用户名: 密码: 验证码:
废杂铜冶炼过程中污染物迁移转化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对废杂铜冶炼过程污染复杂,具体污染特性不明确,污染防控缺少数据支撑的问题,选取典型企业,对废杂铜冶炼过程中主要污染特性及污染物迁移转化规律进行了研究。采用物质总需求输入-输出及特定物质流分析法对废杂铜冶炼过程进行物质流分析发现,铜主要损耗在NGL炉精炼阶段,污染物产生工序主要包括顶吹转炉吹炼、NGL炉精炼及精炼摇炉精炼。污染特性分析表明,熔炼烟尘中含有大量Cu、Pb、Zn、Cd、As等重金属元素,Cd、As等元素主要以酸可提取态存在,环境活性较高;精炼渣含铜量较高,可返回进行再次熔炼。炉体温度升高促进了Cu、Pb、Zn、Ni向气相的转化,还原性气氛明显抑制了Cu、Pb的挥发,Zn在氧化性气氛中挥发率相对较低,氯的存在促进了重金属的挥发;用Aspen Plus构建了废杂铜冶炼工艺过程的模拟模型,实现了对该过程的准确模拟,并计算分析了操作条件对造渣效率、熔炼炉出口烟气组成以及烟尘产生量等的影响。
A research was conducted on pollution characteristic and migration and transformation ofpollutants in the scrap copper smelting process in order to solve the problems such as seriouspollution, unclear pollution characteristic and lack of data support for the control of pollutants.Total material requirement and output and substance flow analysis were used to study the materialflow analysis. It was found that copper was mainly lost in NGL refining process, and pollutantsproduced in converter blowing, NGL refining and rocking furnace refining process. The pollutioncharacteristic analysis showed that there were high contents of Cu, Pb, Zn, Cd and As in smeltingdust, and Cd, As were of high environment activity in the dust. The refining slag could be recycledto the smelting process because of high copper content. A higher temperature promoted theelements such as Cu, Pb, Zn and Ni transferred to gas. Reducing atmosphere significantlyinhibited the Cu and Pb transforming to the gas phase, and the increase of oxygen content wouldimprove the volatilization rates of the two kinds of metal. The volatilization rate of Zn inoxidizing atmosphere was significantly lower than the other two running atmosphere. The AspenPlus was used to simulated a typical scrap copper smelting process and the influences of operatingparameters such as slagging agent dosing quantity, the the amount of oxygen and raw material onthe composition of the export flue gas of melting furnace were investigated.
引文
1.王明涌,王志.废杂铜电解制铜粉过程典型金属杂质的迁移规律[J].中国稀土学报,2012,30:235-239.
    2.周明文.我国废杂铜工业的现状与发展趋势[J].有色冶金设计与研究,2010,31(6):29-32.
    3.中国冶金百科全书总编辑委员会《冶金建设》卷编辑委员会.中国冶金百科全书冶金建设(上)[M].北京:冶金工业出版社,1999.
    4.王金祥.低品位废杂铜再生综合利用技术研究[J].技术,2012,(09):54-56.
    5.王子龙.再生铜生产过程中的问题及对策[J].有色冶炼,2002,29(1):44-46.
    6.钱易.清洁生产循环经济与可持续发展[J].太原科技,2004,6:15-17.
    7.王冲,朱学云,熊振坤.我国废杂铜的再生利用现状及展望[J].世界有色金属,2011,(1):44-48.
    8.肖红新,岳伟,唐维学,等.废杂铜的再生及其环境污染与防治[J].再生资源与循环经济,2013,6(7):29-32.
    9. http://www.chinanfmi.com/newsdetail.php?newsid=14637.
    10. http://finance.sina.com.cn/money/future/20130221/132914606851.shtml.
    11.李春棠.铜冶炼技术的历史变迁[J].资源再生,2009,06:34-36.
    12.何蔼平,郭森魁,彭楚峰.湿法炼铜技术与进展[J].云南冶金,2002,03:94-100.
    13. Jacco L. Huisman, Gerard Schouten, Carl Schultz. Biologically produced sulphide forpurification of process streams, effluent treatment and reeovery of metals in the metal andmining industry[J]. Hydrometallurgy2006(83):106-113.
