用户名: 密码: 验证码:
NK细胞及其新型分子KCTD9在重型病毒性肝炎中的作用及免疫学机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[研究背景及目的]
     我国是HBV感染的高发地区,1-59岁人群携带率约7.18%,由HBV感染导致的重型肝炎或肝功能衰竭仍然是我国临床常见急危重疾病。我国学者将肝功能衰竭的临床分型定为:急性肝衰竭(Acute Liver Failure or Fulminant Hepatits, FHF)、亚急性肝衰竭(Subacute Liver Failure, SALF)、慢加急性肝衰竭(Acute-on-Chronic Liver Failure, ACLF)和慢性肝衰竭(Chronic Liver Failure, CLF),其病情凶险,特别是急性肝衰竭死亡率高达70%-90%,临床上缺乏特异、有效的治疗手段和干预靶点,除非紧急实施肝移植(国外以肝移植为主要治疗手段,肝移植后5年存活率约为50%~60%),大部分患者预后不良,并发症多。
     病毒性重型肝炎的发病机制十分复杂,一般认为是病毒和宿主的相互作用的结果,现今较为公认的是“两次损伤学说”,即由病毒直接或间接(免疫反应)所致的原发性损伤和内毒素—细胞因子轴—肝损伤学说为核心的继发性损伤,加之患者肝脏储备功能较差更易导致乙型肝炎重症化。在国外,重型肝炎多由药物性因素引起,而在我国则多由HBV感染所致。由于HBV病毒是一种非溶细胞性嗜肝病毒,感染后造成肝损伤的主要机制是机体的免疫系统主动清除被感染的肝细胞,因而对HBV感染后机体免疫功能的研究对于阐述乙型肝炎的发病和进展等方面的机制具有针对性的作用。
     在本实验室的前期工作中,我们利用人全基因组芯片技术(8600个探针),分析了重型乙型肝炎患者和轻中度慢性乙型肝炎患者外周血淋巴细胞(PBMC)的基因差异表达谱,筛选出了在重型肝炎中高表达的263种基因,涉及多个类别。KCTD9 (Potassium Channel Tetramerisation Domain Containning 9)和KCNJ15 (Potassium Inwardly-rectifying Channel, Subfamily J, Member 15)是其中的两种与离子通道相关的基因,在重型肝炎中这两种基因表达分别上调6倍和7倍,通过后续的扩大样本的验证实验证实了该结果的可靠性。进一步从基因和蛋白水平,我们检测了265例临床不同类型HBV感染患者包括轻中度和重型乙型肝炎患者、以及健康对照人群的肝组织和PBMC中KCTD9分子的表达水平,发现其仅在重型乙型肝炎患者有显著高表达,提示其与病毒性乙型肝炎疾病严重程度的相关性。为深入探讨KCTD9分子在重型乙型肝炎发生发展中的作用及可能的机制,我们利用本实验室建立的MHV-3诱导的Balb/cJ小鼠暴发型肝炎模型开展了研究,发现KCTD9分子在MHV-3病毒感染后的小鼠肝组织和肝脏淋巴细胞尤其是NK细胞中高度表达,与前期人类重型乙型肝炎的研究结果相似,提示可利用该模型深入剖析KCTD9参与HBV病毒诱导的重型肝炎肝细胞损伤的发生发展机制。
     我们的前期工作首次表明,在病毒诱导的急性肝衰竭中肝脏NK细胞通过Fas/FasL和NKG2D/NKG2DL途径增强对肝细胞的杀伤,本研究的主要目标是进一步阐明肝脏NK细胞在急性肝衰竭中的作用及作用机制,研究NK细胞高表达KCTD9分子在肝细胞损伤和重型肝炎发生发展过程的作用及作用机制。具体研究内容如下:
     一、NK细胞在重型病毒性肝炎中的作用及其免疫学机制研究
     1、在HBV-ACLF患者肝组织中检测NK细胞的分布,同时在外周血NK细胞中检测FasL、NKP30和NKP46的表达,探讨NK细胞参与重型乙型肝炎急性肝损伤的机制;
     2、在MHV-3诱导的Balb/cJ小鼠暴发型肝炎模型中,体内耗竭NK细胞,观察干预效果,探讨NK细胞参与急性肝损伤的作用。
     二、NK细胞新型分子KCTD9在重型乙型肝炎中的作用及其免疫学机制研究
     1、以重型乙型肝炎患者为对象的研究
     (1)收集重型乙型肝炎患者和轻中度慢性乙型肝炎患者外周血PBMC,对表达KCTD9的淋巴细胞亚群进行定位。
     (2)分析表达KCTD9分子的外周血NK细胞与重型乙型肝炎肝损伤严重程度的相关性。
     2、利用人NK92细胞系进行KCTD9分子的体外功能研究。
     3、以MHV-3诱导的Balb/cJ小鼠暴发型肝炎模型为对象的研究。
     (1)构建针对小鼠KCTD9的shRNA干扰质粒,非相关干扰质粒以及小鼠KCTD9的全长表达质粒,观察在小鼠暴发型肝炎模型中干扰或过表达KCTD9对于疾病病程的影响。
     (2)在小鼠暴发型肝炎模型中观察干扰或过表达KCTD9对于淋巴细胞功能的影响,研究KCTD9参与暴发型肝炎NK细胞介导的急性肝损伤的作用机制。
