用户名: 密码: 验证码:
钛基SCR催化剂及其钾、铅中毒机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮氧化物是世界各国公认的大气污染物之一。以NH3为还原剂的选择性催化还原(SCR)烟气脱硝技术是目前脱除烟气中NOx最有效的技术。催化剂是SCR烟气脱硝技术的核心,它是影响整个SCR系统脱硝效果和经济性的主要因素。中毒是SCR催化剂实际应用过程中不可避免的问题,它与燃料的特性密切相关。我国燃料(煤和废弃物)成分复杂,煤中硫分灰分含量高,废弃物中水分高。因此,研究催化剂对我国燃烧烟气的适应性具有重要的实际意义。本文依托于国家高技术研究发展计划(863计划)资助项目(No.2007AA061802)和国家自然科学基金资助项目(No.50776079),针对钛基SCR催化剂,就制备参数和操作参数对其NO还原特性的影响,钾和铅对V2O5/TiO2催化剂的作用机理进行了系统的研究,得到以下主要结果:
     1.研究了制备参数与钛基SCR催化剂脱硝性能之间的内在联系。详细分析了载体TiO2的性质、煅烧条件和V2O5担载量对V2O5/TiO2催化剂脱硝性能的影响,发现载体TiO2的比表面积越大,结晶度越弱,越有利于V2O5/TiO2催化剂上的SCR反应;在煅烧温度为500℃和煅烧时间为5h的条件下制备的1wt.% V2O5/TiO2催化剂具有最高的脱硝活性,在典型的SCR反应温度范围(300-400℃),NO转化率达到92.7-98.8%;随着催化剂上V2O5担载量的增加,有序的V2O5晶体随之增加,反应温度的升高将导致N2O生成量的增多,降低了催化剂的选择性。对于CeO2/TiO2催化剂,采用一步溶胶-凝胶法制备的催化剂脱硝活性最高;CeO2与TiO2的最佳配比(质量比)为0.6;最佳煅烧温度是500℃。在该条件制备的催化剂,在典型的SCR反应温度范围(300-400℃),NO转化率可达98.6%,选择性达到100%(空速50,000h-1)。
     2.研究了操作参数对钛基SCR催化剂脱硝性能的影响。在实际应用的条件下,在V2O5/TiO2催化剂上,SCR反应与O2成零级反应,与NO成一级反应,在n(NH3)/n(NO)大于等于1时与NH3成零级反应;H2O对V2O5/TiO2催化剂上的SCR反应具有一定抑制作用,但是同时能够抑制N2O的生成;反应气氛中的SO2在干烟气条件和湿烟气条件下对V2O5/TiO2催化剂上NO还原活性影响不大。对于CeO2/TiO2催化剂,在12,000-100,000 h-1的空速范围内该催化剂均表现出良好的适应性;O2在SCR反应中起重要作用。当O2浓度高于1%时,NO转化率将不再受到O2浓度的抑制,趋于一个恒定值;H2O和SO2对CeO2/TiO2催化剂的影响与其浓度和反应温度密切相关。
     3.阐明了不同形态的钾(KCl和K2SO4)和不同形态的铅(PbCl2和PbO)对V2O5/TiO2催化剂的作用机理。不同形态的钾或铅沉积在V2O5/TiO2催化剂表面,导致催化剂的比表面积和孔结构发生不同的变化;载体TiO2的结晶度发生变化;催化剂表面V原子的价态发生改变;催化剂表面活性位数量减少。钾或铅使V2O5/TiO2催化剂失活的主要原因是钾或铅中和了Br(?)nsted酸性位的酸性,使其NH3质子化的能力丧失,而Br(?)nsted酸性位对SCR反应过程中NH3的吸附和活化起重要作用。提出了不同形态的钾和不同形态的铅使V2O5/TiO2催化剂失活可能发生的路径。
     4.基于催化剂颗粒中毒的渐进壳模型,对颗粒状催化剂的中毒动力学进行了研究,建立了催化剂中毒动力学方程。以活性保留分率为桥梁,利用模型预测值和实验值建立了催化剂上钾负载量或铅负载量与反应时间的关系;当空速在15,000-60,000 h-1范围内、催化剂颗粒平均粒径在137-335μm范围内以及反应器管径在4-20 mm范围内对活性保留分率几乎没有影响;模拟了毒物浓度和中毒反应速率常数的耦合对活性保留分率的影响,模型结果与文献中报道的催化剂实际运行结果相符合。
Nitrogen oxides (NOx) are recognized as a major source of air pollution in the world. The selective catalytic reduction of NOx with NH3 as reductant is most efficient among the technologies abating NOx in flue gas at present. Catalysts are critical to selective catalytic reduction of NOx. They are the main factor affecting the NOx removal and economical efficiency of the whole SCR system. Poisoning is inevitable for SCR catalysts in their using process and relates with the fuel characteristics intimately. The fuel composition is complex in our country. The content of sulfur and ash in coal as well as the water content in waste is high. Therefore, the study on the adaptability of SCR catalysts to the firing flue gas in our country is important and meaningful. With the financial support from the National High Technology Research and Development of China (863 Program) (No. 2007AA061802) and National Science Foundation of China (No.50776079), the systemic studies were carrird out on the effect of preparation and operating parameters on the NO reduction of titania-based catalysts, as well as the V2O5/TiO2 catalysts'poisoning mechanism by potassium and lead. The main results are shown as following:
     1. The correlation between preparation parameters and the DeNOx performance of titania-based SCR catalysts was studies. The effect of the TiO2 property, calcination condition and V2O5 loadings on the DeNOx performance of V2O5/TiO2 catalysts were analyzed in detail. Large surface area and weak TiO2 crystallinity are advantageous to SCR reaction over the catalysts. When the 1 wt.% V2O5/TiO2 catalysts were calcinated at 500℃for 5 h, their DeNOx activity was highest and the NO conversion reached 92.7~98.8% at the typical SCR reaction temperature (300~400℃). The increase in orderly V2O5 crystallites and reaction temperature would lead to the N2O formation, thereby decreasing the selectivity of the catalysts. The CeO2/TiO2 cayalysts prepared by a single sol-gel mothod have the best SCR activity. The most active catalysts were obtained with a Ce loading of 0.6. The optimal calcination temperature was 500℃. At the typical SCR reaction temperature,98.6% of NO conversion and 100% of N2 selectivity were obtained at the gas hourly space velocity (GHSV) of 50,000 h-1 over the catalysts.