    14.周俊.废杂铜冶炼工艺及发展趋势[J].中国有色冶金,2010,8(4):20-26.
    15. Trick.A,郁浩.短缺还是隐藏:欧洲废铜市场概述[J].现代工商,1998,(82):35.
    16.何笑辉.2010年上半年铜市场评述及下半年展望[N].世界金属导报,2010-08-10016.
    17. httP://www.docin.com/p-31356284.html.
    18.殷建华,孟广寿.国内外废杂铜的回收再生利用现状[J].世界有色金属,2000,(2):9-12.
    19.中华人民共和国国家统计局,中华人民共和国2012年国民经济和社会发展统计公报,2013年2月22日.
    20.张希忠.中国再生铜工业现状及发展前景[J].有色金属再生与利用,2003(2):11-13.
    21.华宏全,王冲,杨坤彬.废杂铜回收利用浅析[J].中国资源综合利用,2011,(11):20-23.
    22.李卫民.利用艾萨熔炼技术进行的吹炼[J].世界有色金属,2008,(11):28-31.
    23.卢斗江.低品位废杂铜火法熔炼技术述评[J].资源再生,2011,07:58-62.
    24.北京有色冶金设计研究总院等编.重有色金属冶炼设计手册.铜镍卷[M].北京:冶金工业出版社,1996:1-2.
    25.夏元东,刘向东.论环评中铜冶炼行业的清洁生产评价[J].内蒙古环境科学,2006,20(4):47-51.
    26.姚素平.中国铜冶炼技术的进步[J].中国有色冶金,2004,2(1):1-4.
    27.韩明霞,孙启宏,乔琦等.中国火法铜冶炼污染物排放情景分析[J].环境科学与管理.2009,34(12):40-44.
    28.张荣良,丘克强.铜冶炼闪速炉烟尘氧化浸出与综合脱砷[J].中南大学学报(自然科学版),2006,37(1):73-78.
    29.王湖坤,李晔.大冶有色金属公司铜冶炼污泥综合利用[J].有色金属,2005,57(2):131-135.
    30.李卫民.铜冶炼厂现有最佳硫酸生产技术:最新总结[J].中国有色冶金,2006,10(5):6-10.
    31.姚芝茂,徐成,赵丽娜.铜冶炼工业固体废物综合环境管理方法研究[J].环境工程,2010,28增刊:230-234.
    32.金艳.有色金属工业持久性有机污染物风险评价与管理对策研究[D].中南大学,2007,5.
    33.张希忠.再生铜工业二恶英治理技术初探[J].资源再生,2010,(8):15-17.
    34.万宝聪.铜冶炼工程生产废水零排放的保证性分析[J].中国有色冶金A卷.2013,3:57-60.
    35.朱红,张玲.铜冶炼系统酸性废水综合治理及利用[J].甘肃冶金,2012,34(2):101-104.
    36.李新征,徐晓军.曝气微电解-絮凝法处理铜冶炼废水中的砷[J].工业水处理,2011,31(5):31-34.
    37.郭沛.双膜法深度处理铜冶炼工业废水试验研究[J].河南科技工业工程与技术,2013,10:26,31.
    38.修庆华.电化学法处理铜冶炼废水的应用和实践[J].铜业工程,2012,4:90-92.
    39.刘冬梅,沈庆海.基于重金属类有毒空气污染物重点行业分析的优先控制政策研究[J].环境与可持续发展,2012,1:79-83.
    40.陈谦.铜火法冶金含重金属废气控制技术研究[J].有色金属(冶炼部分),2013,9:67-70.
    41.杨树平,高安生.浅析铜冶炼行业二氧化硫排放总量控制问题[A].中国环境科学学会.2008中国环境科学学会学术年会优秀论文集(中卷)[C].中国环境科学学会:,2008:5.
    42.苏跃龙.液相催化脱硫技术在镍铜冶炼废气治理中的应用探讨[J].云南环境科技,2005,24(增刊):151-152.
    43.廖天鹏,祝星.铜冶炼污泥形成机理及特性[J].化工进展,2013,32(9):2246-2252.
