Vessels and Piping Conference,July26,2009-July30,2009, Prague, Czech republic, F,2010. American Society of MechanicalEngineers.
    [82] Yatomi M, O'Dowd N P, Nikbin K M, et al., Theoretical and numerical modelling of creep crackgrowth in a carbon-manganese steel, Engineering Fracture Mechanics,2006,73(9):1158-1175
    [83] Hayhurst D R, Dimmer P R, Morrison C J, Development of continuum damage in the creeprupture of notched bars, Philosophical Transactions of the Royal Society of London (Series) A:Mathem atical and Physical Sc,1984,311(1516):103-129
    [84] Becker A A, Hyde T H, Sun W, et al., Benchmarks for finite element analysis of creep continuumdamage mechanics, Computational Materials Science,2002,25(1-2):34-41
    [85] Tu S-T, Segle P, Gong J-M, Creep damage and fracture of weldments at high temperature,Interna tional Journal of Pressure Vessels and Piping,2004,81(2):199-209
    [86] H G,3D boundary element analysis of creep continuum damage mechanics problems,Engineering Analysis with Boundary Elements,2005,29(8):749-755
    [87] HG, Two-dimensional boundary element analysis of creep continuum damage problems withplasticeffects, Computational Materials Science,2008,41(3):322-329
    [88] Hyde T H, Saber M, Sun W, Testing and modelling of creep crack growth in compact tensionspecime ns from a P91weld at650°C, Engineering Fracture Mechanics,2010,77(15):2946-2957
    [89] Oh C-S, Kim N-H, Kim Y-J, et al., Creep failure simulations of316H at550°C: Part I–A methodand validation, Engineering Fracture Mechanics,2011,78(17):2966-2977
    [90] Maleki S, Zhang Y, Nikbin K, Prediction of creep crack growth properties of P91parent andwelded steel using remaining failure straincriteria, Engineering Fracture Mechanics,2010,77(15):3035-3042
    [91] Zhao L G, Tong J, Byrne J, Finite element simulation of creep-crack growth in a nickel basesuperal loy, Engineering Fracture Mechanics,2001,68(10):1157-1170
    [92] Sa xena A, Hall D E, McDowellD L, Assessment of deflection rate partitioning for analyzingcreep crack growth data, Engineering Fracture Mechanics,1999,62(1):111-122
    [93] Tabuchi M, Matsui M, Watanabe T, et al., Creep fracture analysis of W strengthened high Cr steelweldme nt, Materials Science Research International,2003,9(1):23-28
    [94] Li Y, Hongo H, Tabuchi M, et al., Evaluation of creep damage in heat affected zone of thickwelded joint for Mod.9Cr-1Mo steel, International Journal of Pressure Vessels and Piping,2009,86(9):585-592
    [95] Albert S K, Matsui M, Hongo H, et al., Creep rupture properties of HAZs of a high Cr ferriticsteel simulated by a weld simulator, International Journal of Pressure Vessels and Piping,2004,81(3):221-234
    [96] Besson J, Leclercq S, Gaffard V, et al., Analysis of creep lifetime of a ASME Grade91weldedpipe, Engineering Fracture Mechanics,2009,76(10):1460-1473
    [97] Igari T, Kawashima F, Tokiyoshi T, et al., Micro-macro damage simulation of low-alloy steelwelds subject to type IV creep failure, Acta Metallurgica Sinica (English Letters),2004,17(4):393-399
    [98] Smith D J, Walker N S, Kimmins S T, Type IV creep cavity accumulation and failure in steelwelds, International Journal of Pressure Vessels and Piping,2003,80(9):617-627
    [99] Hayhurst R J, Mustata R, Hayhurst D R, Creep constitutive equations for parent, Type IV, R-HAZ,CG-HAZ and weld material in the range565-640°C for Cr-Mo-V weldments, International Journal ofPressure Vessels and Piping,2005,82(2):137-144
    [100] Abe F,Analysis of creep rates of tempered martensitic9%Cr steel based on microstructureevolut ion, Mater ials Science and Engineering: A,2009,510-511(3-6):64-69
    [101]马崇, P92钢焊接接头IV型蠕变开裂机理及预测方法研究:[博士学位论文],天津;天津大学,2010
    [102] Zhao L, Ji ng H, Xu L, et al., Numerical investi gation of factors affecting creep damageaccumulation in ASME P92steel welded joint, Materials&Design,2012,34(0):566-575
    [103] Hirata H, Ogawa K, Effect of chromium content on loss of creep rupture strength in the heataffected zone of heat-resistant ferritic steel, Welding International,2005,19(2):118-124
    [104] Hirata H, Ogawa K, Relationship between loss of creep rupture strength and microstructurein the heat affected zone of heat-resistant ferritic steel, Welding International,2005,19(2):109-117
    [105] Lucas G E, Review of small specimen test techniques for irradiation testing, Metallurgicaltransactions A, Physical metallurgy and materials science,1990,21A(5):1105-1119
    [106] Rosinski S T, Corwin W R, ASTM cross-comparison exercise on determination of materialproperti es through miniature sample testing, ASTMSpecial Technical Publication,1998,1329):3-14
    [107]艾芒,杨镇,小冲孔试验法的起源,发展和应用,机械强度,2000,22(4):279-282
    [108] Baik J-M, Kameda J, Buck O, Development of small punch test for ductile-brittle transitiontemper ature measurement of temper embrittled Ni-Cr steels; proceedings of the Use of Small-ScaleSpecimens for Testing Irradiated Material, Albuquerque, NM, USA, F,1986. ASTM.