     [研究方法]
     1、利用免疫组织化学技术,检测HBV-ACLF患者和轻中度CHB患者肝组织中NK细胞的表达频数;利用流式细胞术分析HBV-ACLF患者和轻中度CHB患者外周NK细胞FasL、NKP30和NKP46的表达情况。利用尾静脉注射抗ASGM-1抗体耗竭NK细胞,观察MHV-3诱导的Balb/cJ小鼠暴发型肝炎模型的生存率;
     2、利用流式细胞术检测KCTD9分子在重型乙型肝炎患者和轻中度慢性乙型肝炎患者PBMC中NK细胞、CD4+T细胞和CD8+T细胞的表达水平,并收集病例资料,统计分析表达KCTD9的NK细胞比例与肝损伤严重程度的相关性。同时利用免疫组织化学技术检测重型乙型肝炎患者肝组织连续切片中NK细胞表达KCTD9的情况。
     3、利用NK92细胞系,将人KCTD9表达质粒电转染入该细胞,流式细胞术观察转染24小时后NK92细胞KCTD9蛋白和活化分子CD69的表达;将转染后的NK92细胞与HepG2.2.15细胞按照梯度效靶比共培养,通过测定ALT释放量,计算NK92细胞的杀伤效率;ELISA法检测转染后NK92细胞分泌IFN-γ和TNF-α的情况;利用流式细胞术筛选转染后NK92细胞的活化性/抑制性受体表达谱。
     4、构建针对小鼠KCTD9的shRNA干扰质粒和全长表达质粒,利用尾静脉高压注射技术,将KCTD9干扰质粒或表达质粒注射入MHV-3诱导的暴发型肝炎模型小鼠体内,从小鼠的生存情况、血清转氨酶水平、肝脏组织学改变等方面研究KCTD9分子在暴发型肝炎疾病病程中的作用。流式细胞术检测shRNA干扰对于本模型小鼠肝脏NK细胞活化和KCTD9表达的影响,利用磁珠分选技术将肝脏NK细胞分离纯化,体外检测其针对MHV-3感染的肝细胞的杀伤活性。流式细胞术检测shRNA干扰后肝脏NK细胞分泌的细胞因子(IFN-γ和TNF-α)水平。
     [实验结果]
     1、NK细胞在病毒诱导的急性肝衰竭肝损伤中发挥重要作用。免疫组织化学检测结果显示,HBV-ACLF患者肝组织中NK细胞的表达显著高于轻中度CHB患者;FasL在HBV-ACLF患者肝组织中的表达显著高于轻中度CHB患者;表达NKP30、NKP46和FasL的外周NK细胞比例以及MFI水平均高于轻中度CHB患者。在MHV-3诱导的Balb/cJ小鼠暴发型肝炎模型中,耗竭NK细胞可以使该模型动物生存率由0显著上升到22.2%。
     2、KCTD9在HBV-ACLF患者外周血淋巴细胞的表达增高,以NK细胞最为显著。HBV-ACLF患者(15例)外周血中,表达KCTD9分子的NK细胞和CD4+T细胞的比例显著高于轻中度CHB患者(21例),而CD8+T细胞的比例无显著差义;HBV-ACLF患者外周NK、CD4~+T和CD8+T细胞表达KCTD9的平均荧光强度(MFI)水平均显著高于轻中度CHB患者。将15例HBV-ACLF患者表达KCTD9的外周NK细胞比例与患者临床指标进行相关性分析发现,其与ALT和AST水平高度正相关,而与Tbil、Dbil、ALB、PTA、HBV DNA以及年龄无相关性,提示KCTD9可能参与了NK细胞介导的肝细胞损伤及重型肝炎的发生。
     3、KCTD9通过下调NKG2A表达在体外促进NK92细胞活化。利用人KCTD9表达质粒电转染NK92细胞系24小时后,NK92细胞表达KCTD9分子和活化标志CD69分子水平均显著增加;其在体外针对HepG2.2.15细胞的杀伤功能显著增强:IFN-γ分泌增加;对系列NK细胞活化性/抑制性受体检测后发现NKG2A的表达显著下调。
     4、针对KCTD9的治疗性shRNA干扰延缓MHV-3诱导的暴发型肝炎疾病进展。成功构建小鼠KCTD9表达质粒、针对小鼠KCTD9的shRNA干扰质粒和非相关对照干扰质粒。利用构建的干扰质粒尾静脉高压注射MHV-3感染的Balb/cJ小鼠,可以使小鼠肝脏KCTD9的表达显著下调;小鼠的生存率由0上升到22.2%:血清转氨酶水平显著下降;小鼠肝组织的病理情况得到改善。KCTD9表达质粒注射组小鼠疾病病情加重。
     5、针对KCTD9的治疗性shRNA干扰降低肝脏NK细胞活化和杀伤功能。与非相关对照组相比,MHV-3感染后72小时shRNA干扰组肝脏NK细胞表达KCTD9和CD69分子均显著下降;分离纯化的肝脏NK细胞对感染后48小时肝细胞的杀伤效率显著降低;肝脏NK细胞分泌IFN-γ和TNF-α显著下降。KCTD9表达质粒注射组小鼠肝脏NK细胞活化和各项功能均显著增强。
     [结论]
     1、本研究在人类HBV-ACLF疾病及小鼠暴发型肝炎模型中证实了NK细胞在肝脏组织中大量存在,活化的肝脏NK细胞可通过增强表达的FasL发挥杀伤功能,进而在病毒诱导的急性肝损伤中发挥重要作用。
     2、体外研究阐明了KCTD9分子通过降低NKG2A受体的表达促进NK细胞活化,从而诱导之后的杀伤及细胞因子分泌功能。