    44.姚芝茂,徐成.铜冶炼工业固体废物综合环境管理方法研究[J].环境工程,2010,28(增刊):230-234.
    45.张学士,王永如,李红卫等.再生铜企业烟尘治理实践[J].中国金属通报,2010,33:42-43.
    46.汪晓光,潘家柱.21世纪中国有色金属工业可持续发展战略[M].北京:冶金工业出版社2001.
    47. Ayres R, Ayres L. A handbook of industrial ecology. Northampton, MA, USA: Edward ElgarPublishing;2002.
    48.卜庆才.物质流分析及其在钢铁工业中的应用[D],东北大学,沈阳,2005年8月:6.
    49.姜文英.典型铅锌冶炼企业循环经济建设的物质流分析方法研究[D].中南大学,2007.
    50. Consoli F, Boustead I, Fava J, et al. Guidelines for life cycle assessment:“a code of practice”.SETAC, Brussels,1993.
    51. Rene Klejin and Ester van der Voet (Centre of Environmental Science, Leiden University,Netherlands). Links between the micro and macro flows: Substance flow analysis, WorkingGroup on the State of Environment30th Meeting (OECD), Paris,24October2000, at URLwww.leidenuniv.nl/cml/ssp/publications/2000_014.pdf
    52. Stahmer, C., Kuhn, M., Braun, N. Physical input-output tables for Germany,1990[M]. Reportprepared for DG XI and Eurostat. Luxembourg: Eurostat Directorate B, Unit B6,1997
    53. Grabgard Pederson, O. Physical input-output tables for Denmark [M]. Copenhagen: StatisticsDenmark,1998
    54.徐中民,张志强,程国栋.甘肃省1998年生态足迹计算与分析[J].地理学报,2000,55(5):607-616.
    55.刘淼,胡远满,李月辉,等.生态足迹方法及研究进展[J].生态学杂志,2006,25(3):334-339.
    56.傅泽强,智静.物质代谢分析框架及其研究述评[J].环境科学研究,2010,23(8):1091-1098.
    57.三本良一著.王天民译.战略环境经营生态设计-范例100[M].北京:化学工业出版社,2003.
    58. Ayres R. Industrial metabolisml[A]. In: Amusable J. Technology and Environment[C].Washington: National Academy Press,1989.
    59. Fischer-Kowalski M, Haber H. Metabolism and Colonization: Modes of Production and thePhysical Exchange between Societies and Nature[M]. Wien: Schriftenreihe Soziale Okologie,1993.
    60. Chancerel P, Rotter V-S. Assessing the management of small waste electrical and electronicequipment through substance flow analysis: the example of gold in Germany and the USA[J].Revue de Métallurgie2010,106:547-553.
    61. Liu Y, Mol A, Chen J. Material flow and ecological restructuring in China: the case ofphosphorus[J]. Journal of Industrial Ecology,2004,83:103-120.
    62. Matthews E, Amann C, Bringezu S, Fischer-Kowalski M, Huttler W, Kleijn R, et al. Theweight of nations. Material outflows from industrial economies. Washington, DC: WorldResources Institute;2000:125.
    63. Yoshida A, Tasaki T, Terazono A. Material flow analysis of used personal computers inJapan[J]. Waste Management2009,29:1602–1614.
    64. Ayres, Robert U., A.V. Knees. Production, consumption&externalitices[J]. American Review,1969,59(3):282-297.
    65. Schertz H, Binges S. Economy-wide Material Flow Accounting. Wuppertal: WuppertalInstitute,1998.
    66. Daniels, P.L., Moore, S., Approaches for quantifying the metabolism of physical economic,Part I: Methodological overview[J]. Industrial Ecology,2002,5(4):69-93.
    67. Daniels, P.L. Approaches for quantifying the metabolism of physical economic: Acomparative survey, Part II: Review of individual approaches[J]. Industrial Ecology,2002,6(1):65-88.
    68. Wernick, I.K., Ausubel, J.H. National material metrics for industrial ecology[J]. Resourcepolicy,1995,21(3):189-198.
    69. Wolman, A.The metabolism of the city[J]. Scientific American,1965,213(3):178-193.
    70. World Resources Institute (WRI), The Weight of Nations: Material Out flows from IndustrialEconomis, Washington DC: World Resources Institute,2000.