     2. The effect of operating parameters on the DeNOx performance of titania-based SCR catalysts was studied. In the actual operating condition, the SCR reaction over V2O5/TiO2 catalysts is zero-order for O2, first-order for NO and zero-order for NH3 when the molar ratio of NH3 to NO is higher than or equal to 1. H2O has an inhibiting effect on SCR reaction, while reduce the formation of N2O over V2O5/TiO2 catalysts.The presence of SO2 has no large impact on NO reduction activity over V2O5/TiO2 catalysts in dry or wet simulated flue gas. The best CeO2/TiO2 catalysts were effective for NO removal within a wide range of GHSV from 12,000 h-1 to 100,000 h-1. The presence of oxygen played an essential role in NO reduction, and the activity of the Ce(0.6)Ti catalyst was not depressed when oxygen concentration was higher than 1%. The effect of SO2 and H2O on the activity of the Ce(0.6)Ti catalyst was bound up with the reaction temperature.
     3. Action mechanism of different species of potassium or lead on V2O5/TiO2 catalysts was clarified. Different species of potassium or lead resulted in the change of specific surface area and porosity of the catalysts, the change of V valence and the decrease in the numbers of active sites at the surface of the catalysts. The main reason of the catalyst deactivation by K and Pb is that K or Pb coordinates to Br(?)nsted acid sites on the catalysts'surfaces and neutralizes the acidity of them. However, Br(?)nsted acid sites are important for the absorption and activation of NH3 in SCR reaction. According to the catalyst characterization results, the possible path in which the species of potassium or lead cause the deactivation of V2O5/TiO2 catalysts was proposed.
     4. Based on a model for the "shell-progressive" poisioning of a single catalyst particle in a catalytic reactor, the poisonsing kinetics was studied and the poisonsing kinetic equation was established. Combining the activity retention of the model simulation with that of the experimental values, the relation of the K or Pb loadings over the catalysts with the reaction time was established. The GHSV (15,000~60,000 h-1), mean catalyst particle diameter (137~335μm) and reactor diameter (4-20 mm) have almost no effect on the activity retention. The combined effect of the poison concentration and poisoning reaction rate constant on the activity retention was simulated based on the established model. The simulated results accord with the catalyst operating results reported in a published paper.
引文
[1]中华人民共和国国家统计局.中国统计年鉴-2008.第一版.北京:中国统计出版社.2008
    [2]正略钧策.中国煤炭行业的前景及机遇.经济.2008,(9):47-49.
    [3]江哲生.我国洁净煤发电技术的发展思路.洁净煤技术.1995,1:22-27.
    [4]X. Xu, C. Chen, H. Qi, et al. Development of coal combustion pollution control for SO2 and NOx in China. Fuel Processing Tech,2000,62 (2-3):153-160.
    [5]张楚莹,王书肖,邢佳等.中国能源相关的氮氧化物排放现状与发展趋势分析.环境科学学报.2008,28(12):2470-2479.
    [6]田贺忠.中国氮氧化物排放现状、趋势及控制对策[博士学位论文].北京:清华大学图书馆,2003
    [7]郝吉明,田贺忠.中国氮氧化物排放现状、趋势及控制对策建议.2004全国燃煤二氧化硫、氮氧化物污染治理技术研讨会.
    [8]《火电厂大气污染排放标准》编制组.《火电厂大气污染排放标准》编制说明(征求意见稿).2009.6
    [9]http://www.chinapower.com.cn/newsarticle/1053/new1053686.asp
    [10]http://www.cec.org.cn/news/content.asp?NewsID=23584
    [11]http://air.chinaep-tech.com/subject/SCR/6367.shtml
    [12]D. Shi, W. Wu, S. Lu, et al. Effect of MSW source-classified collection on the emission of PCDDs/Fs and heavy metals from incineration in China, J. Hazard. Mater.2008,153:685-694.
    [13]G. Xiao, M. Ni, Y. Chi, et al. Gasification characteristics of MSW and an ANN prediction model, Waste Manage.2009,29:240-244.
    [14]H. Cheng, Y. Zhang, A. Meng, et al. Municipal Solid Waste Fueled Power Generation in China:A Case Study of Waste-to-Energy in Changchun City. Environ. Sci. Technol.2007,41 (21),7509-7515.
    [15]M. Li, S. Hu, J. Xiang, et al. Characterization of Fly Ashes from Two Chinese Municipal Solid Waste Incinerators. Energ. Fuels,2003,17 (6),1487-1491
    [16]R. Khodayari, C. U.I. Odenbrand. Deactivating effects of lead on the selective catalytic reduction of nitric oxide with ammonia over a V2O5/WO3/TiO2 catalyst for waste incineration applications, lnd. Eng. Chem. Res.1998,37:1196-1202.
    [17]郝吉明,马广大.大气污染控制工程.第一版.北京:高等教育出版社.2002
    [18]H. Bosch, F. Janssen. Catalytic reduction of nitrogen oxides-A review on the fundamentals and technology. Catal. Today,1988,2(4):369-532.
    [19]岑可法,姚强,骆仲泱等.燃烧理论与污染控制.第一版.北京:机械工业出版社.2004
    [20]贺泓,李俊华,何洪等.环境催化——原理及应用.第一版.北京:科学出版社.2008
    [21]《火电厂大气污染物排放标准》(GB13223-1996)
    [22]《火电厂大气污染物排放标准》(GB13223-2003)
    [23]北京市《锅炉大气污染物排放标准》(DB11/139-2007)
    [24]中华人民共和国国务院令第369号排污费征收使用管理条例.2003
    [25]刘孜,易斌,高晓晶等.我国火电行业氮氧化物排放现状及减排建议.环境保护.2008,402:7-10
    [26]http://www.zdxw.com.cn/jnhbpd/rdgz/200906/t20090622_283570.html
    [27]《危险废物焚烧污染控制标准》(GB 18484-2001)
    [28]《生活垃圾焚烧污染控制标准》(GB 18485-2001)
    [29]《医疗废弃物焚烧环境卫生标准》(GB/T 18773-2002)
    [30]《危险废弃物焚烧大气污染物排放标准》(DB11/503-2007)
    [311 J.G. Cohn, D.R. Steele, H.C. Andersen. US Patent 2975025 (1961).
    [321 F. Janssen, R. Meijer. Quality control of DeNOx catalysts:Performance testing, surface analysis and characterization of DeNOx catalysts. Catal. Today,1993,16 (2):157-185.
    [33]J. W. Beeckman, L. L. Hegedus. Design of monolith catalysts for power plant NOx emission control. Ind. Eng. Chem. Res.1991,30:969-978.
    [34]段传和,夏怀祥.燃煤电站SCR烟气脱硝过程技术.第一版.北京:中国电力出版社.2009.
    [35]V.I. Parvulescu, P. Grange, B. Delmon. Catalytic removal of NO. Catal. Today,1998,46:233-316
    [36]G. Busca, L. Lietti, G. Ramis, et al. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts:A review. Appl. Catal. B 1998,18:1-36.
    [37]W. L. Prins, Z. L. Nuninga. Design and Experience with Catalytic Reactor for SCR-DENOx, Catal. Today 1993,16:187-205.
    [38]张鹏,姚强.用于选择性催化还原法烟气脱硝的催化剂.煤炭转化.2005,28(2):18-24.
    [39]F. Nakajima,1. Hamada. The state-of-the-art technology of NOx control. Catal. Today,1996,29:109-115.
    [40]T. Shikada, K. Fujimoto, T. Kunugi, et al. Reduction of nitric oxide with ammonia on vanadium oxide catalysts supported on homogeneously precipitated silica-titania. Ind. Eng. Chem. Prod. Res. Dev.,1981,20 (1):91-95
    [41]T. Shikada, K. Fujimoto, T. Kunugi, et al. Reduction of nitric oxide with ammonia on silica-supported vanadium oxide catalysts. J. Chem. Tech. Biotechnol. A 1983,33 (8):446-454.
    [42]I. M. Pearson, H. Ryu, W. C. Wong, et al. "Chemical Mixed" catalysts, Ind. Eng. Chem. Prod. Res. Dev, 1983,22 (2):381-382.
    [43]W. Xu, Y. Yu, C. Zhang, et al. Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst. Catal. Commun.2008,9:1453-1457.
    [44]W. Xu, H. Hong, Y. Yu. Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3. J. Phys. Chem.2009,113 (11):4426-4432.
    [45]G. Qi, R. T. Yang, R. Chang. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures, Appl. Catal. B,2004,51:93-106.
    [46]G. Qi, R. T. Yang. Performance and kinetic study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst. J. Catal.2003,217:434-441.
    [47]P. R. Ettireddy, N. Ettireddy, S. Mamedov, et al. Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3, Appl. Catal. B 2007,76:23-134.
    [48]P. G. Smirniotis, P. M. Sreekanth, D. A. Pena, et al. Manganese oxide catalysts supported on TiO2, Al2O3, and SiO2:a comparison for low temperature SCR of NO with NH3. Ind. Eng. Chem. Res.2006,45: 6436-6443.
    [49]H. Schneider, M. Maciejewski, K. Kohler, et al. Chromia supported on titania:Ⅵ. Properties of different chromium oxide phases in the catalytic reduction of NO by NH3 studied by in Situ diffuse reflectance FTIR spectroscopy, J. Catal.1995,157:312-320.
    [50]P. M. Sreekanth, D. A. Pena, P. G. Smirniotis. Titania supported bimetallic transition metal oxides for low-temperature SCR of NO with NH3. Ind. Eng. Chem. Res.2006,43:6444-6449.
    [51]刘炜,童志权,罗婕.Ce-Mn/TiO2催化剂选择性催化还原NO的低温活性及抗毒化性能.环境科学学报.2006,26(8):1240-1245
    [52]D. A. Pena, B. S. Uphade, E. P. Reddy, et al. Identification of surface species on titania-supported manganese, chromium, and copper oxide low-temperature SCR catalysts. J. Phys.Chem. B,2004,108(28): 9927-9936.
    [53]Z. Wu, R. Jin, Y. Liu, et al. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature. Catal. Commun.2008,9:2217-2220.
    [54]G. Qi, R. T. Yang. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania, Appl. Catal. B,2003,44:217-225.
    [55]G. Carja, Y. Kameshima, K. Okada, et al. Mn-Ce/ZSM5 as a new superior catalyst for NO reduction with NH3. Appl. Catal. B,2007,73(1-2):60-64.
    [56]M. Schwidder, W. Grunert, U. Bentrup, et al. Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe content:Part Ⅱ. Assessing the function of different Fe sites by spectroscopic in situ studies. J. Catal.,2006, 239(1):173-186.
    [57]H. Sjovall, L. Olsson, E. Fridell, et al. Selective catalytic reduction of NOx with NH3 over Cu-ZSM-5:The effect of changing the gas composition. Appl. Catal. B,2006,64(3-4):180-188.
    [58]R. Q. Long, R. T. Yang. Selective catalytic reduction of NO with ammonia over Fe3+ -exchanged mordenite (Fe-MOR):Catalytic performance, characterization, and mechanistic study. J. Catal.,2002,207(2):274-285.
    [59]S. Dzwigaj, J. Janas, W. Rojek, et al. Effect of iron impurities on the catalytic activity of BEA, MOR and MFI zeolites in the SCR of NO by ethanol. Appl. Catal. B,2009,86 (1-2):45-52.
    [60]T. Nanba, A. Obuchi, Y. Sugiura, et al. Product Analysis of Selective Catalytic Reduction of NO2 with C2H4 over H-Ferrierite. J. Catal.,2002,211 (1):53-63.
    [61]A. Kubacka, J. Janas, B. Sulikowski. In/Co-ferrierite:A highly active catalyst for the CH4-SCR NO process under presence of steam. Appl. Catal. B,2006,69 (1-2):43-48.
    [62]T. Komatsu, T. Nagai, T. Yashima. Cu-loaded dealuminated Y zeolites active in selective catalytic reduction of nitric oxide with ammonia. Res. Chem. Intermed.,2006,32(3-4):291-304.
    [63]G. H. Li, S. C. Larsen, V. H. Grassian. An FT-IR study of NO2 reduction in nanocrystalline NaY zeolite: effect of zeolite crystal size and adsorbed water. Catal. Lett.,2005,103(1-2):23-32.
    [64]M. Traa, B. Burger, J. Weitkamp. Zeolite-based materials for the selective catalytic reduction of NOx with hydrocarbons. Micropor. Mesopor. Mater.1999,30:3-41.
    [65]G. T. Went, S. T. Oyama, A. T. Bell. Laser Raman spectroscopy of supported vanadium oxide catalysts. J. Phys. Chem.1990,94 (10):4240-4246.
    [66]T. Machej, J. Haber, A. M. Turek, et al. Monolayer V2O5/TiO2 and MoO3/TiO2 catalysts prepared by different methods. Appl. Catal. B,1991,70 (1):115-128.
    [67]G. T. Went, L.-J. Leu. A. T. Bell. Quantitative structural analysis of dispersed vanadia species in TiO2 (anatase)-supported V2O5. J. Catal.,1992,134 (2):479-491.
    [68]R. B. Bjorklund, L. A. H. Andersson, C. U.I. Odenbrand, et al. Partial reduction of a vanadia/silica-titania catalyst with ammonia+nitric oxide at 473 K studied by electrical conductance and ESR measurements. J. Phys. Chem.,1992,96 (26):10953-10959.
    [69]L. Lietti, P. Forzatti. Temperature programmed desorption/reaction of ammonia over V2O5/TiO2 De-NOxing catalysts. J. Catal.,1992,134 (2):479-491.
    [70]M. Takagi, T. Kawai, M. Soma, et al. The mechanism of the reaction between NOx and NH3 on V2O5 in the presence of oxygen. J. Catal.,1977,50 (3):441-446.
    [71]M. Inomata, A. Miyamoto, Y. Murakami. Mechanism of the reaction of NO and NH3 on vanadium oxide catalyst in the presence of oxygen under the dilute gas condition. J. Catal.,1980,62 (1):140-148.
    [72]M. Gasior, J. Haber, T. Machej, et al. Mechanism of the reaction NO+NH3 on V2O5 catalysts. J. Mol. Catal. 1988,43 (3):359-369.
    [73]G. Ramis, L. Yi, G. Busca. Ammonia activation over catalysts for the selective catalytic reduction of NOx and the selective catalytic oxidation of NH3. An FT-IR study. Catal. Today,1996,28 (4):373-380.
    [74]M.Kantcheva, V. Bushev, D. Klissurski. Study of the NO2-NH3 interaction on a titania (anatase) supported vanadia Catalyst. J Catal.,1994,145 (1):96-106.
    [75]U. S. Ozkan, Y. P. Cai, M. W. Kumthekar. Investigation of the Mechanism of Ammonia Oxidation and Oxygen Exchange over Vanadia Catalysts Using N-15 and 0-18 Tracer Studies. J Catal.,1994,149 (2): 375-389.
    [76]U. S. Ozkan, Y. P. Cai, M. W. Kumthekar. Investigation of the Reaction Pathways in Selective Catalytic Reduction of NO with NH3 over V2O5 Catalysts:Isotopic Labeling Studies Using 18O2, 15NH3, 15NO, and 15N18O. J Catal.,1994,149 (2):390-403.
    [77]U. S. Ozkan, Y. P. Cai, M. W. Kumthekar. Mechanistic studies of selective catalytic reduction of nitric oxide with ammonia over V2O5/TiO2 (anatase) catalysts through transient isotopic labeling at steady state. J. Phys. Chem.,1995,99 (8):2363-2371.
    [78]V.I. Parvulescu, S. Boghosian, V. Parvulescu, et al. Selective catalytic reduction of NO with NH3 over mesoporous V2O5-TiO2-SiO2 catalysts. J Catal.,2003,217 (1):172-185.
    [79]N. Y. Topsoe, H. Topsoe, J. A. Dumesic. Vanadia/Titania Catalysts for Selective Catalytic Reduction (SCR) of Nitric-Oxide by Ammonia:I. Combined Temperature-Programmed in-Situ FTIR and On-line Mass-Spectroscopy Studies. J Catal.,1995,151 (1):226-240.
    [80]N. Y. Topsoe, H. Topsoe, J. A. Dumesic. Vanadia-Titania Catalysts for Selective Catalytic Reduction of Nitric-Oxide by Ammonia:I.I. Studies of Active Sites and Formulation of Catalytic Cycles. J Catal.,1995, 151 (1):241-252.
    [81]N. Y. Topsoe. Characterization of the nature of surface sites on vanadia-titania catalysts by FTIR. J Catal., 1991,128 (2):499-511.
    [82]H. Schneider, S. Tschudin, M. Schneider, et al. In Situ Diffuse Reflectance FTIR Study of the Selective Catalytic Reduction of NO by NH3 over Vanadia-Titania Aerogels. J Catal.,1994,147 (1):4-14.
    [83]M. D. Amiridis, R. V. Duevel, I. E. Wachs. The effect of metal oxide additives on the activity of V2O5/TiO2 catalysts for the selective catalytic reduction of nitric oxide by ammonia. Appl. Catal. B.1999,20:111-122.
    [84]S. A. Benson, J. D. Laumb, C. R. Crocker, et al. SCR catalyst performance in flue gases derived from subbituminous and lignite coals. Fuel Process Technol.,2005,86:577-613.
    [85]Y. Zheng. A. D. Jensen, J. E. Johnsson. Laboratory investigation of selective catalytic reduction catalysts: Deactivation by potassium compounds and catalyst generation, Ind. Eng. Chem. Res.2004,43:941-947.
    [86]R. Khodayari, C. U. I. Odenbrand. Regeneration of commercial SCR catalysts by washing and sulphation: effect of sulphate groups on the activity, Appl. Catal. B,2001,33 (4):277-281.
    [87]X. Guo. Poisoning and sulphation of vanadia SCR catalyst [D], USA:Brigham Young University.2006: 21-30.
    [88]Y. Zheng, A. D. Jensen, J. E. Johnsson. Deactivation of V2O5-WO3-TiO2 SCR catalyst at a biomass-fired combined heat and power plant. Appl. Catal. B,2005,60:253-264.
    [89]J. P. Chen, R. T. Yang. Mechanism of poisoning of the V2O5/TiO2 catalyst for the reduction of NO by NH3 J. Catal.,1990,125:411-420.
    [90]A. Kling, C. Andersson, A. Myringer, et al. Alkali deactivation of high-dust SCR catalysts used for NOx reduction exposed to flue gas from 100 MW-scale biofuel and peat fired boilers:Influence of flue gas composition. Appl. Catal. B,2006,69:240-251.
    [91]F. C. Lange, H. Schmelz, H. Knozinger. Infrared-spectroscopic investigations of selective catalytic reduction catalysts poisoned with arsenic oxide. Appl. Catal. B,1996,18:245-265.
    [92]K. Rigby, R. Johnson, R. Neufort, et al. SCR Catalyst design issues and operating experience:coals with high arsenic concentrations and coals fron the Powder River Basin. Proceeding of 2000 international joint power generation conference:UPGC2000-15067,2000.
    [93]F. Hilbrig, H. E. Gobel, H. Knozinger, et al. Interaction of arsenious oxide with DeNOx-catalysts:an X-ray absorption and diffuse reflectance infrared spectroscopy study. J. Catal.,1991,129:168-176.
    [94]L. Lisi, G. Lasorella, S. Malloggi, et al. Single and combined deactivating effect of alkali metals and HCl on commercial SCR catalysts. Appl. Catal. B,2004,50:251-258.
    [95]J. Beck, R. Muller, J. Brandenstein, et al. The behaviour of phosphorus in flue gases from coal and secondary fuel co-combustion. Fuel,2005,84:1911-1919.
    [96]J. Beck, J. Brandenstein, S. Unterberger, et al. Effects of sewage sludge and meat and bone meal Co-combustion on SCR catalysts. Appl. Catal. B,2004,49:15-25.
    [97]F. Castellino, S. B. Rasmussen, A. D. Jensen, et al. Deactivation of vanadia-based commercial SCR catalysts by polyphosphoric acids. Appl. Catal. B,2008,83:110-122.
    [98]D. C. Mussatti, R. Srivastava, P. M. Hemmer, et al. Section 4.2 Chaper 2:Selective catalytic reduction. EPA/452/B-02-001.
    [99]J. E. Cichanowicz, D. R. Broske. An assessment of European experience with selective catalytic reduction in Germany and Denmark. Proceedings of the EPRI-DOE-EPA Air Pollution Control Symposium:The MEGA Symposium, Atlanta, GA, Aug.16-20,1999.
    [100]L. Lietti, P. Forzatti, G. Ramis, et al. Potassium doping of vanadia/titania de-NOxing catalysts:Surface characterization and reactivity study. Appl. Catal. B,1993,13:13-35.
    [101]H. Kamata, K. Takahashi, C. U.I. Odenbrand. The role of K2O in the selective reduction of NO with NH3 over a V2O5(WO3)/TiO2 commercial selective catalytic reduction catalyst. J. Mol. Catal. A,1999,139: 189-198.
    [102]F. Moradi, J. Brandin, M. Sohrabi, et al. Deactivation of oxidation and SCR catalysts used in flue gas cleaning by exposure to aerosols of high-and low melting point salts, potassium salts and zinc chloride. Appl. Catal. B,2003,46:65-76.
    [103]F. Castellino, A. D. Jensen, J. E. Johnsson, et al. Influence of reaction products of K-getter fuel additive on commercial vanadia-based SCR catalysts Part Ⅰ. Potassium phosphate. Appl. Catal. B,2009,86:196-205.
    [104]余春江.生物质热解机理和工程应用研究[博士学位论文].杭州:浙江大学.2000:93-112.
    [105]L. Tobiasen, R. Skytte, L. S. Pedersen, et al. Deposit characteristic after injection of additives to a Danish straw-fired suspension boiler. Fuel Process. Technol.,2007,88 (11-12):1108-1117.
    [106]S. Pritchard, S. Kaneko, K. Suyama, et al. Optimizing SCR catalyst design and performance for coal-fired boilers. EPA/EPRI 1995 Joint Symposium Stationary Combustion NOx Control. May 16-19,1995
    [107]H. Gutberlet, B. Schallert. Selective catalytic rduction for NOx from coal-fired plants. Catal. Today,1993, 16:207-236.
    [108]C. L. Senior, D. O. Lignell, A. F. Sarofim, et al. Modeling arsenic partitioning in coal-fired power plants. Combust. Flame,2006,147:209-221.
    [109]F. C. Lange, H. Schmelz, H. Knozinger. An X-ray photoelectron spectroscopy study of oxides of arsenic supported on TiO2. J. Electron Spectrosc Related Phenomena,1991,57:307-315.
    [110]K. C. Galbreath, C. J. Zygarlicke, E. S. Olson, et al. Evaluating mercury transformation mechanisms in a laboratory-scale combustion system. Sci. Total. Environ.2000,261:149-155.
    [111]H. Gutberlet, A. Spiesberger, F. Kastner, et al. Behaviour of trace mercury in bituminous coal furnaces with flue gas cleaning plants. VGB Kraftwerkstechnik,1992,72:586-591.
    [112]D. Laudal. Pilot-Scale Evaluation of the Impact of Selective Catalytic Reduction for NO, on Mercury Speciation, Report for EPRI, U.S. Department of Energy National Energy Technology Laboratory, U.S. Environmental Protection Agency, Ontario Power Generation, EPRI:Palo Alto, CA,2000,1000755.
    [113]C. W. Lee, R. Srivastava, S. Ghorishi, et al. Study of speciation of mercury under simulated SCR NOx emission control conditions. In Proceedings of the DOE-EPRI-USEPA-AWMA Combined Power Plant Air Pollutant Control Symposium-The Mega Symposium,2003.
    [114]J. Beck, S. Unterberger. The behaviour of phosphorus in the flue gas during the combustion of high-phosphate fuels. Fuel,2006,85:1541-1549.
    [115]J. Blanco, P. Avila, C. Barthelemy, et al. Influence of phosphorus in vanadium-containing catalysts for NOx removal. Appl. Catal.,1989,55:151-164.
    [116]H. Kamata, K. Takahashi, C. U. I. Odenbrand. Surface acid property and its relation to SCR activity of phosphorus added to commercial V2O5(WO3)/TiO2 catalyst. Catal. Lett.,1998,53:65-71.
    [117]M. D. Amiridis,I. E. Wachs, G. Deo, et al. Reactivity of V2O5 catalysts for the selective catalytic reduction of NO by NH3:Influence of vanadia loading, H2O, and SO2. J. Catal.,1996,161:247-253.
    [118]J. P. Chen, R. T. Yang. Selective catalytic reduction of NO with NH3 on SO42-/TiO2 superacid catalyst. J. Catal.,1993,139:277-288.
    [119]J. Svachula, N. Ferlazzo, P. Forzatti, et al. Selective reduction of NOx by NH3 over honeycomb DeNOxing catalysts. Ind. Eng. Chem. Res.,1993,32(6):1053-1060.
    [120]J. Svachula, L. J. Alemany, N. Ferlazzo, et al. Oxidation of sulfur dioxide to sulfur trioxide over honeycomb DeNoxing catalysts. Ind. Eng. Chem. Res.,1993,32 (5):826-834.
    [121]J. P. Dunn, H. G. Stenger Jr., I. E. Wachs, et al. Oxidation of SO2 over supported metal oxide catalysts. J. Catal.,1999,181:233-243.
    [122]J. P. Dunn, H. G. Stenger Jr., I. E. Wachs, et al. Molecular structure-reactivity relationships for the oxidation of sulfur dioxide over supported metal oxide catalysts. Catal. Today,1999,53:543-556.
    [123]J. P. Dunn, P. R. Koppula, H. G. Stenger, et al. Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts. Appl. Catal. B,1998,19:103-117.
    [124]黄张根.H2O和SO2对炭基催化剂低温脱硝活性的影响[博士学位论文].山西:中国科学院煤炭化学研究所.2003:11.
    [125]V. Tufano, M.Turco. Kinetic modelling of nitric oxide reduction over a high-surface area V2O5-TiO2 catalyst. Appl. Catal. B,1992,2(1):9-26.
    [126]H.-G. Lintz, T. Turek. Intrinsic kinetics of nitric oxide reduction by ammonia on a vanadia-titania catalyst. Appl. Catal. A,1992,85(1):13-25.
    [127]N.-Y. Tops(?)e, T. Slabiak, B. S. Clausen, et al. Influence of water on the reactivity of vanadia/titania for catalytic reduction of NOX. J. Catal.,1992,134:742-746.
    [128]C. U. I. Odenbrand, P. L. T. Gabrielsson, J. G. M. Brandin, et al. Effect of water vapor on the selectivity in the reduction of nitric oxide with ammonia over vanadia supported on silica-titania. Appl. Catal.,1991,78: 109-122.
    [129]I. Nova, L. Lietti, E. Tronconi, et al. Transient response method applied to the kinetic analysis of the DeNOx SCR reaction. Chem. Eng. Si.,2001,56(4):1229-1237.
    [130]M. Turco, L. Lisi, R. Pirone, et al. Effect of water on the kinetics of nitric oxide reduction over a high-surface-area V2O5/TiO2 catalyst. Appl. Catal. B,1994,3:133-149.
    [131]徐明厚,郑楚光,冯荣等.煤燃烧过程中痕量元素排放的研究现状.中国电机工程学报.2001,21(10):33-38.
    [132]李建新.垃圾焚烧过程中金属污染物迁移机理及稳定化处理技术研究[博士学位论文].杭州:浙江大学.2004:39-41.
    [133]唐修义,黄文辉.中国煤中微量元素.第一版.北京:商务印书馆,2004,194-200.
    [134]M. Tokarz, S. Jarars, B. Persson. Poisoning of De-NOx SCR catalyst by flue gases from a waste incineration plant, Stud. Surf. Sci. Catal.1991,68:523-530.
    [135]J. Haber. Fifty years of my romance with vanadium oxide catalysts. Catal. Today 2009,142:100-113.
    [136]曲虹霞.催化脱除烟气中NOx的研究[博士学位论文].南京:南京理工大学.2004
    [137]Z. Wu, B. Jiang, Y. Liu, et al. Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by sol-gel method. J. Hazard. Mater.2007,145:488-494.
    [138]B. Jiang, Y. Liu, Z. Wu. Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods. J. Hazard. Mater.2009,162:1249-1254.
    [139]G. Ramis, L.Yi, G. Busca, et al. Adsorption, activation, and oxidation of ammonia over SCR catalysts. J. Catal.1995,157:523-535.
    [140]D.A. Pena, Balu S. Uphade, Ettireddy P. Reddy, et al. Identification of surface species on titania-supported manganese, chromium, and copper oxide low-temperature SCR catalysts. J. Phys. Chem. B 2004,108: 9927-9936.
    [141]P. M. Sreekanth, P. G. Smirniotis. Selective reduction of NO with CO over titania supported transition metal oxide catalysts. Catal. Lett.2008,122:37-42.
    [142]A. Kato, S. Matsuda, F. Nakajima, et al. Reduction of nitric oxide with ammonia on iron oxide-titanium oxide catalyst. J. Phys. Chem.1981,85:1710-1713.
    [143]A. Kato, S. Matsuda, T. Kamo, et al. Reaction between nitrogen oxide (NOx) and ammonia on iron oxide-titanium oxide catalyst. J. Phys. Chem.1981,85:4099-4102.
    [144]B. M. Reddy, A. Khan, Y. Yamada, et al. Structural characterization of CeO2-TiO2 andV205/Ce02-TiO2 catalysts by Roman and XPS techniques, J. Phys. Chem. B 2003,107:5162-5167.
    [145]M. Luo, J. Chen, L. Chen, et al. Structure and redox properties of CexTi1-xO2 solid solution. Chem. Mater. 2001,13:197-202.
    [146]R. Q. Long, R. T. Yang. The promoting role of rare earth oxides on Fe-exchanged TiO2-pillared clay for selective catalytic reduction of nitric oxide by ammonia, Appl. Catal. B 2000,27:87-95.
    [147]R. Q. Long, R. T. Yang. Superior Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia, J. Am. Chem. Soc.1999,121:5595-5596.
    [148]R. Q. Long, R. T. Yang. Catalytic Performance of Fe-ZSM-5 Catalysts for Selective Catalytic Reduction of Nitric Oxide by Ammonia, J. Catal.1999,188:332-339.
    [149]李作骏.多相催化反应动力学基础.第一版.北京:北京大学出版社.1990.
    [150]B. M. Reddy, A. Khan, Y. Yamada, et al. Raman and X-ray photoelectron spectroscopy study of CeO2-ZrO2 and V2O5/CeO2-ZrO2 catalysts. Langmuir,2003,19:3025-3030.
    [151]徐波连,范以宁,刘浏,等.V2O5/TiO2催化剂表面钒氧物种的分散状态和催化性能.中国科学(B辑).2002.32(3):235-242.
    [152]M. Inomata, A. Miyamoto, Y. Murakami. Mechanism of the reaction of NO and NH3 on vanadium oxide catalyst in the presence of oxygen under the dilute gas condition. J. Catal.1980,62:140-148.
    [153]F. T. Clark, M. C. Springman, D. Willcox, et al. Interactions in alumina-based iron oxide-vanadium oxide catalysts under high temperature calcination and SO2 oxidation conditions. J. Catal.1993,139:1-18.
    [154]I. E. Wachs, B. M. Weckhuysen. Vanadium structure and reactivity of surface vanadium oxide species on oxide supports. Appl. Catal. A 1997,157:67-90.
    [155]D. A. Bulushev, F. Rainone, L. K.-Minsker, et al. Influence of potassium doping on the formation of vanadia species in V-Ti oxide catalysts. Langmuir,2001,17:5276-5282.
    [156]M. Primet, P. Pichat, M. V. Mathieu. Infrared study of the surface of titanium dioxides. J. Phys. Chem.1971, 75:1216-1220.
    [157]J.-P. Shen, C. Song. Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells. Catal. Today 2002,77:89-98.
    [158]J. Fang, X. Bi, D. Si, et al. Spectroscopic studies of interfacial structures of CeO2-TiO2 mixed oxides. Appl. Surf. Sci.2007,253:8952-8961.
    [159]J. Liu, Z. Zhao, J. Wang, et al. The highly active catalysts of nanometric CeO2-supported cobalt oxides for soot combustion. Appl. Catal. B 2008,84:185-195.
    [160]S. Damyanova, C. A. Perez, M. Schmal, et al. Characterization of ceria-coated alumina carrier. Appl. Catal. A 2002,234:271-282.
    [161]B. Murugan, A. V. Ramaswamy.Chemical state and redox properties of Mn/CeO2-TiO2 nanocomposites prepared by solution combustion route. J. Phys. Chem. C 2008,112:20429-20442.
    [162]E. N. Ndifor, T. Garcia, B. Solsona, et al. Influence of preparation conditions of nano-crystalline ceria catalysts on the total oxidation of naphthalene, a model polycyclic aromatic hydrocarbon. Appl. Catal. B 2007,76:248-256.
    [163]D. Andreeva, R. Nedyalkova, L. Ilieva, et al. Gold-vanadia catalysts supported on ceria-alumina for complete benzene oxidation. Appl. Catal. B 2004,52:157-165.
    [164]R. Q. Long, R. T. Yang. Catalytic Performance of Fe-ZSM-5 Catalysts for Selective Catalytic Reduction of Nitric Oxide by Ammonia, J. Catal.1999,188:332-339.
    [165]Z. Zhang, V. E. Henrich. Electronic interactions in the vanadium/TiO2(110) and vanadia/TiO2(110) model catalyst systems. Surf. Sci.1992,277:263-272.
    [166]P. Burroughs, A. Hamnett, A. F. Orchard, et al. Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium, J. Chem. Soc., Dalton Trans.1976,17:1686-1698.
    [167]S. Yang, W. Zhu, Z. Jiang, et al. The surface properties and the activities in catalytic wet air oxidation over CeO2-TiO2 catalysts. Appl. Surf. Sci.2006,252:8499-8505.
    [168]C. D. Wagner, W. M. Riggs, L. E. Davis, et al. Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Eden Prairie, Minnesota,1979.
    [169]J. C. Dupin, D. Gonbeau, P. Vinatier, et al. Systematic XPS studies of metal oxides, hydroxides and peroxides, Phys. Chem. Chem. Phys.2000,2:1319-1324.
    [170]Y. Eom, S. H. Jeon, T. A. Ngo, et al. Heterogeneous mercury reaction on a selective catalytic reduction (SCR) catalyst, Catal. Lett.2008,121:219-225.
    [171]J. E. Kubsh, J. S. Rieck, N. D. Spencer, Cerium oxide stabilization:Physical property and three-way activity considerations, Stud. Surf. Sci. Catal.1991,71:125-138.
    [172]Z. Wu, B. Jiang, Y. Liu, et al. Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by sol-gel method. J. Hazard. Mater.2007,145:488-494.
    [173]E. C.-Hyde, A. Baiker. Amorphous chromia for low-temperature selective catalytic reduction of nitric oxide. Ind. Eng. Chem. Res.1990,29:1985-1989.
    [174]S. S. Lin, C. L. Chen, D. J. Chang, et al. Catalytic wet air oxidation of phenol by various CeO2 catalysts. Water Res.2002,36:3009-3014.
    [175]黄仲涛,耿建铭.工业催化.第二版.北京:化学工业出版社.2006.
    [176]Z. Huang, Z. Liu, X. Zhang, et al. Inhibition effect of H2O on V2O5/AC catalyst for catalytic reduction of NO with NH3 at low temperature. Appl. Catal. B 2006,63(3-4):260-265.
    [177]K. Nakamoto. Infrared and Raman spectra of inorganic and coordination compounds.4th edition. Wiley, New York,1986.
    [178]朱珍平,刘振宇,牛宏贤等.V2O5/AC催化剂低温催化的NO-NH3-O2反应-SO2,V2O5担载量和反应温度的影响.中国科学(B辑).2000,30(2):154-158.
    [179]J. D.-Hansen, S. Boghosian, A. Kustov, et al. Vanadia-based SCR catalysts supported on tungstated and sulfated zirconia:Influence of doping with potassium. J. Catal.2007,251:459-473.
    [180]S. Xu, J. Li, D. Yang, et al. Effects of support acidity on the reaction mechanisms of selective catalytic reduction of NO by CH4 in excess oxygen. Front. Environ. Sci. Eng. China.2009,3 (2):186-193.
    [181]T. Jin, T. Yamaguchi, K. Tanabe. Mechanism of acidity generation on sulfur-promoted metal oxide. J. Phys. Chem.1986,90 (20):4794-4796.
    [182]T. V. Mironyuk, V. L. Struzhko, S. N. Orlik, et al. Effect of the Composition of Modified SO42-/ZrO2 on Catalytic Properties in Reduction of NO by Hydrocarbons. Theor. Exp. Chem.2005,41 (2):129-134.
    [183]J. E. Cichanowicz, D. R. Broske. An assessment of European experience with selective catalytic reduction in Germany and Denmark. EPRI-DOE-EPA combined utility air pollution control symposium:the MEGA symposium, Atlanta, GA, Aug 16-20,1999.
    [184]A. L. Kustov, S. B. Rasmussen, R. Fehrmann, et al. Activity and deactivation of sulphated TiO2-and ZnO2-based V, Cu, and Fe oxide catalysts for NO abatement in alkali containing flue gases. Appl. Catal. B 2007,76(1-2):9-14.
    [185]R. Khodayari, K. Takahashi, C. U. I. Odenbrand. The role of K2O in the selective reduction of NO with NH3 over a V2O5(WO3)/TiO2 commercial selective catalytic reduction catalyst. J. Mol. Catal. A.1999,139(2-3): 189-198.
    [186]张军,汉春利,刘坤磊,等.煤中碱金属及其在燃烧中的行为.热能动力工程.1999,14(2):83-85.
    [187]廖翠萍,颜涌捷,吴创之.生物质中元素分布特征的聚类分析研究.煤炭转化.2004,27(1):89-95.
    [188]杨瑞瑛.山东煤矿样中微量元素的分布.现代仪器.2007,13(6):21-24.
    [189]曹志德.安洛勘探区煤中常量元素赋存特征分析.贵州地质.2006,23(1):62-65.
    [190]代世峰,任德贻,唐跃刚.煤中常量元素的赋存特征与研究意义.煤田地质与勘探.2005,33(2):1-5.
    [191]李小明,曹代勇,占文峰.北淮阳地区不同变形-变质煤的元素分布及其影响因素.煤田地质与勘探.2006,34(6):1-3.
    [192]李勇,肖军.燃煤过程中碱金属赋存迁移规律及相关研究进展.洁净煤技术.2005,11(1):39-44.
    [193]汉春利,张军,颜峥等.煤中钾存在形式研究.燃烧科学与技术.2001,7(2):167-169.
    [194]秦建光.秸秆类物质流态化燃烧特性研究[博士学位论文].杭州:浙江大学.2009.
    [195]A.-C. Larsson, J. Einvall, A. Andersson, et al. Physical and chemical characterization of potassium deactivation of a SCR catalyst for biomass combustion. Topi. Catal.2007,45(1-4):149-152.
    [196]X. Zhang, Z. Huang, Z. Liu. Effect of KCl on selective catalytic reduction of NO with NH3 over a V2O5/AC catalyst. Catal. Commun.2008,9(5):842-846.
    [197]S.-H. Hong, S.-J. Hong, S.-C. Hong, et al. Vanadium/Titania-based catalyst for removing nitrogen oxide at low temperature window, and process of removing nitrogen oxide using the same, Int. Patent No.WO2005/030389 A1, Korea,2005.
    [198]H. Zhao, S. Bennici, J. Shen, et al. The influence of the preparation method on the structural, acidic and redox properties of V2O5-TiO2/SO42- catalysts. Appl. Catal. A 2009,356:121-128.
    [199]D. Nicosia, I. Czekaj, O. Krocher. Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils and urea solution:Part Ⅱ. Characterization study of the effect of alkali and alkaline earth metals. Appl. Catal. B 2008,77:228-236.
    [200]H. Kamata, K. Takahashi, C. U. I. Odenbrand. Kinetics of the Selective Reduction of NO with NH3 over a V2O5(WO3)/TiO2 Commercial SCR Catalyst. J. Catal.1999,185(1):106-113.
    [201]Z. Huang, Z. Zhu, Z. Liu, et al. Formation and reaction of ammonium sulfate salts on a V2O5/AC catalyst during selective catalytic reduction of nitric oxide by ammonia at low temperature. J. Catal.2003,214: 213-219.
    [202]G. D. Parfitt, J. Ramsboth, C. H. Rocheste. Infra-red study of hydrogen chloride adsorption on rutile surfaces. Tran. Faraday Soc.1971,67:3100-3109.
    [203]S. Niksa, N. Fujiwara. A predictive mechanism for mercury oxidation selective catalytic reduction catalysts under coal-derived flue gas. J. Air Waste Manage. Assoc.2005,55:1866-1875.
    [204]S. He, J. Zhou, Y. Zhu, et al. Mercury oxidation over a Vanadia-based selective catalytic reduction catalyst. Energy & Fuel.2009,23:253-259.
    [205]S. T. Choo, Y. G. Lee, I.-S. Nam, et al. Characteristics of V2O5 supported on sulfated TiO2 for selective catalytic reduction of NO by NH3. Appl. Catal. A 2000,200:177-188.
    [206]F. Hasselriis, A. Licata. Analysis of heavy metal emission data from municipal waste combustion, J. Hazard. Mater.1996,47:77-102.
    [207]K. Carlsson. Heavy metals from "energy from waste" plants-comparison of gas cleaning systems, Waste Manage. Res.1986,4:15-20.
    [208]E. T. Taylor, J. Eusden, J. Kranozowski. Comprehensive approach toward understanding element speciation and leaching behavior in municipal solid waste incineration electro-static precipitator ash. Environ. Sci. Technol.1995,29:629-646.
    [209]J. P. Chen, M. A. Buzanowaki, R. T. Yang, et al. Deactivation of the vanadia catalyst in the selective catalytic reduction process. J. Air Waste Manage. Assoc.1990,40:1403-1409.
    [210]P. H. Brunner and H. Monch. The Flux of metals through municipal solid waste incinerators. Waste Manage. Res.1986,4:105-119.
    [211]S. K. Durlak, P. Biswas, J. Shi. Equilibrium analysis of the affect of temperature, moisture and sodium content on heavy metal emissions from municipal solid waste incinerators. J. Hazard. Mater.1997,56:1-20.
    [212]朱莉娜.煤燃烧过程中微量元素铬、铅的迁移转化规律研究.电力环境保护.2001,17(4):27-30.
    [213]H. Belevi, H. Moench. Factors determining the element behavior in municipal solid waste incinerators. I. Field studies. Environ. Sci. Technol.2000,34:2501-2506.
    [214]D. H. Klain, A. J. Andren, J. A. Center, et al. Pathway of 37 trace elements through coal-fired power plants. Environ. Sci. Technol.1975,9:973-979.
    [215]徐明厚,郑楚光,冯荣等.煤燃烧过程中痕量元素排放的研究现状.中国电机工程学报.2001,21(10):33-38.
    [216]王运泉,任德贻,谢洪波.燃煤过程中微量元素的分布及逸散规律.煤矿环境保护.1995,9(6):25-28
    [217]王文峰,秦勇,宋党育.燃煤电厂中微量元素迁移释放研究.环境科学学报.2003,23(6):748-752
    [218]宋党育,秦勇,张军营,郑楚光.上湾电厂有害痕量元素的迁移释放行为研究.华中科技大学学报(自然科学版).2005,33(9):75-77
    [219]M.-Y. Wey, J.-L. Su, J.-C. Chen. Influence of operating conditions on the formation of heavy metal compounds during incineration. J. Air Waste Manage. Assoc.1999,49:444-453.
    [220]徐杰英.煤燃烧过程中痕量元素铅的反应机理研究[硕士学位论文].湖北:华中科技大学.2004.4
    [221]李绍芬.化学与催化反应工程.第一版.北京:化学工业出版社.1986
    [222]R. Khodayari, C. U. I. Odenbrand. Selective catalytic reduction of NOX:a mathematical model for poison accumulation and conversion performance. Chem. Eng. Sci.1999,54:1775-1785.
    [223]陈诵英,陈平,李永旺等.催化反应动力学.第一版.北京:化学工业出版社.2007
    [224]陆海明.二氧化铈粉体真密度的测量方法研究.云光技术.1993,(3):16-20.
    [225]朱炳辰.化学反应工程.第三版.北京:化学工业出版社.2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700