     3、本研究阐明了KCTD9通过活化NK细胞从而参与病毒诱导的急性肝细胞损伤及重型肝炎发生发展过程中。
     4、小鼠暴发型肝炎模型中,干预KCTD9的表达可以通过降低肝脏NK细胞的活化而有效延缓病情进展,提高生存率,为重型肝炎的诊断和治疗提供了新的分子靶点和理论依据。
[BACKGROUND & OBJECTIVE]
     The prevalence of HBV infection is high in China, where HBV carriers account about 7.18%in the group of age 1-59 by 2010. HBV induced severe hepatitis or hepatic failure is still a common disease with acute and severe manifestation. According to the consensus from Chinese Association for the Study of Liver and Infectious Disease, the hepatic failure can be classified as Acute Liver Failure or Fulminant Hepatitis (ALF), Subacute Liver Failure (SALF), Acute-on-Chronic Liver Failure (ACLF), and Chronic Liver Failure (CLF). Virus induced hepatic failure, especially acute liver failure which can lead to a 70-90% death rate, usually presents a emergent clinical process and results in multiple complications. Due to lack of specific and effective treatment and interference targets, the clinical outcome of patients with liver failure is poor unless emergent liver transplantation is applied
     The pathogenesis of virus induced hepatic failure is complicated and not well defined. However, it is generally accepted as the result of complex interaction between the virus and the host. The virus directly or indirectly induces activation of immune system which results in primary liver injury, subsequently down stream liver injury is further led by endotoxin-cytokines axis. Patients with long term of chronic liver disease can easily undergo severe hepatitis upon the reactivation of virus or host immune system. As we know, hepatic failure is mainly caused by drug agents in Western, while mainly by HBV infection in China. Since HBV virus is a kind of non-cytopathic virus and does not cause damage of hepatocytes directly, the primary mechanism of hepatocytes injury after HBV infection lies on clearance of virus infected hepatocytes by active action of immune system. So, exploration of the immunological role and mechanism in virus infection may be specific in elaboration of pathogenesis of hepatitis B virus induced hepatic failure.