    71. F.Schmidt-Bleek, The Factor10/MIPS-Concept: Bridging Ecological, Economic, and SocialDimensions with Sustainability Indicators,2000.
    72.常瑜.世界区域物质流分析及预测[D].长春:吉林大学,2006.
    73.陶在朴.生态包袱与生态足迹[M].北京:经济科学出版社,2003.
    74.陈效逑,乔立佳.中国经济环境系统的物质流分析[J].自然资源学报,2000,15(1):17-23.
    75.陈效述,赵婷婷,郭玉泉,等.中国经济系统的物质输入与输出分析[J].北京大学学报(自然科学版),2003,39(4):535-547.
    76.徐明,张天柱.中国经济系统的物质投入分析[J].中国环境科学,2005,25(3):324-328.
    77.王青,顾晓薇,丁一.本国环境载荷与环境效率研究[J].东北大学学报,2007,28(4):589-591.
    78.徐一剑,张天柱,石磊.贵阳市物质流分析[J].清华大学学报(自然科学版),2004,44(12):28-31.
    79.刘伟,鞠美庭,于敬磊,等.天津市经济-环境系统的物质流分析[J].城市环境与城市生态,2006,19(6):8-11.
    80.王军,周燕,宋志文.区域物质流分析实践[J].环境与可持续发展,2006,6:44-46.
    81.张音波,陈新庚,彭晓春,等.广东省环境经济系统的物质流分析[J].环境科学学报,2008,28(5):1021-1031.
    82.徐明,贾小平,石垒,等.辽宁省经济系统物质代谢的核算及分析[J].资源科学,2006,28(5):127-133.
    83.黄和平,毕军,李祥妹.区域生态经济系统的物质输入与输出分析——以常州市武进区为例[J].生态学报,2006,26(8):2578-2586.
    84.陈效逑,郭玉泉.北京地区水泥行业的物能代谢与环境影响分析[J].生态包袱与生态足迹海峡两岸学术交流论文集,2004.
    85. Schmidt-Bleak, F. The factor10/MIPS-Concept, Bridging Ecological, Economic, and SocialDimensions with Sustainability Indicators. http://www.Factor10-institute.org/,2000.
    86. Konijn P, Boer S D, Dalen J V. Input-output analysis of material flows with application to iron,steel and zinc[J]. Structural Change and Eeonomic Dynamics.1997,8(2):129-153.
    87. Geyer R, Davis J, Ley J, et al. Time-dependent material flow analysis of iron and steel in theUK: Part2. Serap generation and recycling. Resourees, Conservation and Recycling, GraedelT E, Beers D V, Bertram M, et al. Multilevel Cycle of Anthropogenic Copper[J].Environmental Seience&Teehnology.2004,38(4):1242-1252.
    88. TnnmermansV, Van H M. Practical experiences on applying substance flow analysis inFlanders: Bookkeeping and static modeling of chromium. Joumal of Cleaner Production.2004,12(8-10):935-945.
    89. Tukker A. Uncertainty in life cycle impact assessment of toxic releases: Practical experiencesArguments for a reductionalistic approach? Impact assessment of toxic releases in a substanceflow analysis for PVC in Sweden. International Journal of Life Cycle Assessment.1998,3(5):246-258.
    90.徐明,张天柱.中国经济系统中化石燃料的物质流分析[J].清华大学学报(自然科学版),2004,44(9):1166-1170.
    91. Pedersen O G. Physical Input-Output Tables for Denmark: Products and Materials1990, AirEmissions1990-1992[R]. Kopenhagen: Statistics Denmark,1999.
    92. Dietzenbacher E. Waste treatment in physical input-output analysis[J]. Ecological Economics,2005,55(1):11-23.
    93. Statistisches Bundesamt. A Physical Input-Output Table for Germany1995[R]. Wiesbaden:Statistisches Bundesamt,2001.
    94.邢芳芳,欧阳志云,杨建新等.经济-环境系统的物质流分析[J].生态学杂志,26(2):261-268.
    95.陈超,胡聃,文秋霞,等.中国水泥生产的物质消耗和环境排放分析[J].安徽农业科学,2007,35(28):896-898.
    96.王青,丁一,顾晓薇.中国铁矿资源开发中的生态包袱[J].资源科学,2005,27(1):2-7.
    97.刘征,胡山鹰,陈定江.我国磷资源产业物质流分析[J].现代化工,2005,25(6):1-7.
    98.刘毅,陈吉宁.中国磷循环系统的物质流分析[J].中国环境科学,2006,2:238-242.
    99. Statistisches Bundesamt. A physical input-output table for Germany1995[R]. Wiesbaden:Statistisches Bundesamt,2001.
    100. PEDERSEN O G. Physical input-output tables for Denmark: products and materials1990, airemissions1990-1992[R]. Kopenhagen: Statistics Denmark,1990.
    101.徐一剑,张天柱.基于三维物质投入产出表的区域物质流分析模型[J].清华大学学报(自然科学版),2007,47(3):356-360.
    102.刘滨,向辉,王苏亮.以物质流分析方法为基础核算我国循环经济主要指标[J].中国人口.资源与环境,2006,04:65-68.
    103. EUROSTAT. Economy-wide material flow accounts and derived indicators: AMethodological guide. Statistical Office of the European Union, Luxembourg.2001.
    104.陆钟武.物质流分析的跟踪观察法[J].中国工程科学,2006,01:18-25.
    105.郭颖,胡山鹰,陈定江.元素流分析在生态工业规划中的应用[J].过程工程学报,2008,02:321-326.
    106.蔡九菊,王建军,张琦,等.钢铁企业物质流、能量流及其对CO2排放的影响[J].环境科学研究,2008,21(1):196-200.
    107.邱定藩.资源循环利用对有色金属工业发展的影响[J].矿冶,2003,12(4):34-36.
    108. Sastre J., Sahuquillo A., Vidal M., Rauret G., Determination of Cd, Cu, Pb and Zn inenvironmental samples: microwave-assisted total digestion versus aqua regia and nitric acidextraction[J]. Anal. Chim. Acta,2002,462:59.
    109. Tuzen M.,Sari H., Soylak M., Microwave andwet digestion procedures for atomic absorptionspectrometric determination of trace metals contents of sediment samples[J]. Anal. Lett.2004,37:1925-1936.
    110. Pantuzzo F.L., Silva J., Ciminelli V.S.T., A fast and accurate microwave assisted digestionmethod for arsenic determination in complex residues by flame atomic absorptionspectrometry[J]. Hazad. Mater.2009,168:1638.
    111. Keivan Nemati, Nor Kartini Abu Bakar, Mhd Radzi Bin Abas, Elham Sobhanzadeh, Kah HinLow, Comparative study on open system digestion and microwave assisted digestion methodsfor metal determination in shrimp sludge compost[J]. Journal of Hazardous Materials2010,182:453-459.
    112. Martina Vitkova, Vojtech Ettler, Martin Mihaljevic, Ondrej Sebek, Effect of samplepreparation on contaminant leaching from copper smelting slag[J]. Journal of HazardousMaterials.2011,197:417-423.
    113. Kelebek, S., Yoruk, S., Davis, B., Characterization of basic oxygen furnace dust and zincremoval by acid leaching[J]. Miner Eng.2004,17:285-291.
    114. Bakhtiari, F., Atashi, H., Zivdar, M., Seyedbagheri, S., Fazaelipoor, M.H., Bioleachingkinetics of copper from copper smelters dust[J]. J Ind Eng Chem.2011,17:29-35.
    115. Dutra, A.J.B., Paiva, P.R.P., Tavares,L.M., Alkaline leaching of zinc from electric arc furnacesteel dust[J]. Miner Eng.2006,19:478-485.
    116. Havlik, T., Turzakova, M., Stopic, S., Friedrich, B., Atmospheric leaching of EAF dust withdiluted sulphuric acid[J]. Hydrometall.2005,77:41-50.
    117. Strobos, J.G., Friend, J.F.C., Zinc recovery from baghouse dust generated at ferrochromefoundries[J]. Hydrometall.2004,74:165-171.
    118. Bakhtiari, F., Atashi, H., Zivdar, M., Seyedbagheri, S., Fazaelipoor, M.H., Bioleachingkinetics of copper from copper smelters dust[J]. J Ind Eng Chem.2011,17:29-35.