    [109] Foulds J R, Viswanathan R, Nondisruptive material sampling and mechanical testing,Journal of Nondestructive Evaluation,1996,15(3):151-162
    [110] Okada A, Lucas GE, Kiritani M, Micro-bulge test and its application to neutron-irradiatedmetals, Transactions of the Japan Institute of Metals,1988,29(2):99-108
    [111] Lucas G E, Okada A, Kiritani M, Parametric analysis of the disc bend test; proceedings ofthe Second International Conference on Fusion Reactor Materials (ICFRM-2),13-17April1986,Netherl ands, F,1986.
    [112] Manahan M P, Argon A S, Harling O K, The development of a miniaturized disk bend testfor the determination of postirradiation mechanical properties, Journal of Nuclear Materials,1981,104(0):1545-1550
    [113] J.H B, Toughness losses in low alloy steels at high temperatures: an appraisal of certainfactors concerning the small punch test, International Journal of Pressure Vessels and Piping,1998,75(11):791-804
    [114]J.H B, The small punch toughness test: some detailed fractographic information,Interna tional Journal of Pressure Vessels and Piping,1995,63(2):177-194
    [115] Dobe F, Mili ka K, Application of creep small punch testing in assessment of creep lifetime,Materials Science and Engineering A,2009,510-511(C):440-443
    [116] Fleury E, Ha J S, Small punch tests to estimate the mechanical properties of steels for steampower plant: I. Mechanical strength, International Journal of Pressure Vessels and Piping,1998,75(9):699-706
    [117] Ha J S, Fleury E, Small punch tests to estimate the mechanical properties of steels for steampower plant: II. Fracture toughness, International Journal of Pressure Vessels and Piping,1998,75(9):707-713
    [118] Shekhter A, Kim S, Carr D G, et al., Assessment of temper embrittlement in an ex-service1Cr-1M o-0.25V power generating rotor by Charpy V-Notch testing, KIc fracture toughness and smallpunch test, International Journal of Pressure Vessels and Piping,2002,79(8-10):611-615
    [119]Mao X, Saito M, Takahashi H, Small punch test to predict ductile fracture toughness JIC andbrittlefracture toughness KIC, Scripta Metallurgica et Materialia,1991,25(11):2481-2485
    [120] Xinyuan M, Shoji T, Takahashi H, Development of a miniaturized specimen technique forfracture toughness JIc measurement, Journal of Testing and Evaluation,1988,16(2):229-241
    [121] Xinyuan M, Tetsuo S, Takahashi H, Characterization of fracture behavior in small punch testby combined recrystallization-etch method and rigid plastic analysis, Journal of Testing and Evaluation,1987,15(1):30-37
    [122] Mao X, Takahashi H, KodairaT, Supersmall punch test to estimate fracture toughness JIcand its application to radiation embrittlement of2.25Cr-1Mo steel, Materials Science and EngineeringA,1992, A150(2):231-236
    [123] Ju J-B, Jang J-i, Kwon D, Evaluation of fracture toughness by small-punch testingtechniques using sharp notched specimens, International Journal of Pressure Vessels and Piping,2003,80(4):221-228
    [124] Misawa T, Nagata S, Aoki N, et al., Fracture toughness evaluation of fusion reactorstructural steels at low temperatures by small punch tests, Journal of Nuclear Materials,1989,169(1):225-232
    [125]Abendroth M, Kuna M, Determination of deformation and failure properties of ductilematerials by means of the small punch test and neural networks, Computational Materials Science,2003,28(3-4SPEC. ISS.):633-644
    [126] Cuesta I I, Alegre J M, Determination of the fracture toughness by applying a structuralintegrity approach to pre-cracked Small Punch Test specimens, Engineering Fracture Mechanics,2011,78(2):289-300
    [127] Turba K, Gül imen B, Li Y Z, et al., Introduction of a new notched specimen geometry todetermine fracture properties by small punch testing, Engineering Fracture Mechanics,2011,78(16):2826-2833
    [128] Foulds J R, Woytowitz P J, Parnell T K, et al., Fracture toughness by small punch testing,Journal of Testing and Evaluation,1995,23(1):3-10
    [129] Bulloch J H, The small punch toughness test: some detailed fractographic information,Interna tional Journal of Pressure Vesselsand Piping,1995,63(2):177-194
    [130] Bulloch J H, A study concerning material fracture toughness and some small punch test datafor low alloy steels, Engineering Failure Analysis,2004,11(4):635-653
    [131]Komazaki S-I, Sugimoto T, Hasegawa Y, et al., Damage evaluation of a welded joint in along-term service-exposed boiler by using a small punch creep test, ISIJ International,2007,47(8):1228-1233
    [132]Komazaki S-I, Koyama A, Misawa T, Effect of morphology of copper precipitation particleson hydrogen embrittlement behavior in Cu-added ultra low carbon steel, Materials Transactions,2002,43(9):2213-2218
    [133] Komazaki S-i, Kato T, Kohno Y, et al., Creep property measurements of welded joint ofreduced-activation ferritic steel by the small-punch creep test, Materials Science and Engineering: A,2009,510-511(229-233
    [134] Ling X, Zheng Y, You Y, et al., Creep damage in small punch creep specimens of Type304stainless steel, International Journal of Pressure Vessels and Piping,2007,84(5):304-309
    [135]陈玉新,小冲孔蠕变试验技术研究:[硕士学位论文],南京;南京工业大学,2004
    [136] Izaki T, Kobayashi T, Kusumoto J, et al., A creep life assessment method for boiler pipesusing small punch creep test, International Journal of Pressure Vessels and Piping,2009,86(9):637-642
    [137]Kato T, Komazaki S-i, Kohno Y, et al., High-temperature strength analysis of welded jointof RAFs by small punch test, Journal of Nuclear Materials,2009,386-388(520-524
    [138] Ma Y W,Shim S, Yoon K B, Assessment of power law creep constants of Gr91steel usingsmall punch creep tests, Fatigue and Fracture of Engineering Materials and Structures,2009,32(12):951-960
    [139]Kim B, Lim B, Local creep evaluation of P92steel weldment by small punch creep test, ActaMecha nica Solida Sinica,2008,21(4):312-317
    [140] Tanaka K, Amita T, Satou T, et al., Evaluation on high temperature fracture toughness ofCrMoV cast steel by small punch testing, International Journal of Pressure Vessels and Piping,2009,86(9):643-648
    [141] Zhou Z, Zheng Y, Ling X, et al., A study on influence factors of small punch creep test byexperimental investigation and finite element analysis, Materials Science and Engineering: A,2010,527(10-11):2784-2789
    [142]陈玉新,凌祥,涂善东,小冲孔蠕变试验技术及其应用研究进展,石油化工设备,2004,33(2):37-41
    [143]凌祥,周志祥,解巧云,小冲孔试验技术研究及其应用,南京工业大学学报:自然科学版,2009,31(2):106-110
    [144]Dymácek P, Milicka K, Creep small-punch testing and its numerical simulations, MaterialsScience and Engineering A,2009,510-511(C):444-449
    [145] Zhai P C, Hashida T, Komazaki S-I, et al., Numerical analysis for small punch creep tests byfinite-element method, Journal of Testing and Evaluation,2005,33(4):298-303
    [146] Dobe F, Mili ka K, Kratochv l P, Small punch creep in Fe28Al3Cr0.02Ce alloy,Intermetallics,2004,12(12):1397-1401
    [147]Dobe F, Mili ka K, Comparison of conventional and small punch creep tests ofmecha nically alloyed Al-C-O alloys, Materials Characterization,2008,59(7):961-964
    [148] Li J-F, Watanabe R, Brittle-to-ductile transition and high-temperature deformation inZrO2(Y2O3) and Al2O3ceramics as evaluated by small punch test, Materials Transactions, JIM,1999,40(6):508-513
    [149]Shin J-H, Hur S-K, Ha C-G, et al., Mechanical characterization in PSZ/NiCrAlY compositesfabricated by plasma activated sintering, Journal of Alloys and Compounds,2000,313(1–2):248-257
    [150] Kameda J, Bloomer T E, Sakurai S, Oxidation/carbonization/nitridation and in-servicemechanical property degradation of CoCrAlY coatings in land-based gas turbine blades, Journal ofThermal Spray Technology,1999,8(3):440-446
    [151]Perrin I J, Hayhurst D R, Continuum damage mechanics analyses of type IV creep failure inferritic steel crossweld specimens, International Journal of Pressure Vessels and Piping,1999,76(9):599-617
    [152] Abe F, Tabuchi M, Tsukamoto S, et al., Microstructure evolution in HAZ and suppression ofType IV fracture in advanced ferritic power plant steels, International Journal of Pressure Vessels andPiping,2010,87(11):598-604
    [153]Abe F, Tabuchi M, Kondo M, et al., Suppression of Type IV fracture and improvement ofcreep strength of9Cr steel welded joints by boron addition, International Journal of Pressure Vesselsand Pip ing,2007,84(1-2):44-52
    [154] Yatomi M, Davies C M, Nikbin K M, Creep crack growth simulations in316H stainless steel,Engineering Fracture Mechanics,2008,75(18):5140-5150
    [155]Yan L, Sumio M, Damage localization of conventional creep damage models andpropos ition of a new model for creep damage analysis, JSME International Journal Series A:Mechanics and Material Engineering,1998,41(1):57-65
    [156] ABAQUS, Abaqus6.9standard user manual, USA: ABAQUS, Inc,2009
    [157]Blagoeva D T, Hurst R C, Application of the CEN (European Committee for Standardization)small punch creeptesting code of practice to a representative repair welded P91pipe, Materials Scienceand En gineering:A,2009,510-511(0):219-223
    [158] Campitelli E N, Bonad R, Hoffelner W, et al., Assessment of the constitutive properties fromsmallball punch test: experiment and modeling, Journal of Nuclear Materials,2004,335(3):366-378
    [159]Yang Z, Wang Z W, Relationship between strain and central deflection in small punch creepspecimens, International Journal of Pressure Vessels and Piping,2003,80(6):397-404
    [160] Chakrabarty J, A theory of stretch forming over hemispherical punch heads, InternationalJournal of Mechanical Sciences,1970,12(4):315-325
    [161] Mao X, Takahashi H, Kodaira T, Estimation of mechanical properties of irradiated nuclearpressure vessel steel by use of subsized CT specimen and small punch specimen, Scripta Metallurgicaet Materialia,1991,25(11):2487-2490
    [162]Mao X, Takahashi H, Kodaira T, Use of subsized specimen for evaluating the strength andfractur e toughness of irradiated21/4Cr-1M0steel,Transactions of the ASME Journal of EngineeringMaterials and Technology,1992,114(2):168-171
    [163] Li Y, Sturm R, Small punch test for weld heat affected zones, Materials at HighTemperatures,2006,23(3-4):225-232
    [164]Hyde T H, Stoyanov M, Sun W, et al., On the interpretation of results from small punchcreep tests, Journal of Strain Analysis for Engineering Design,2010,45(3):141-164
    [165] Schwalbe K H, Hellmann D, Application of the electrical potential method to crack lengthmeasurements using Johnson's formula, Journal of Testing and Evaluation,1981,9(Copyright1981,IEE):218-220
    [166] Hartman G A, Johnson D A, D-C electric-potentialmethod applied to thermal/mechanicalfatigue crack growth, Experimental Mechanics,1987,27(Copyright1987, IEE):106-112
    [167] Kwon O, Nikbin K M, Webster G A, et al., Crack growth in the presence of limited creepdeformation, Engineering Fracture Mechanics,1999,62(1):33-46
    [168]Davies C M, Dean D W, Nikbin K M, et al., Interpretation of creep crack initiation andgrowth data for weldments, Engineering Fracture Mechanics,2007,74(6):882-897
    [169] Yokobori Jr A T, Takmori S, Yokobori T, et al., Mechanical behavior and strengtheningmechanism of W containing9-12%Cr steels under creep condition for a cracked specimen, KeyEngineering Materials,2000,171-174(Compendex):131-138
    [170] Li D, Shinozaki K, Kuroki H, Stress-strain analysis of creep deterioration in heat affectedweldzone in high Cr ferritic heat resistant steel, Materials Science and Technology,2003,19(9):1253-1260
    [171]刘彦,一种含局部化效应的蠕变损伤理论及其在蠕变裂纹扩展中的应用:[博士学位论文],成都;西南交通大学,1990
    [172]Roy N, Bose S C, Ghosh R N, Stochastic aspects of evolution of creep damage in austeniticstainless steel, Materials Science and Engineering: A,2010,527(18-19):4810-4817
    [173] Yatomi M, NikbinK M, O'Dowd N P, Creep crack growth prediction using a damage basedapproach, International Journal of Pressure Vessels and Piping,2003,80(7-8):573-583
    [174] Cocks A C F, Ashby M F, Intergranular fracture during power-law creep under multiaxialstresses, Metal Science,1980,14(8-9):395-402
    [175] Webster G A, Ainsworth R A, High temperature component life assessment, AppliedMechanics Reviews,1995,48(10): B144-B144
    [176] Tan J, Wang G, Xuan F, et al., Creep crack growth in a Cr-Mo-V type steel: Experimentalobservation and prediction, Acta Metallurgica Sinica (English Letters),2011,24(2):81-91
    [177]Galkiewicz J, Graba M, Algorithm for determination of a ij(n,), ij(n,), ui(n,), dn(n), In(n)functio ns in Hutchinson-Rice-Rosengren solution and its3D generalization, Journal of Theoretical andApplied Mechanics,2006,44(1):19-30
    [178] Xu J, Zhang Z L, Ostby E, et al., Effects of crack depth and specimen size on ductile crackgrowth of SENT and SENB specimens for fracture mechanics evaluation of pipeline steels,Interna tional Journal ofPressure Vessels and Piping,2009,86(12):787-797
    [179] Kim Y, Chao Y J, Zhu X K, Effect of specimen size and crack depth on3D crack-frontconstraint for SENB specimens, International Journal of Solids and Structures,2003,40(23):6267-6284
    [180]Yan C, Mai Y-W, Effect of crack depth and specimen width on fracture toughness of acarbon steel in the ductile–brittle transition region, International Journal of Pressure Vessels and Piping,2000,77(6):313-319
    [181] Ostby E, Thaulow C, Zhang Z, Numerical simulations of specimen size and mismatcheffectsin ductile crack growth–Part I: Tearing resistance and crack growth paths, EngineeringFractur e Mechanics,2007,74(11):1770-1792
    [182] Joyce J A, Link R E, Application of two parameter elastic-plastic fracture mechanics toanalysis of structures, Engineering Fracture Mechanics,1997,57(4):431-446
    [183]Zhu X-K, Leis B N, Bending modified J–Q theory and crack-tip constraint quantification,International Journal of Fracture,2006,141(1-2):115-134
    [184]杨新歧,非均质焊接接头裂纹端拘束状态与断裂参量研究:[博士学位论文],天津;天津大学,1995
    [185] Chao Y J, Zhu X K, Kim Y, et al., Characterization of crack-tip field and constraint forbending specimens under large-scale yielding, International Journal of Fracture,2004,127(3):283-302
    [186]Masaaki T, Kiyoshi K, Koichi Y, Effect of specimen size on creep crack growth rate usingultra-la rge CT specimens for1Cr-Mo-V steel, Engineering Fracture Mechanics,1991,40(2):311-321
    [187] Andersson P, Segle P, Samuelson L, Numerical investigation of creep crack growth incross-weld CT specimens. Part II: influence of specimen size, Fatigue&Fracture of EngineeringMaterials&Structures,2000,23(6):533-540
    [188] Yokobori Jr A T, Sugiura R, Effects of component size, geometry, microstructure and agingon the embrittling behavior of creep crack growth correlated by the Q parameter, EngineeringFracture Mechanics,2007,74(6):898-911
    [189]Guo W, Elastoplastic three dimensional crack border field—I. Singular structure of the field,Engine ering Fracture Mechanics,1993,46(1):93-104
    [190] Sun J, Stress triaxiality constraint and crack tip parameters, Engineering Fracture Mechanics,1993,44(5):789-806

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700