用户名: 密码: 验证码:
压力型岩锚内锚固段锚固性能及工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压力型岩锚作为一种较为新型的岩土锚固技术,在引入我国的十余年时间里,获得了很快的发展,在水利边坡锚固,道路边坡支护,隧道洞口加固,建筑基础抗浮等方面都得到了广泛应用,在实践中体现出了优良的锚固性能和较好的性价比。但是,压力型岩锚的工程应用远远超前于理论研究,因此工程实践中可能存在潜在风险隐患或过度浪费的现象。论文以国家杰出青年科学基金项目“岩土工程减灾”(50625824)和重庆市科委科技计划攻关项目(CSTC2008AC0077)为依托,采用野外现场调研、资料收集整理、理论分析、试验研究以及数值模拟等方法,系统地研究了压力型岩锚内锚固段的锚固性能和受力机理。论文的主要工作如下:
     ①根据压力型岩锚的主要失效模式,从理论上分析其荷载传递机制。选择合适的荷载传递模型,考虑注浆体的三向受力状态,基于Kelvin解建立反映压力型岩锚注浆体与岩体粘结界面相互作用规律的基本方程,求解界面剪应力分布规律以及注浆体中轴向和径向应力应变分布规律。建立了简化的弹性叠加模型,计算锚固体周围岩体中的应力场。分析了各种锚固体和岩体材料参数对应力分布规律的影响。
     ②选取重庆地区工程建设中常见的岩石,注浆体、高强钢筋为原材料进行缩尺模型试验。研究了适合模型试验的承载体和无粘结钢筋实施方案,设计了不同的锚固段长度,研究锚固段长度这一主要因素对压力型岩锚锚固性能的影响。在试验室中获得了压力型岩锚的荷载位移全曲线。通过与相同条件下的普通拉力型岩锚进行对比,分析了二者在承载力,位移等各种宏观力学机理上的不同表现。
     ③选择有代表性的现场岩质边坡,进行压力型岩锚的现场原位拉拔试验。试验钻孔130mm,采用6束1860MPa标准无粘结钢绞线为锚索杆体,30MPa级抗压强度的砂浆,模拟实际工程条件进行测试,获得了压力型岩锚在各种失效模式下的拉拔力学性能,现场压力型锚索的荷载位移全曲线,受力全过程中的界面剪应力分布演化特征。研究了压力型锚索的位移延性性能。在锚固段注浆体中置入应变测试元件,测试了受力过程中锚固体的应力应变分布规律,并与理论分析和室内试验进行对比,相互验证。
     ④对压力(分散)型岩锚进行了数值模拟分析,选用与实际情况较为吻合的模型和参数进行分析计算,将数值计算的结果与试验结果进行对比,验证了模型和参数的合理性,分析了不同锚固长度,不同孔径等多种条件对锚固性能的影响。分析了不同岩体中的应力分布情况。对压力分散型岩锚的优化设计概念进行数值计算验证,并总结了相关的规律。
     ⑤结合工程实践,对压力型岩锚和压力分散型岩锚的设计方法和施工构造要点问题进行研究。提出压力型岩锚的优化设计方法,该优化方法反映不同锚固长度对注岩界面峰值剪应力的影响,可使承载力随锚固长度的增长而自动趋于收敛。结合实际工程测量压力型岩锚的预应力损失,分析钢绞线应力松弛的情况和原因。通过梯级布置方案,优化了压力分散型岩锚设计方法。
     综上所述,理论分析的公式可以较好地解释弹性阶段试验结果,数值模拟结果与试验结果所反映的规律基本一致,三者互为验证。这说明本文的理论分析合理,模型试验和现场试验结果准确可信,数值模型可以较好地反映实际情况,对压力型岩锚锚固工程的优化设计方法、施工工艺以及相关规范的制订都具有重要的参考价值。
Compression rock anchor is a relatively new type of geotechnical anchoring technology, and it is quickly and widely applied to the water conservancy slope anchorage, roads cutting support, tunnel portal reinforcement,foundation anti-floating in the past ten years in China. It shows excellent behavior and better cost performance in project. However, the engineering application is far ahead of theoretical research of compression rock anchor. Therefore the phenomena of potential risks or excessive waste may exist in engineering practice. This dissertation is based on the national science fund for distinguished young scholars“Disaster Reduction for Geotechnical Engineering”(No.50625824) and programs for science and technology development of Chongqing science and technology committee (CSTC2008AC0077). A systemic study on anchorage behavior and load transfer mechanism of compression rock anchor is executed through field investigation, material collection, theoretical analysis, experimental research and numerical simulation method. The main work is summarized as follows:
     ①According to the main failure pattern of compression rock anchor, the theoretical of load-transfer mechanism is studied. The equations that describe grout- rock interface interactional law is established based on the Kelvin’s solution by selecting the appropriate load-transfer model and considering the three-dimensional stress state of grout. The grout-rock interface shear stress distribution and axial and radial stress distribution in grout are obtained by solving the equations. Stress field in the surrounding rock mass is analyzed through simplified elastic superimposed model. Parameters of various grouts and rocks are used to analyze the influence on stresses distribution.
     ②The common sedimentary rock, grouting body, high-strength steel in Chongqing are adopted in the laboratory as raw material for the scale model test. After detailing bearing plates and unbounded reinforcing bar for model test,behavior of compression type rock bolts is studied by the test rock bolts with various fixed anchor lengths. The full load—displacement curves are obtained in laboratory. The different behavior of two type bolts is analyzed through comparing compression rock bolts and common tension rock bolts in the same conditions.
     ③Behavior of compression type rock anchor cable is studied by on-situ pulling test on a typical slope. Experimental anchor cables which have a hole of 130mm Diameter, 6 standard steel strands and grout with 30MPa compression capacity are frequently used in rock anchorage engineering. Pulling mechanical behavior of compression rock cables with various failure pattern is obtained. Anchor cables that have various bonded transmission length are poured to find loading-displacement relations. Strain sensors which are fixed on wooden holder are put into cement paste to test the strain and stress distribution curve of fixed anchor length, then on-situ data is compared with theoretical results and model test data. Ductility and residual strength of anchor cables are also studied.
     ④The numerical simulation analysis with actual three-dimensional models and parameters is executed for compression rock anchors and compression load dispersive anchor. The influence on anchorage behavior is analyzed under various conditions that include different fixed anchor lengths and different borehole diameters. Stress field in surrounding rock mass are analyzed by comparing numerical calculation results and test data.
     ⑤The design methods and construction key points of compression rock anchors and compression load dispersive anchors are studied through combining with engineering practice. Optimized design method is advanced in this chapter. This method can reflect how the fixed anchor length influences grout-rock interface maximal shear stress. The increase of bearing capacity in the rock anchor gradually slows down when fixed anchor length is increased. Pretesting loss is measured in situ, the magnitude and reason of the loss is analyzed. Optimized design method is advanced for compression load dispersive anchor and corresponding numerical simulation analysis is done.
     Through all above studies, the elastic stage test results can be explained by the theoretical research results. Numerical simulation results and the test results are basically obtained the same laws. The three methods are mutually verified. In summary, the theoretical study of this dissertation is reasonable and credible, the test results are accurate and reliable, numerical models are scientific and rational. This study could provide the reference for optimal designs, constructions and relative code revisions of the compression rock anchor.
引文
[1]程良奎.岩土锚固研究与新进展[J].岩石力学与工程学报, 2005, 24(21): 3803~3811.
    [2]中国工程建设标准化协会标准.岩土锚杆(锚索)技术规程[S] CECS 22:2005.
    [3]陈祖煜,杨健.岩土预应力锚固技术的进展[J].贵州水力发电, 2004, 18(5): 5~10.
    [4]徐祯祥,岩土锚固工程技术发展之回顾与展望[J].市政技术, 2009, 27(2): 136~140.
    [5]赵明阶,何光春,王多垠.边坡工程处治技术[M].北京:人民交通出版社, 2003, 123~125.
    [6]尤春安.锚固系统应力传递机理理论及应用研究[D]. 2007年12月.
    [7]程良奎,范景伦,韩军等.岩土锚固[M].北京:中国建筑工业出版社, 2003, 123~125.
    [8]耿卫红,罗春华.岩土锚固工程技术及其应用[J].探矿工程, 1997,(4): 8~10.
    [9]王冲.预应力锚固的施工[M].北京:水利电力出版社, 1987.
    [10]田裕甲.岩土锚固新技术及实践[M].中国建材工业出版社, 2006.
    [11]赵长海.预应力锚固技术[M].中国水利水电出版社, 2001.
    [12]王少昆漫湾水电站边坡锚索处理设计与施工[J].云南水力发电1993,(2):9~13.
    [13]谢文明.漫湾电站左岸边坡隐患及对策[J].大坝与安全, 2002,(4): 44~45.
    [14]高大水,曾勇.三峡永久船闸高边坡锚索预应力状态监测分析[J].岩石力学与工程学报, 2001, 20(5): 653~656.
    [15]袁培进,吴铭江,陆遐龄.长江三峡永久船闸高边坡预应力锚索监测[J].岩土力学, 2003, 24(增刊): 198~201.
    [16]胡建林,张培文,张智浩.三峡永久船闸对穿锚索施工关键技术及加固效果[J].岩石力学与工程学报, 2005, 24(21): 3847~3851.
    [17] B.A. Cavil. Very high capacity ground anchors used in strengthening concrete gravity dams[C]. In: Proc. Int. Symp on ground anchorages and anchored structures. London: Thomas Telford, 1997, 262~271.
    [18]吴华峰,罗志刚.李家峡水电站坝区高边坡锚固措施研究[J].水力发电, 2003, 3: 22~24.
    [19]徐祯祥.岩土锚固技术成就之今昔[C].岩土锚固技术的新发展与工程实践会议论文集.北京:人民交通出版社, 2008: 3-16.
    [20] G. Jurell. Investigation into the failure of a prestressed rock anchor [J]. Water Power & Dam Construction, 1985, 2: 45~47.
    [21] Bruce Hebblewhite, P. Gray, M. Fabjanczyk and A. Crosky. Premature rock bolt failure through stress corrosion cracking(SCC)[C]. Proceedings 22nd International Conference onGround Control in Mining. Morgantown, WV, USA. August 5~7,2003.218~225.
    [22]曾宪明,陈肇元,王靖涛.锚固类结构安全性与耐久性问题探讨[J].岩石力学与工程学报, 2004, 23(13): 2235~2242.
    [23]唐树名,公路边坡锚固失效模式及影响因素[J].公路交通技术. 2005, 10, (5):26~28.
    [24]曾宪明,雷志梁,张文巾等.关于锚杆“定时炸弹”问题的讨论[J].岩石力学与工程学报, 2002, 22(1): 143~147.
    [25]赵健,冀文政,曾宪明等.应力腐蚀对锚杆使用寿命影响的试验研究[J].岩石力学与工程学报, 2007, 26, (增1): 3427~3431.
    [26]赵健,冀文政,肖玲.锚杆耐久性现场试验研究[J].岩石力学与工程学报, 2006, 25,(7): 1377~1384.
    [27]刘永阔.新型锚杆及岩土锚固新技术[J].西部探矿工程, 2006,122,(6): 8~10.
    [28] Method and tie bar for the formation of anchorages[P] June13, 1978, United States Patent Appl. No.: 743918.
    [29] Bruce, M.E., Traylor, R.P. Post Grouted Single Bore Multiple Anchors at Hodenpy Dam, [J]Michigan American Society of Civil Engineers 361-373 August 2004.
    [30]韦勇生. OVM压力分散型锚索在大坝坝基加固工程中的应用[J].岩土锚固, 2003, (2): 11~15.
    [31]李红梅.长晋高速公路K28+700-K33+700左侧边坡压力分散型锚杆施工[J].山西交通科技, 2004, 168(增1): 51~53.
    [32]杨顺臻.大吨位压力分散型锚索在个冷公路边坡工程中的应用[J].云南交通科技. 2002, 18(3): 31~36.
    [33]耿冬青,程学军,宋福渊等.压力分散型锚杆在某基础抗浮工程中的应用[J]建筑结构学报, 2005,26(6): 119~124.
    [34]何思明.预应力锚索作用机理研究[D].成都:西南交通大学, 2004: 15~17.
    [35]张发明.岩质边坡预应力锚固效应及应用研究[D].南京:河海大学, 2000: 114.
    [36]杨松林.锚杆抗拔机理及其在节理岩体中的加固作用[D].武汉:武汉大学, 2001: 25.
    [37]黎军.路堑边坡防护中的预应力锚索设计及其锚固方法的优化[D].广州:华南理工大学, 2003: 36~39.
    [38] T.H. Hanna[英].胡定等译.锚固技术在岩土工程中的应用[M].北京:中国建筑工业出版社, 1987.
    [39] Ivering, J.W. Developments in The Concept of Compression Tube Anchors [J]. Ground Engineering Mar 1981: 31~34.
    [40] Jean-Louis Briaud, William F.PowersⅢand David E. Weatherby. Should Grouted Anchors Have Short Tendon Bond Length?[J]. Journal of Geotechnical and GeoenvironmentalEngineering, 1998, 2: 110~119.
    [41] A. Kilic. Rockmass classification and reinforcement application of Tarsus-Adana-Gaziantep (TAG) Motorway Tunnels in Bahce Region[D]. Cukurova University, Department of Mining Engineering, 1997.
    [42] A. Kilic, M. Anil, The effects of grout properties to the bolt capacity[C]. In: Sixteenth Mining Congress of Turkey, Ankara, Kozan Press, 1999: 189~196 (In Turkish).
    [43] M.S. Diederiches, E. Pieterse, J. Nose and P.K. Kaiser. A model for evaluating cable bolt bond strength [C]: an update,Eurock 93, (eds. Sousa and Grossman). Rotterdam: Balkema, 83~89.
    [44] A.J. Hyett,W.F. Bawden,G.R. Macsporran and M. Moosavi. A Constitutive Law for Bond Failure of Fully-grouted Cable Bolts Using a Modified Hoek Cell[J]. International Journal of Rock Mechanics and mining Science & Geomechanics Abstracts, 1995, 32(1): 11~36.
    [45] S.M. Burns. Mechanics of load transfer in cable-reinforced materials [PH.D. thesis], University of Illinois, Chicago, IL, 1992.
    [46] R. Tan. A load-displacement relation for single 7-wire strand cable bolts and its implementation into FLAC and UDEC [PH.D. thesis]. Queen,s University, Kingston, Ontario, Canada, 1994.
    [47] A.J. Hyett, W.F. Bawden. A laboratory evaluation of the 25 mm Garford anchor for cable bolt reinforcement [J]. Rock Mechanics, 1995, 88(992): 54~59.
    [48] M. Moosavi, W.F. Bawden and A.J. Hyett. Mechanism of bond failure and load distribution along fully grouted cable-bolts[J]. Transactions of the Institution of Mining and Metallurgy (Section A), 2002, 111(1/4): A1~A12.
    [49] Mahdi Moosavi. Load distribution along fully grouted cable bolts based on constitutive models obtained from modified hoek cells [PH.D Dissertation]. Kingston, Ontario, Canada. Queen,s University, January 1997, 1~312.
    [50] A. Kilic, E. Yasar and C.D. Atis. Effect of bar shape on the pull-out capacity of fully- grouted rock bolts [J]. Tunnelling and underground space technology, 2003, 18: 1~6.
    [51] Nak-Kyung Kim, A.M.ASCE. Performance of Tension and Compression Anchors in Weathered Soil [J]. Journal of Geotechnical and Geoenvironmental Engineering ? Asce / December 2003 1138-1150.
    [52] A. D. Barley Discussion of“Performance of Tension and Compression Anchors in Weathered Soil”[J]by Nak-Kyung Kim Journal of Geotechnical and Geoenvironmental Engineering ? Asce / May 2005: 671~672.
    [53]范景伦,曹虹,张飞等.压力分散型锚杆技术[J].建筑技术开发, 2001, 20(2): 165~169.
    [54]孙志峰.高精度水平锚索技术研究及在三峡工程中的应用[D].吉林大学. 2006, 5.
    [55] KTB永久锚固工法设计施工指南(草案)[R].日本, KTB协会, 1994.
    [56]分散压力型(可拆芯式)锚杆的研究与应用[R].冶金部建筑研究总院科学技术成果报告, 1999, 12.
    [57]张四平,候庆压力分散型锚杆剪应力分布与现场试验研究[J].重庆大学建筑学报. 2004, 26(2): 57~62.
    [58]王树仁,何满潮,金永军,拉力集中型与压力分散型预应力锚索锚固机理[J].北京科技大学学报. 2005, 27(3):278~282.
    [59]张四平,陈超.基于岩层的压力型锚杆抗拔试验研究[J].重庆建筑大学学报. 2003, 25(3): 22~25.
    [60]张乐文,汪稔.岩土锚固理论研究之现状[J].岩土力学. 2002, 23(5): 627~630.
    [61] Stillborg B. Experimental investigation of steel cables for rock reinforcement in hard rock [D]. Sweden: Lulea University of Technology, 1984.
    [62] Ostermayer H , Scheele F. Research on ground anchors in non-cohesive soils[A]. In: Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering[C]. Tokyo: The Japanese Society of Soil Mechanics and Foundation Engineering, 1977. 92–97.
    [63]闫莫明,徐祯祥,苏自约.岩土锚固技术手册[M].北京:人民交通出版社, 2004.
    [64]梁炯.锚固与注浆技术手册[M].北京:中国电力出版社,1999.
    [65]李铀,白世伟,方昭茹等.预应力锚索锚固体破坏与锚固力传递模式研究[J].岩土力学. 2004, 24(5): 686~690.
    [66]杨佑发,许绍乾.锚索抗滑桩内力计算的有限差分“K—K”法[J].岩土力学. 2003, 24(1): 61~64.
    [67] NA KA KYAMA M , BEAUDO IN B B. A novel technique determining bond strength developed between cement paste and steel [J]. Cement and concrete Research. 1987, 22 (3) : 4782488.
    [68] FULL ER P G, COX R H T. Mechanics load transfer from steel tendons of cement based grouted [C]. Melbourne: Published by Australasian Institute of Mining and Metallurgy, 1995.
    [69] P.G. Fuller, R.H.T. Cox. Mechanics of load transfer from steel tendons to cement based grouts[C]. Proc. 5th Aust. Conf. on the Mechanics of Structures and Materials, Melbourne, Australia, 1975, 189~203.
    [70] G.W. Hollingshead. Stress distribution in rock anchors[J]. Canadian Geotechnical Journal, 1971, 8: 588~592.
    [71] Malek Bouteldja. Design of Cable Bolts Using Numerical Modelling[PH.D Dissertation]. Montreal, Canada: McGill University, April 2000: 1~222.
    [72] B. Stillborg. Experimental investigation of steel cables for rock reinforcement in hard rock [D]. Sweden: Lulea university, 1984.
    [73] I. W. Farmer & Holmberg, Stress distribution along a resin grouted rock anchor [J], Int.. Rock Mech. And Geomech. 1975(12)347-351.
    [74]蒋忠信.拉力型锚索锚固段剪应力分布的高斯曲线模式[J].岩土工程学报, 2001, 23 (6): 696~699.
    [75]张季如,唐保付.锚杆荷载传递机理分析的双曲函数模型[J].岩土工程学报, 2002, 24(2): 188~192.
    [76]顾金才,明治清,沈俊.等预应力锚索内锚固段受力特点现场试验研究[J].岩石力学与工程学报, 1998,17(增1): 788~792.
    [77]杨建州,杨健,龚前良.新型无粘结压力分散型预应力锚索结构及应用[J].水利水电快报, 2007, 28(6): 19~21.
    [78]侯庆.压力分散型锚杆工作机理与现场试验研究[D].重庆大学. 2003.
    [79]尤春安.压力型锚索锚固段的受力分析[J].岩土工程学报, 2004, 26(6):828-831.
    [80]程良奎,范景伦,周彦清等.压力分散型(可拆芯式)锚杆的研究与应用[J].冶金工业部建筑研究总院院刊, 2000, 41(2): 1~8.
    [81]尤春安、战玉宝.预应力锚索锚固段的应力分布规律及分析[J].岩石力学与工程学报, 2005, 24(6):925-928.
    [82]杜庆华,余寿文,姚振汉.弹性理论[M].北京;科学出版社;1986年10月第一版: 104-106.
    [83]吴德伦.结构力学[M].重庆;重庆大学出版社;1994年6月第一版: 123-125.
    [84]韦勇生,吕兵,孔建华等OVM压力分散型锚索在大坝坝基加固工程中的应用[J].岩土锚固2003,(2): 28~32.
    [85]张景成,田宝文,王忠义等.压力分散型预应力锚索抗拉拔破坏试验[J].勘察科学技术. 2004,(3): 12~17.
    [86] Raymond D. Mindlin, Department of Civil Engineering, Columbia University Force at a point in the Interior of a Semi-Infinite Solid [J]. Theory of Elasticity May,1936: 195-202.
    [87] H.G. poulos, E.H. Davis Elastic Solutions for Soil and Rock Mechanics john [M]. Wiley & Sons, New York, 1974.
    [88] Geddes J D. Stress in foundation soils due to vertical subsurface load [J]. Geotechnique, 1966, 16(3): 231-255.
    [89]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社, 2003, 174.
    [90]何思明,卢国胜,廖祖伟.群桩沉降计算理论分析[J].岩土力学, 2003,24(3): 435~441.
    [91]邱芙君,杨贵灏.压力型预应力锚索在大跨度高边墙地下洞室中的应用[J].隧道建设, 2007, 27(3): 62~64.
    [92]李志强,周霞,柳建国等.压力分散型抗浮锚杆在高层建筑抗浮中的研究与应用[J].建筑结构, 2007, 37(4): 55~57.
    [93] Barley A D, Chris R. Windsor. Recent advances in ground anchor and ground reinforcement technology with reference to the deveiopment of the art proc [A]. International Conference on Geotechnical and Geotechnical Engineering [C]. Melbourne, 2000.
    [94]张有,吕建国,赵付朝.压力型和压力分散型抗浮锚杆的现场试验研究[J].中国煤田地质, 2007, 19(4):54~56.
    [95]杨雪林,林国潘.压力分散型锚索的基本试验及分析[J].福建建筑, 2008, 118(4):99-102.
    [96]袁兰梅,孙青松.压力分散型锚索的试验分析[J].山东交通科技, 2006,(3): 13~16.
    [97]余坪,余渊.滑坡防治预应力锚索的试验研究[J].中国地质灾害与防治学报, 1996, 7(1): 59~63.
    [98]陈安敏,顾金才,沈俊.预应力锚索的长度与预应力值对其加固效果的影响[J].岩石力学与工程学报, 2002, 21(6): 848~852.
    [99]陈安敏,沈俊,顾欣.自由式锚索和全长粘结式锚索加固效果比较模型试验研究[J].岩石力学与工程学报, 2005, 24(15): 2689~2696.
    [100]薛亚东,黄宏伟.锚索锚固力影响因素的试验分析研究[J].岩土力学, 2006, 27(9): 1523~1526.
    [101]杨苏杭.预应力锚索对地下洞室抗爆加固效应模型试验与数值模拟研究[D].洛阳:河南科技大学, 2006.
    [102]陈兴华等编.脆性材料结构模型试验[M].北京:水利电力出版社, 1984.
    [103]顾金才,沈俊,陈安敏等.预应力锚索加固机理与设计计算方法研究报告[R].洛阳: 61489部队, 1998.
    [104] P.G. Fuller, R.H.T. Cox. Mechanics of load transfer from steel tendons to cement based grouts[C]. Proc. 5th Aust. Conf. on the Mechanics of Structures and Materials, Melbourne, Australia, 1975, 189~203.
    [105] Pinchin D J, Tabor D. Inelastic behaviour in steel wire pull out fron Portland cement motar[J]. Journal of Materials Science, 1978, 13: 1261- 1266.
    [106] B. Stillborg. Experimental investigation of steel cables for rock reinforcement in hard rock [D]. Sweden: Lulea university, 1984.
    [107] O. Aydan, Y. Ichikawa and T. Kawamoto. load bearing capacity and stress distribution in/along rockbolts with elastic behaviour of interfaces[C]. 5th Int. Conf. Numerical Methods in geomechanics, Nagoya, 1985.
    [108]饶枭宇.预应力岩锚内锚固段锚固性能及荷载传递机理研究[D].重庆大学. 2007年12月.
    [109]程良奎等.CECS 22:2005.2005.岩土锚杆(索)技术规程[S].北京:中国计划出版社, 2005, 1~100.
    [110]郑生庆等.GB 50330-2002.2002.建筑边坡工程技术规范[S].北京:中国建筑工业出版社, 2002, 1~78.
    [111]陈祖煜,汪小刚.水电建设中的高边坡工程[J].水力发电, 1999,(10): 53~56.
    [112]卢黎,张永兴,吴曙光.压力型锚杆锚固段的应力分布规律研究[J].岩土力学, 2008, 29(6): 1157~1162.
    [113]饶枭宇,唐树名,张永兴等.注浆体配合比改善岩锚抗拔特性的试验研究[J].岩石力学与工程学报. 2008, 27(2): 557~563.
    [114]于庆荣,颜德姮,程文瀤.混凝土结构(上册)[M],北京,中国建筑工业出版社, 1994年6月,第一版.
    [115]李静,朱炳寅.多高层混凝土结构设计及工程应用[M].北京,中国建筑工业出版社, 2008年11月第一版.
    [116] A. Kilic, E. Yasar and C.D. Atis. Effect of bar shape on the pull-out capacity of fully- grouted rock bolts[J]. Tunnelling and underground space technology, 200318: 1~6.
    [117] M. Moosavi, W.F. Bawden and A.J. Hyett. Mechanism of bond failure and load distribution along fully grouted cable-bolts[J]. Transactions of the Institution of Mining and Metallurgy (Section A), 2002, 111(1/4): A1~A12.
    [118]张永兴,饶枭宇,唐树名.压花锚锚固性能的试验研究与数值分析[J].岩石力学与工程学报, 2008,26(3): 1152~1157.
    [119]杨庆,朱训国,栾茂田.压力型锚索锚固段应力分布及影响参数分析[J].岩石力学与工程学报, 2006, 25(增2): 4065~4070.
    [120]张永兴,卢黎,饶枭宇等.压力型锚杆力学性能模型试验研究[J].岩土力学(录用待刊).
    [121]金永军,何满潮,王树仁.适用于软岩边坡加固的压力分散型预应力锚索锚固机理研究[J].土木工程学报, 2006, 39(4): 63~66.
    [122]吴曙光,张永兴,康明.压力型和拉力型锚杆工作性能对比研究[J].水文地质工程地质, 2008,(5): 45~49.
    [123]郎鹏飞.压力分散型锚索在高边坡锚固工程中的应用[J].路基工程, 2003年,(2),总第107期: 26~29.
    [124]王亚辉,杨英华.压力分散型锚索在高速公路边坡中的应用[J],公路与汽运,总第117期: 65~67.
    [125]王虎法.压力分散型锚索现场抗拔试验测试与分析[J].探矿工程(岩土钻掘工程), 2007(6): 47~49.
    [126]顾亮.压力型锚杆的抗拔试验研究[J].工程勘察, 1999,(1): 10~12.
    [127]覃荷瑛,文红宇,吕海波.新损伤模型研究硫酸盐侵蚀后砂浆的性能[J],混凝土, 2008, (4),总第222期: 88~90.
    [128]《工程岩体试验方法标准》[S], GB/T50266-99.
    [129]《水利水电工程岩石试验规程》[S], SL264-2001.
    [130]吴万平等. JTG D30-2004.2004.公路路基设计规范[S].北京:人民交通出版社, 2004, 45~51.
    [131]程良奎等. GB50086-2001. 2001.锚杆喷射混凝土支护技术规范[S].北京:中国计划出版社, 2001, 12~44.
    [132]赵长海等. SL212-98.1998.水工预应力锚固设计规范[S].北京:中国水利水电出版社, 1998, 1~74.
    [133]赵长海等. DL/T5176-2003. 2003.水电工程预应力锚固设计规范[S].北京:中国电力出版社, 2003, 1~81.
    [134]包黎明等. TB10001-2005. 2005.铁路路基设计规范[S].北京:中国铁道出版社, 2005, 23~27.
    [135]罗正荣等. TB10202-2002/J161-2002.2002.铁路路基施工规范[S].北京:中国铁道出版社, 2002, 50~61.
    [136] Allen D, Hendon G. Cable bolting——potential applications for variable strata conditions [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1995, 32(8): 394~394.
    [137] Poulin R, Pakalnis R, Peterson D, et al. Evaluation of cable bolt applications for Canadian underground mines [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1995, 32(7): 338.
    [138] Phillips S H E. Factors affecting the design of anchorages in rock [R]. London: Cementation Research Ltd., 1970.
    [139] Kaiser P K, Yazici S, Nose J. Effect of stress change on the bond and strength of fully grouted cables [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1992, 29(3): 293–306.
    [140] ST ILLBORG B. Experimental investigation of steel cables for rock reinforcement in hard rock [D ]. Sweden: Lulea University of Techno logy, 1984.
    [141]李国正压力(分散)型锚索锚固作用的现场试验及数值模拟.四川大学[D]. 2005年5月.
    [142]许有飞.压力(分散)型锚索锚固机理及工程应用研究,四川大学[D]. 2005年5月.
    [143]陈超.压力型锚杆现场试验及剪力分布计算,重庆大学[D]. 2003年5月.
    [144]李晓红.岩石力学实验模拟技术[M],科学出版社, 2007年01月.
    [145] INDRARATNA B, HAQUE A, AZIZ N. Shear behavior of idealized infilled joints under constant normal stiffness [J]. Geotechnique, 1999, (3): 331-356.
    [146]于庆荣,颜德姮,程文瀤.混凝土结构(上册)[M].中国建筑工业出版社,北京, 1994年6月,第一版.
    [147]叶爱民.影响及提高压力分散型土层锚索锚固力的因素[J],西部探矿工程, 2008, (1): 8~10.
    [148]李仁成,王军,胡德贵.压力型锚索的受力特性和锚固段确定[J],路基工程, 2006, (5),总第128期: 42~43.
    [149]董钊.压力分散型预应力锚索在沪蓉西高速公路滑坡治理工程中的应用[J],国外建材科技2008, 29,(5): 114~117.
    [150]刘怀相.压力分散型锚索在岩质边坡处治中的应用[J].中外公路, 2007 , 27(5): 24~26.
    [151]夏长华,田学明.压力分散型预应力锚索在高边坡加固中的应用[J].探矿工程—岩土钻掘工程, 2006, (4): 35~37.
    [152]王兴国,罗维宏,李鑫等.压力分散型锚索在边坡工程中的设计与应用[J].公路, 2005, (7): 99~105.
    [153]柳建国,吴平,尹华刚等.压力分散型抗浮锚杆技术及其工程应用[J].岩石力学与工程学报, 2005, 24(21): 3948~3953.
    [154] British Standards Institution British Standard Code of practice for Ground anchorages [M] BS 8081: 1989.
    [155]徐桢祥.岩土锚固技术与西部开发[M].北京:人民交通出版社, 2002年5月,第1版.
    [156]程良奎.岩土锚固的现状与发展[J].土木工程学报, 2001, 34(3): 7~12.
    [157]尾高英雄,张满良,岛山三树男.关于荷载分散型锚杆及周边岩土层剪切应力的研究[A].岩土锚固工程技术的应用与发展—国际岩土锚固工程技术研讨会论文集[C].北京:万国学术出版社, 1996.
    [158]曹兴松,周德培.压力分散型锚索锚固段的设计方法[J].岩土工程学报, 2005, 27(9): 1033~1039.
    [159]中华人民共和国国家标准.建筑地基基础设计规范[S], GB50007-2002,北京,中国建筑工业出版社, 2002.
    [160]中华人民共和国国家标准,混凝土结构设计规范[S], GB50001-2001,北京,中国建筑工业出版社, 2001.
    [161]刘玉堂,袁培中,白彦光.压力分散型锚索不宜作为永久性锚索[J],预应力技术, 2008年,(3),总第68期: 19~21.
    [162]张勇,许蔚峰,盛宏光.张拉工艺对压力分散型锚索荷载不均匀系数的影响[J].岩石力学与工程学报, 2009, 28(增1): 2954~2959.
    [163]刘忠臣,范景伦,张飞.压力分散型锚杆技术[J].包头钢铁学院学报, 2001, 20(2): 165~169.
    [164] Hyeet A J, Bawden W F, Reichert R D. The effect of rock mass confinement on the bond strength of fully grouted cabl bolts [J]. International Journal of Rock Mechanics and Minging Sciences, 1992, 29(5): 503―524.
    [165]李涛.预应力锚索分散压力型锚具设计与使用[J].建筑技术, 2002, 33(2): 143~144.
    [166]徐前卫,尤春安.预应力锚索的三维数值模拟及其应用研究[J]. 2004, 23(增2): 4941~4945.
    [167]丁秀丽,盛谦.预应力锚索锚固机理的数值模拟试验研究[J].岩石力学与工程学报. 2002, 21(7): 980~988.
    [168]苏霞,李仲奎.锚杆拉拔力影响因素的数值试验研究[J].工程力学, 2006, 23(2): 97~102.
    [169]连传杰,韦立德.高预应力让压锚杆数值模拟方法研究[J].岩土工程学报, 2008, 30(10): 1437~1443.
    [170]孙玉宁,周鸿超,宋维宾.端锚可回收锚杆锚固段力学特征研究[J].岩石力学与工程学报, 2006, 25(增1):3014~3021.
    [171]唐春安,赵兴东,王维纲.新型全长多点楔胀式管缝锚杆(竹节式锚杆)的试验研究[J].岩石力学与工程学报, 2004, 23(3): 465~468.
    [172]李宁,张鹏,于冲边坡预应力锚索加固的数值模拟方法研究[J].岩石力学与工程学报, 2007, 26(2): 254~261.
    [173]赵静波,高谦,李莉.层状岩质边坡预应力锚索加固工程应用分析[J].岩土力学, 2005, 26(8): 1338~1341.
    [174]张向阳,顾金才,沈俊.全长黏结式锚索对软岩洞室的加固效应研究[J].岩土力学, 2006, 27(2): 294~298.
    [175]廖小平,王浩,安孟康.全长黏结型预应力锚杆的数值分析与现场测试[J].岩石力学与工程学报, 2006, 25(增2): 3743~3748.
    [176] Itasca Consulting Group Inc. Theory and background[Z]. Minnesota: Itasca Consulting Group, 2002.
    [177] Nak-Kyung, Kim, Jong-Sik Park, Sung-Kyu Kim. Numerical simulation of ground anchors[J].Computers and Geotechnics,2007(34): 498–507.
    [178] Kim, Nak-Kyung Numerical simulation of ground anchors[J] Computers & Geotechnics; Nov2007, Vol. 34, p498-507.
    [179]韦立德,叶志华,陈从新.一种锚杆计算模型及其在岩坡锚杆支护中的应用[J].岩土工程学报, 2008, 30(5): 732~738.
    [180] Itasca Consulting Group Inc. FLAC3D users manual[R]. USA: Itasca Consulting Group Inc., 1997.
    [181] Marc Ruest, Lewis Martin. FLAC simulation of split-pipe tests on an instrumented cable bolt. Canadian Institute of Mining Annual Conference [C]. Vancouver, 2002.
    [182]卢萌盟,沈俊,曾宪桃.预应力锚索加固基坑的三维数值分析[J].岩土工程学报, 2005, 27(10): 1198~1202.
    [183]王树仁,何满潮,金永军.拉力集中型与压力分散型预应力锚索锚固机理[J].北京科技大学学报, 2005, 27(3): 278~282.
    [184]林杭,曹平.锚杆长度对边坡稳定性影响的数值分析[J].岩土工程学报, 2009, 31(3): 470~474.
    [185] Long Yu, Jun Liu Three-dimensional numerical analysis of the keying of vertically installed plate anchors in clay[J] Computers and Geotechnics Vol.36 2009 No.4 p.558-567.
    [186]陈育民. FLAC/FLAC3D基础与工程实例[M],北京,中国水利水电出版社, 2009,第1版.
    [187]杨自友,顾金才,陈安敏等.爆炸波作用下锚杆间距对围岩加固效果影响的模型试验研究[J].岩石力学与工程学报, 2008, 27(4): 757~764.
    [188]庞有师,刘汉龙,陈育民.可回收式锚杆拉拔试验的数值模拟与影响因素分析[J].解放军理工大学学报(自然科学版), 2009, 10(2): 170~174.
    [189]夏元友,范卫琴,芮瑞等.压力分散型锚索作用效果的数值模拟分析[J].岩土力学, 2008, 29(11): 3144~3148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700