    119. Gitari, W.M., Fatoba, O.O., Petrik, L.F., Vadapalli, V.R.K., Leaching characteristics ofselected South African fly ashes: effect of pH on the release of major and trace species[J]. JEnviron Sci Heal A, Toxic/Hazardous Substances and Environmental Engineering.2009,44:206-220.
    120. Massinaie, M., Oliazadeh, M., Seyed Bagheri, A., Biological copper extraction from meltingfurnaces dust of Sarcheshmeh copper mine[J]. Int J Miner Process.2006,81:58-62.
    121. Randall, P.M., Arsenic encapsulation using Portland cement with ferrous sulfate/lime andTerra-Bond TM technologies-Microcharacterization and leaching studies[J]. Sci Total Environ.2012,420:300-312.
    122. Barcan, V., Leaching of nicle and copper from soil contaminated by metallurgical dust[J].Environ Int.2002,28:63-68.
    123. Jankowski, J., Ward, C.R., French, D., Groves, S., Mobility of trace elements from selectedAustralian fly ashes and its potential impact on aquatic ecosystems[J]. Fuel.2006,85:243-256.
    124. Saikia, N., Kato, S., Kojima, T., Behavior of B, Cr, Se, As, Pb, Cd, and Mo present in wasteleachates generated from combustion residues during the formation of ettringite[J]. EnvironToxicol Chem.2006,25:1710-1719.
    125.朱方志.铅锌冶炼废渣重金属污染特性及电动去除技术研究[D].重庆:重庆大学,2010:30.
    126. Sharma, V., Narayanan, A., Rengachari, T.etc. A low-cost, portable generic biotoxicity assayfor environmental monitoring applications[J]. Biosensors and Bioelectronics.2005,20(11):2218-2227.
    127.李鑫.济南市主要土壤类型在不同功能区的重金属形态分析[D].济南:山东大学,2008:53.
    128. Chou, J.-d., Wey, M.-Y., Liang, H.-H. etc. Biotoxicity evaluation of fly ash and bottom ashfrom different municipal solid waste incinerators[J]. Journal of Hazardous Materials.2009,68(1):197-202.
    129. Cetin, B., Aydilek, A.H., Li, L., Experimental and numerical analysis of metal leaching fromfly ash-amended highway bases[J]. Waste Manage.2012,32(5):965-978.
    130. Chavez, M.L., dePablo, L., Garcia T.A., Adsorption of Ba2+by Ca-exchange clinoplite tuffand montmorollinite clay[J]. J Hazard Mater.2010,175:216-223.
    131. Quina, M.J., Bordado, J.C.M., Quinto-Ferreira R.M., The influence of pH on the leachingbehavior of inorganic components from municipal solid waste APC residues[J]. WasteManage.2010,29:2483-2493.
    132.刘阳生,钟丽锦,聂永丰,等.城市生活垃圾焚烧炉各工艺参数对二恶英生成的影响[J].现代化工,2001,21(10):44-47.
    133.张明亮,岳兴玲,杨淑英.煤矸石重金属释放活性及其污染土壤的生态风险评价[J].水土保持学报,2011,25(4):249-252
    134.范文宏,张博,张融,等.锦州湾沉积物中重金属形态特征及其潜在生态风险[J].海洋环境科学,2008,27(1):54-58.
    135.王莹,董霁红.徐州矿区充填复垦地重金属污染的潜在生态风险评价[J].煤炭学报,2009,34(5):650-655.
    136.刘敬东,齐峰.离子选择性电极测定岩石矿物中的氯[J].化学分析计量,2000,9(3):22-23.
    137. Hasan B, Hermann M. Factors Determing the Element Behavior in Municipal Solid WasteIncinerators[J]. Field Studies, Environ Sci.Technol.2000,34:2501-2506.
    138.李建新,严建华,池涌,等.异重流化床垃圾与煤混烧重金属的排放特性[J].中国电机工程学报.2003,23(12):179-183.
    139.孙路石,陆继东,李敏,等.垃圾焚烧中Cd, Pb, Zn挥发行为的研究[J].中国电机工程学报.2004,24(8):157-161.
    140. Wang K S., Chiang K Y., TSAI C C., et al. The distribution of the heavy metals Cd, Cu, Cr,and Zn in a simulated multimetal incineration system[J]. Environment International,2001,26:257-263.
    141. Chiang K Y, Wang K S, Tsai C C, et al. Formation of heavy metal species duringPVC-containing simulated MSW incineration[J]. Environ. SCI. Health,2001, A36(5):833-844.
    142.张希忠.再生铜工艺二恶英治理技术初探,资源再生,2010:15-18.
    143. Coutiho M, Pereira M, Rodrigues R, et al. Impact of media waste incineration in theatmospheric PCDD/F level of Port, Portugal[J]. Science of the Total Environment,2006,362(1-3):157-165.
    144. Wey M Y, Liu K Y, Yu W J, et al. Influences of chlorine content on emission of HCl andorganic compounds in waste incineration using fluidized beds[J]. Waste Management,2008,28(2):406-415.
    145. Vassilev S Y Braekman-Danheux C, Lauren Ph, et al. Capture and inertization of some traceelements during combustion of refuse-derived char from municipal solid waste[J]. Fuel,1999,78(10):1131-1145.
    146. Steiner A, Beerkens R G C. Phase separation during melting of fly ashes[J]. Klei, Glas enKeramiek,2001,22(3):6-9.
    147. Kjell E. Haugsten, Bengt Gustavson. Environmental properties of vitrified fly ash fromhazardous and municipal waste incineration[J]. Waste Management,2000,20(2):167-176.
    148. Hasan B, Madeleine L. Factors determing the element behavior in municipal solid wasteincinerators,2. Laboratory Experiments[J]. Environ Sci Technol,2000,34(12):2507-2510.
    149. Wang K.S., Chiang K.Y., Lin S.M., et al. Effects of chlorides on emissions of toxiccompounds in waste incineration: Study on partitioning characteristics of heavy metal[J].Chemosphere,1999,38(8):1833-1849.
    150.张东力, LF泡沫精炼渣研究及钢包精炼炉数理模拟[D].沈阳:东北大学,2003.
    151. Aspen Technology. Aspen Plus Unit Operation Models USA: Aspen Technology,2003.
    152.徐越,吴一宁,危师让.基于ASPEN PLUS平台的干煤粉加压气流床气化性能模拟[J].西安交通大学学报,2003,37(7):692-696.
    153.张斌,李政,江宁,等.基于Aspen Plus建立喷流床煤气化炉模型[J].化工学报,2003,54(8):1179-1183.
    154.霍小华,基于Aspen Plus模拟的污泥自热干燥焚烧发电工艺[J].电力学报,2011,26(5):428-431.
    155.赵海坤,张泳建,孟凡会,等.基于Aspen Plus软件的煤矸石发电系统模拟计算[J].煤化工,2012(4):17-19,23.
    156. Grieco E, Poggio A. Simulation of the influence of flue gas cleaning system on the energeticefficiency of a waste-to-energy plant[J]. Applied Energy,2009,86(9):1517-1523.
    157. Jannelli E, Minutillo M. Simulation of the flue gas cleaning system of an RDF incinerationpower plant[J]. Waste Management,2007,27(5):684-690.
    158.李薇. ASPEN PLUS软件在模拟固体系统方面的应用[J].计算机与应用化学,1987,4(3):217-220.
    159.王伟,商玉坤,武建军.基于Aspen Plus的褐煤热解过程模拟[J].化学工业与工程,2011,28(3)49-53,73.
    160.徐松,王逊,田文栋.燃煤的垃圾焚烧飞灰熔融和余热发电系统研究[J].煤炭转化,2008,31(2):78-82.
    161.刘鹏远.城市废弃物循环流化床气化-焚烧技术研究[D].北京:中国科学院,2007.
    162.马攀.危险废物焚烧系统的数值模拟与试验研究[D].杭州:浙江大学,2012.
    163.熊杰明,杨索和. Aspen Plus实例教程[M].化学工业出版社,北京,2013.
    164.孙兰义.化工流程模拟实训——Aspen Plus教程[M].化学工业出版社,北京,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700