     In our previous work, human whole genomic gene chip was adopted to analyze the disparate gene expression in PBMC from patients with HBV-ACLF or mild chronic hepatitis B. Among the 8600 cDNA probes, widely-spread 263 genes were substantially up-regulated in HBV-ACLF group. KCTD9 and KCNJ15, two kinds of ion channel genes, were most prominent identified, the expression of which were up-regulated 6 and 7 times in PBMCs of HBV-ACLF patients respectively when compared to mild/moderate CHB patients. And the following studies from amplified cases of different clinical types with HBV infection confirmed the reliability. Furthermore, we detected KCTD9 expression in liver tissue or PBMC from 265 patients with mild/moderate CHB or HBV-ACLF and 36 healthy controls in gene and protein levels. The results showed the expression of KCTD9 was prominently increased only in liver tissue and PBMCs from HBV-ACLF patients, which suggested a close relationship between KCTD9 expression and severity of hepatitis B. To explore the role and mechanism of KCTD9 in pathogenesis of HBV induced hepatic failure, similar study was performed in the MHV-3 induced fulminant hepatitis model in Balb/cJ mice. The result showed that KCTD9 highly expressed in the liver tissue and hepatic lymphocytes after MHV-3 infection especially the hepatic NK cells. The results in the animal model study were similar with that in human disease, which suggested the applicability of this animal model in further research with regards to the identification of the function and mechanism of KCTD9 involved in virus induced hepatocytes injury.
     Our previous work first elaborated the increased killing of hepatic NK cells by Fas/FasL and NKG2D/NKG2DL contributed to hepatocyte necrosis in virus induced liver failure. The aim of this study wass to further elaborate the role and mechanism of NK cells involved with acute hepatocyte injury in virus induced liver failure, as well as to investigate the function and pathogenesis of increased expression of KCTD9 on NK cells in the disease. The concrete contents were as the followings:
     Part 1 The role and immune mechanism of hepatic NK cells in virus induced liver failure.
     1. To detect distribution of NK cells in liver tissue and expression of FasL, NKP30 and NKP46 in peripheral NK cells from HBV-ACLF patients, and to discuss possible mechanism of acute liver injury that NK cells involved in HBV induced hepatic failure.
     2. To investigate the effect by depletion of NK cells in MHV-3 induced fulminant hepatitis mice and discuss the role of NK cells in the model.
     Part 2 The role and immune mechanism of novel KCTD9 in virus induced liver failure.
     1. The cellular localization and role of KCTD9 expression in patients with HBV-ACLF.
     (1) To locate the subpopulation of the peripheral lymphocytes with increased KCTD9 expression in patients with HBV-ACLF.
     (2) To analyze the correlation between the percentage of peripheral NK cell that expressed KCTD9 and severity of liver injury in patients with HBV-ACLF.
     2. The functional study of KCTD9 in a NK cell line (NK92 cell line).
     3. Th role and functional study of KCTD9 in a MHV-3 induced fulminant hepatitis model in Balb/cJ mice.
     (1) Construction of specific shRNA interference plasmid targeting KCTD9, irrelevant plasmid, and full length mouse KCTD9 expression plasmid, and verification of their interference effects on KCTD9 expression in vitro and vivo, and mice suvival, hepatic biochemistry and histopathologic improvement in MHV-3 infected Balb/cJ mice.
     (2) Investigation of KCTD9 expression in NK lymphocytes and its contribution to NK cell functional change in MHV-3 infected Balb/cJ mice.
     [METHODS]
     1. The frequencies of NK cells in the liver tissue of patients with HBV-ACLF or mild/moderate CHB were analyzed by Immunohistochemistry. The expression levels of FasL, NKP30 and NKP46 in peripheral NK cells were detected by FACS. Survival rate after depletion of NK cells by injection of anti-AsGMl through tail vein was observed in the mice model of FHF in MHV-3 infected Balb/cJ mice.
     2. The expression levels of KCTD9 in peripheral NK cells, CD4+T cells, and CD8+T cells from patients with HBV-ACLF or mild/moderate CHB were detected by FACS. The clinical information of these patients was documented and the correlation between the percentage of NK cells that expressed KCTD9 and severity of liver injury was analyzed in HBV-ACLF patients. Meanwhile, KCTD9 expression on hepatic NK cells in the consecutive section of liver tissue was observed by Immunohistochemistry.
     3. The human KCTD9 expression plasmid was transfected into NK92 cell line by electronic transfection in vitro, the expression level of KCTD9 protein and activation marker CD69 were detected by FACS at 24h after transfection. The transfected NK92 cells were co-cultured with HepG2.2.15 cells in gradients of effector/target ratio to determine cytotoxicity of NK92 cells by quantitative measurement of ALT release, whereas the secretion of IFN-γand TNF-αby NK92 cells was detected. The profiling of functional receptors of NK92 cells after transfection was also analyzed by FACS.
     4. The shRNA interference plasmid targeting mouse KCTD9 gene and KCTD9 full length expression plasmid were constructed and introduced into MHV-3 infected Balb/cJ mice respectively by hydrodynamic delivery through tail vein. The effect of KCTD9 on the process of the disease was elucidated by survival rate, serum ALT level, and change of liver histopathology. Meanwhile, the effects of shRNA interference on activation and KCTD9 expression of hepatic NK cells were also evaluated by FACS. Moreover, hepatic NK cells were isolated by microbeads after shRNA interference, and then the cytotoxicity to MHV-3 infected hepatocytes in vitro, production of IFN-γand TNF-αby intracellular staining were all analysed.
     [RESULTS]
     1. NK cells play a significant role in virus induced acute liver injury. By immunohistochemistry the frequency of NK cells in liver tissue of patients with HBV-ACLF was much higher than that in patients with mild/moderate CHB. The expression level of FasL in liver tissue, percentage and MFI of NKP30, NKP46 and FasL on peripheral NK cells from patients with HBV-ACLF were prominently higher than those in patients with mild/moderate CHB.In MHV-3 induced fulminant hepatitis model, depletion of NK cells led to a increase of mice survival from 0.00%to 22.2%.
     2. There was increased expression of KCTD9 in peripheral lymphocytes, especially in NK cells from patients with HBV-ACLF. The percentage of peripheral NK and CD4+T cells but not CD8+T cells with elevated KCTD9 expression in patients(15 in total) with HBV-ACLF were evidently higher than that in patients (21 in total) with mild hepatitis B. The mean fluorescence index (MFI) of KCTD9 in peripheral NK, CD4+T, and CD8+T cells were all significantly increased in patients with HBV-ACLF. There was a positive correlation between the percentage of peripheral NK cells with increased KCTD9 expression and patients ALT or AST level, but not correlation with TBIL, DBIL, ALB, PTA, HBV DNA level and age, suggesting KCTD9 expression may contribute to NK cell mediated liver injury in virus induced hepatic failure.
     3. KCTD9 promoted activation of NK92 cells in vitro by down-regulating NKG2A expression. A human KCTD9 full-length expression recombinant plasmid (pcDNA3.1-hKCTD9) was constructed and introduced into NK92 cells, significantly elevated KCTD9 protein and activation marker CD69 were observed at 24h after transfection. Meanwhile, enhanced cytotoxicity of NK92 cells to HepG2.2.15 and increased secretion of IFN-r were also observed. After a series analysis of the functional receptors on transfected NK92 cells, a decrease of NKG2A expression was found indicating the mechanisms for KCTD9 to promot NK cells cytocoxicity may be mediated by downregulated expression of an inhibitory molecule NKG2D.
     4. The therapeutic shRNA interference plasmid targeting KCTD9 ameliorated the progress of MHV-3 induced fulminant hepatitis. A full length mouse KCTD9 expression plasmid, a specific KCTD9 shRNA and an irrelevant shRNA interference plasmid were successfully constructed. Introduction of a specific KCTD9 shRNA interference plasmids by hydrodynamic delivery into MHV-3 infected Balb/cJ mice, decreased KCTD9 expression in liver was observed and the survival rate elevated from 0 to 22.2%. Moreover, an extraordinary declined ALT level and significant improvement of liver histopathology was also evidenced when compared with the mice without treatment or with control plasmid. In contrast, hydrodynamic delivery of KCTD9 expression plasmid into MHV-3 infected Balb/cJ mice significantly deteriated the disease course.
     5. The therapeutic shRNA interference plasmid targeting KCTD9 reduced activation and cytotoxicity of hepatic NK cells in MHV-3 incued fulminant hepatitis model. The KCTD9 and the activation marker CD69 in hepatic NK cells were notably down-regulated at 72 hours after delivery of a KCTD9 shRNA interference plasmid. Accordingly, the cytotoxicity of the hepatic NK cells from these mice to hepatocytes was decreased. These hepatic NK cells also displayed a decrease in IFN-y and TNF-a secreation in comparison with no treatment group or control plasmid treated mice. In contrast, an enhanced activation and cytotoxicity of hepatic NK cells was observed in mice when teil vein delivery of KCTD9 expression plasmid.
     [CONCLUSION]
     1. For the first time, this study explored prominently increased expression of NK cells in the liver tissue of HBV-ACLF patients and confirmed that activated hepatic NK cells contributed to hepatocytes necrosis by enhanced expression of FasL. This study also firstly elaborated the contribution of hepatic NK cells in virus induced FHF in a mice model.
     2. For the first time, this study discovered that the novel KCTD9 gene could promote the activation of NK92 cells in vitro via down-regulating the expression of its inhibotory molecule NKG2A.
     3. For the first time, this study discoved that KCTD9 gene plays an important role in the pathogenesis of acute hepatocyte injury and progress of virus induced hepatic failure by promoting activation of NK cells.
     4. For the first time, this study demonstrated a shRNA interference plasmid specific targeting KCTD9 gene inhibited NK cell activation and amelioated disease process in MHV-3 induced FHF, which in turn may shed light on the therapeutic stratitegies for disease control.
引文
1. Bertoletti A, FerrariC. Kinetics of the immune response during HBV and HCV infection. Hepatology,2003,38:4-13.
    2. Thimme R, Wieland S, Steiger C, Ghrayeb J, Reimann KA, Purcell RH, Chisad FV. CD8+T cells mediate Viral Clearance and disease pathogenesis during acute hepatitis B virus infection. Iournal Of Virology,2003,77:68-76.
    3. Chisari FV, Ferrari C. Hepatitis B virus immunopathogenesis. Annual Review Of Immunology.1995,13:29-60.
    4. Nelson DR. The Immunopathogenesis of hepatits C Virus infection. Clinics in Liver Disease.2001,5:931-953.
    5. Chang KM. Immunopathogenesis Of hepatitis C virus infection. Clinics in Liver Disease.2003; 7:89-105.
    6. Wagner M, Trauner M. Transcriptional regulation of hepatobilliary transport systems in health and disease:implications for a rational approach to the treatment of intrahepatic cholestasis. Annals of Hepatology 2005,4:77-99.
    7. Geier A, Dietrich CG, Voigt S, Ananthanarayanan M, Lammert F, Schmitz A, Trauner M, et al. Cytokine-dependent regulation of hepatic organic anion transporter gene transactivators in mouse liver. American Journal of Physiology Gastrointestinal & Liver Physiology 2005:289.
    8. Higuchi H, Bronk SF, Takikawa Y, Werneburg N, Takimotor, El-Deiry W, Gores GJ. The bile acid glycochenodeoxycholate induces trail-receptor2/DR5 expression and apoptosis. Journal of Biological Chemistry:2001; 276:38610-38618.
    9. Faubion WA, Guicciardi ME, Miyoshi H, Bronk SF, Robert PJ, Svingen PA, Kaufmann SH, et al. Toxic bile salts induce rodent hepatocyte appptosis via direct action of Fas. Journal of Clinical Investigation.1999; 103:137-145.
    10. Liu MF, Chan,CW,McGilvray,ID, et al.Fulminant viral hepatitis:molecular and cellular basis,arid clinical implications. Expert reviews in molecular medcine,2001, 1-18.
    11. Maini, M.K., C. Boni, C.K. Lee, J.R. Larrubia, S. Reignat, GS. Ogg, A.S. King, J. Herberg, R. Gilson, A. Alisa, et al.2000. The role of virus-specific CD8+cells in liver damage and viral control during persistent hepatitis B virus infection. J. Exp. Med.191:1269-1280.
    12. Kakimi, K., T.E. Lane, S. Wieland, V.C. Asensio, I.L. Campbell, F.V. Chisari, and L.G Guidotti.2001. Blocking chemokine responsive to y-2/interferon (IFN)-y inducible protein and monokine induced by IFN-y activity in vivo reduces the pathogenetic but not the antiviral po-tential of hepatitis B virus-specifi c cytotoxic T lymphocytes. J. Exp. Med.194:1755-1766.
    13. Sitia, G, M. Isogawa, M. Iannacone, I.L. Campbell, F.V. Chisari, and L.G Guidotti. 2004. MMPs are required for recruitment of antigen-nonspecifi c mononuclear cells into the liver by CTLs. J. Clin. Invest.113:1158-1167.
    14. Norris,S., C. Collins, D.GDoherty, F.Smith,GMcEntee,O.Traynor, N.Nolan, J. Hegarty, andC.O'Farrelly.1998. Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes. J. Hepatol.28:84-90.
    15. Claire Dunn, Maurizia Brunetto, Gary Reynolds, Theodoros Christophides, Patrick T. Kennedy, Pietro Lampertico, Abhishek Das, A. Ross Lopes, Persephone Borrow, Kevin Williams, Elizabeth Humphreys, Simon Aff ord, David H. Adams, Antonio Bertoletti, and Mala K. Mainil.2007. Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell-mediated liver damage. J. Exp. Med.204:667-680.
    16.邹勇,陈韬,王洪武,严伟明,罗小平,宁琴。肝脏自然杀伤细胞在小鼠暴发型肝炎中的作用机制。中华肝脏病杂志,2008,16(9)
    17. Maureen N. Ajuebor, Zenebech Wondimu, Cory M. Hogaboam, Tai Le, Amanda E.I. Proudfoot, and Mark G Swain.2007. CCR5 deficiency drives enhanced natural killer cell trafficking to and activation within the liver in murine T cell-mediated hepatitis. Am. J.Patho.170:1975-1988.
    18. Chen Q, Wei H, Sun R, Zhang J, Tian Z.Therapeutic RNA silencing of Cys-X3-Cys chemokine ligand 1 gene prevents mice from adenovirus vector-induced acute liver injury.2008. Hepatology.47(2):648-58.
    1. Liu M, Chan CW, McGilvray I, et al. Fulminant viral hepatitis:molecular and cellular basis, and clinical implications. Expert Rev Mol Med.,2001,28:1-19.
    2. 宁琴,杨东亮,罗小平,等.暴发型病毒性肝炎小鼠模型的研究及应用[J].中华肝脏病杂志,2002,10:224-226.
    3.慢性乙型肝炎抗病毒治疗专家委员会.慢性乙型肝炎抗病毒治疗专家共识[J].中华实验和临床感染病杂志,2010,4(1):82-91.
    4.李兰娟.肝衰竭诊疗指南[J].中华内科杂志,2006,(12)
    5. Custer B, Sullivan SD, Hazlet TK, et al. Global epidemiology of hepatitis B virus. J Clin Gastroenterol,2004,38:S158-S168.
    6. Liu Q, Liu Z, Wang T, et al. Characteristics of acute and sub-acute liver failure in China:nomination, classification and interval. J Gastroenterol Hepatol.22:2101-2106.
    7. Sarin S, Kumar A, Almeida J, et al. Acute-on-chronic liver failure:consensus recommendations of the Asian Pacific Association for the study of the liver (APASL). Hepatol Int,2009,3:269-282.
    8. Jung MC, Pape GR. Immunology of hepatitis B infection. Lancet Infect Dis,2002,2: 43-50.
    9. Hui CK, Lau GK. Immune system and hepatitis B virus infection. J Clin Virol,2005, 34Suppl1:S44-48.
    10. Scanlan MJ, Gordan JD, Williamson B, et al. antigens recognized by autologous antibody in patients with renal-cell carcinoma. Int J Cancer,1999,83(4):456-464.
    11. Zhou J, Ren K, Liu X,et al. A novel PDIPI_related protein, KCTD10, that interacts with proliferation cell nuclear antigen and DNA polymerase delta. Biothem Biophys Asta,2005,1729(3):200-203
    12. He H, Tan CK, Downey KM, et al. A tumor necrosis factor alpha-and interleukin 6-inducible protein that interacts with the small subunit of DNA polymerase delta and proliferating cell nuclear antigen. PNAS,2001,98(21):11979-11984.
    13. Di Marcotullio L, Ferretti E, De Smaele E, et al. REN(KCTD11) is a suppressor of Hedgehog signaling and is deleted in human medulloblastoma. PNAS,2004,101 (29): 10833-10838.
    14. Gallo R, Zazzeroni F, Alesse E, et al. REN:a novel,developmentally regulated gene that promotes neural cell differentiation. J Cell Biol,2002,158(4):731-740
    15. Ikemoto T, Park MK. Comparative analysis of the pituitary and ovarian GnRH systems in the leopard gecko:signaling crosstalk between multiple receptor subtypes in ovarian follicles. J Mol Endocrinol,2007,38:289-304
    16. Naylor TL, Greshock J, Wang Y, et al. High resolution genomic analysis of sporadic breast cancer using array-based comparative genomic hybridization. Breast Cancer Res. 2005,7(6):R1186-R1198.
    17. Paris PL, Hofer MD, ALBo G, et al. Genomic Profiling of Hormone-Naive Lymph Node Metastases in Patients with Prostate Cancer. Neoplasia.2006,8(12):1083-1089.
    18. Baron CA, Tepper CG, Liu SY, et al. Genomic and functional profiling of duplicated chromosome 15 cell lines reveal regulatory alterations in UBE3A-associated ubiquitin-proteasome pathway processes. Human Molecular Genetics.2006,15:853-869.
    1. Klingemann HG, et al. A cytotoxic NK-cell line (NK-92) for ex vivo purging of leukemia from blood. Biol. Blood Marrow Transplant.1996,2:68-75.
    2. Gong JH, et al. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells.1994, Leukemia 8:652-658.
    3. Tam YK, et al. Characterization of genetically altered, interleukin 2-independent natural killer cell lines suitable for adoptive cellular immunotherapy. Hum. Gene Ther. 1999,10:1359-1373,.
    4. Klingemann HG, Miyagawa B. Purging of malignant cells from blood after short ex vivo incubation with NK-92 cells. Blood.1996,87:4913-1914.
    5. Komatsu F, Kajiwara M. Relation of natural killer cell line NK-92-mediated cytolysis (NK-92-lysis) with the surface markers of major histocompatibility complex class I antigens, adhesion molecules, and Fas of target cells. Oncol. Res.1998,10:483-489.
    6. Yan Y, et al. Antileukemia activity of a natural killer cell line against human leukemias. Clin. Cancer Res.1998,4:2859-2868.
    7. Maki G, et al. Induction of sensitivity to NK-mediated cytotoxicity by TNF-alpha treatment:possible role of ICAM-3 andCD44. