用户名: 密码: 验证码:
海底管线断裂疲劳分析及软件开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油管线是油气资源开发和利用的生命线,它的安全与否直接影响着石油工业和生物与环境的发展。石油管线在安装与油气输运过程以及其他工业事故中,难免会产生各种各样的损伤和缺陷,如出现表面凹坑、裂纹等。由于损伤和缺陷的存在将大大降低石油管线的承载能力,缩短管线的使用寿命,同时也威胁着石油管线及生物环境的安全。因此,为保障石油管线石油运输的安全,避免遭受重大经济损失和生态环境的破坏,必须对具有损伤的石油管线进行可靠性评估和分析,为管线的维修,结构承载能力的潜力挖掘,提供科学合理的决策依据,从而大大提高石油管线的综合经济效益。
     由于海底管道长期受到动荷载作用,在静载作用下安全的微小缺陷会在荷载的反复作用下慢慢扩展开,最终导致管道的断裂失效。但管道含有缺陷是无法避免的,这样就有了ECA(Engineering Critical Assessment)评估。ECA评估实际上是对那些不能满足规范严格要求的结构的评估。它是以国际认可的实践经验来评估不满足规范要求的结构/结构组件在特定的时间段,特定的环境条件下安全工作的一种评估方法。一般来说特定于某一方面的质量控制标准通常是保守的,但在监控和维护中的此质量标准却起着很重要的作用。如果缺陷在质量控制范围内,就认为它是满足要求的,如果缺陷尺寸超过质量控制标准,却并不一定舍弃它,决定其的处理方式就应当基于适用性原则。通过相应的评估可以延长“不合格”结构的使用寿命,从而带来一定的经济效益,这就是ECA评估的重要作用。ECA在一定程度上可以代替规范参与设计评估,并且对于规范有严格要求的地方可以制定出一套替代的标准。这种替代的标准在特定的环境条件下,在特定的时间内是十分经济合理的。
     失效评定图(Failure Assessment Diagram,FAD)方法是进行管道ECA评估非常有效的方法,该方法是英国中央电力局(CEGB)首先提出的。英国规范PD6493:1991采用了FAD方法,制定了含缺陷金属结构的评定规程。最新版的BS7910:1999做了进一步的修订完善,它基本上涵盖了含缺陷结构的所有失效模式;尽管该规范最初的目的是针对含缺陷焊接结构而制定的,但实质上也适用于非焊接结构的评定。当采用失效评定图对结构进行可靠性评定时,可将评定点(FAP)描于FAD图上。每一评定点的位置是施加荷载条件、缺陷尺寸、材料性能等的函数。如果评定点位于由失效评定图的坐标轴和失效评定曲线所构成的区域之内,可认为结构安全;反之,则可能不安全。评定点变化轨迹与失效评定曲线交点所对应的缺陷尺寸即为结构的极限缺陷尺寸。
     本文介绍了结构失效评估图FAD技术,详细介绍了BS7910:1999规范中三个不同等级的断裂评估方法和基于此的疲劳评估方法。通过断裂评估方法,能够对不同受
    
    浙江大学工学硕士学位论文2004
    摘要
    力状态下的含焊接裂纹管道进行断裂评估,得到管道任何位置的极限裂纹长度;通过
    疲劳评估方法,能够对受复杂动荷载的含焊接裂纹管道进行疲劳评估,得到管道在此
    种受力环境下的疲劳寿命。基于这两种评估方法,本文编制了具有裂纹损伤管道的断
    裂疲劳评定程序,整个程序严格遵循BS7910:1999规范,采用Visua1C十+语言设计,
    提供了一个友好的界面。它可以对有缺陷管道进行断裂疲劳评估,科学的得到裂纹允
    许的极限长度及结构的疲劳寿命。对我国的管道设计提供一定的帮助。
The petroleum pipeline is the lifeline in the development and utilize of oil gas resources. Whether its security or not is influencing the development of petroleum industry, living beings and environment directly. While installation, transport and other industrial accidents of the petroleum pipeline, it is unavoidable to encounter various damage and defect, such as surface flaw, crack, etc. The damage and defect will reduce the bearing capacity of the petroleum pipeline greatly, shorten the service life of the pipeline and threaten the security of the petroleum pipeline and biotic environment. For the security of the petroleum pipeline and its transport, avoiding the great economic losses and destruction of ecological environment, it's very important to make a reliability assessment to the flawed pipelines. It offers the rational and scientific decision basis for the repair of pipelines and the excavation of its potential bearing capacity. Then it will improve the comprehensive economic benefits of the petro
    leum pipeline greatly.
    Because the submarine pipeline suffers dynamic load, the safe little flaw under dead load will extend slowly under repeatedly act, then cause the rupture of the pipeline. But it is unavoidable that the pipeline contains the flaws. So EGA (Engineering Critical Assessment) is introduced into the assessment. In fact, EGA is the assessment of the structure, which can't satisfy the standard. It is the assessment method, which uses international admissive experience to assess the structures and units. It can guarantee the structures and units safety in specific time and the specific environment. It is usually conservative in the quality control standard in a .certain aspect. But this quality standard plays a very important role in quality control and safeguard. If the defect is within the range of quality control, it is ok. If the defect is not within the range of quality control, it might not be abandoned. Fit for service is the key to make the choice. Through the corresponding assessment, it can lengthen the ser
    vice life of the" unqualified" structure and bring certain economic benefits. It is the important function of the EGA The EGA can replace the standard and participate in design and assessment to a certain extent. It can offer a set of substitution where the standard is strict. This kind of substitution standard is very economical and reasonable in specific time and the specific environment.
    The failure assessment diagram (FAD) method is very effective to the EGA of the pipelines. This method was put forward at first by CEGB. BSI PD6493 standard has adopted this method and establishes the guide on methods for assessing the acceptability of flaws in metallic structures. A further revision has been carried out in the new version BS7910: 1999. It has almost covered all mode of the pipelines' failure. 'Although its initial
    
    
    
    
    purpose is directed against the flawed welded structure, in fact it is suitable for the unwelded structure too. While assessing, we can plot the failure assessment point (FAP) on the FAD. The location of this point is the function of the condition of loading, the flaw size and material property, etc. If the assessment point lies in the area bounded by the axes and the assessment line, the flaw is acceptable; if it lies on or outside the area, the flaw is not acceptable. The point of intersects of the two lines; the assessment points' locus and failure assessment locus indicate the limit flaw size of the structure.
    In this paper, the application of the failure assessment diagram (FAD) technology, the fracture safety assessment of three grades and the fatigue assessment included in the BS7910: 1999 standard are introduced in detail. Through the fracture assessment method, we can make a fracture assessment to the flawed pipeline under stress, and achieve the maximum length of the flaw in pipeline. Through the fatigue assessment method, we can make a fatigue assessment to the flawed pipeline under dynamic stress, and achieve the fatigue life of the pipel
引文
[1] 邓增节等:工程材料的断裂与疲劳,北京,机械工业出版社,1995年。
    [2] 曲文卿 鲍云杰等:管道环焊接头断裂评定方法分析,油气储运,1999,18(7)10~13。
    [3] 李鸣 李培宁等:含缺陷压力管道的失效模式与缺陷评定方法分析,江西化工,2000,3。
    [4] BSI BS7910, Guide on methods for assessing the acceptability of flaws in metallic structures, British Standards Institute, 1999。
    [5] BSI PD6493, Guidance on methods for assessing theacceptability of flaws infusion welded structures, British Standards Institute, 1991。
    [6] BS7448, Part1 Fracture mechanics toughness tests, Method for determination of KIC, critical CTOD and critical J values of metallic materials, British Standards Institute, 1991。
    [7] BS7448, Part2 Fracture mechanics toughness tests, Method for determination of KIC, critical CTOD and critical J values of welds in metallic materials, British Standards Institute, 1997。
    [8] BS7448: Part4 Fracture mechanics toughness tests, Method for determination of fracture resistance curves and initiation values for stable crack extension in metallic materials, British Standards Institute, 1997。
    [9] 王铎:断裂力学,南宁,广西人民出版社,1982。
    [10] 洪起超:工程断裂力学基础,上海,上海交通大学出版社,1987。
    [11] 程育仁 缪龙秀等:疲劳强度,北京,中国铁道出版社,1990。
    [12] 王中光等:材料的疲劳,北京市,国防工业出版社,1993。
    [13] 王中光等:材料的疲劳,北京市,国防工业出版社,1999。
    [14] 胡毓仁 陈伯真:船舶及海洋工程结构疲劳可靠性分析,北京市,人民交通出版社,1997。
    [15] 高照杰 粟京等:带损伤海底石油管线的安全评估,海洋工程,Vol.21,No.1,Feb.,2003。
    [16] 龚顺风:海洋平台结构碰撞损伤及可靠性与疲劳寿命评估研究,浙江大学博士学位论文,2003。
    [17] 夏志斌 姚谏:钢结构,杭州,浙江大学出版社,2000。
    [18] 董亚民 冯峰:国内外“延性断裂评定”的各种实施方法及其可靠性研究,工程力学,Vol.17,N0.6,June,2000。
    [19] 漆小波,黄卫星等:在役含缺陷压力管道剩余强度评价系统的开发研究,四川大
    
    学学报(工程科学版),Vol.33,No.1,Jan.,2001。
    [20] 署恒木,李继志:含裂纹管道剩余强度的评价方法,石油机械,2000。
    [21] 曲文卿,张彦华:长输管道环焊接头缺陷评定方法分析,焊管,Vol.20,No.4,.1997。
    [22] 徐宏,李培宁:防止起裂的压力管道缺陷断裂安全评定工程方法,石油化工设备,1995
    [23] 赵新伟,路民旭等:含裂纹管道剩科强度评价方法及其应用,石油矿场机械,Vol.28,No.3,1999。
    [24] 张宝昌,白付平等:焊接结构断裂寿命估算的试验研究,焊接学报,Vol.15,No.3,1994。
    [25] 周剑秋,沈士明:失效评定图在含缺陷压力管道断裂评定中的应用,化工机械,1997。
    [26] 轩福贞,涂善东,王正东,罗娜:高温环境下在用压力容器检测与安全评估技术研究进展(二)——评估方法,压力容器,Vol.19,No.10,2002。
    [27] 俞树荣:基于失效评定图的压力容器安全模糊评定,甘肃工业大学学报,Vol.22,No.22,1996。
    [28] 徐宏,李培宁:失效评定图(FAD)技术在核管道缺陷评定规程编制中的应用,核动力工程,Vol.16,No.1,1995。
    [29] 王毅辉:用失效评定图技术评定付纳线输气管道的安全性,天然气工业,2000.7
    [30] 潘爱民,王国印译:Visual C++技术内幕(第四版),北京市,清华大学出版社,2001。
    [31] 侯俊杰著:深入浅出MFC(第二版),武汉,华中科技大学出版社,2002。
    [32] 北京博彦科技发展有限责任公司:MFC Windows程序设计,北京,清华大学出版社,2001。
    [33] 郑莉,董渊著:C++语言程序设计,北京,清华大学出版社,2001。
    [34] William Ford William Topp:数据结构C++语言描述,北京,清华大学出版社,1998年11月第一版。
    [35] 钱能著:C++程序设计教程,北京,清华大学出版社,1999年4月第一版。
    [36] 钱能著:C++程序设计习题与解答,北京,清华大学出版社,2000。
    [37] Bruce Eckel著,刘宗田等译:C++编程思想,机械工业出版社,2000。
    [38] Scott Meyers著,侯捷译:More Effective C++中文版,中国电力出版社,2003。
    [39] John E.Swanke著,前导工作室译:Visual C++MFC编程实例,机械工业出版社,2000。
    [40] Stanley B.lippman著,侯捷译:Essential C++中文版,华中科技大学出版社,2001。
    
    
    [41] 林锐等著:高质量程序设计指南—C++/C语言,电子工业出版社,2002。
    [42] John E.Swanke著,前导工作室译:Visual C++MFC扩展编程实例,机械工业出版社,2000。
    [43] 辛长安,梅林著:VC++编程技术与难点剖析,清华大学出版社,2002。
    [44] 何光渝著:Visual C++常用数值算法集,科学出版社,2002。
    [45] 黄维通著:Visual C++面向对象与可视化程序设计习题解析与编程实例,清华大学出版社,2000。
    [46] 刘静华,王永生著:最新VC++绘图程序设计技巧与实例教程,科学出版社,2001。
    [47] Eugene Olafsen等著,王建华等译:MFC Visual C++6编程技术内幕,机械工业出版社,2000。
    [48] 郭庆民,黄业清著:Visual C++高级界面特效制作百例,中国电力出版社,2000。
    [49] 齐舒创作室著:Visual C++6.0用户界面制作与应用实例,水利水电出版社,1999。
    [50] 李博轩等著:Visual C++图形用户界面开发指南,清华大学出版社,2000。’
    [51] 徐新华著:图形用户界面编程技术,清华大学出版社,2000。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700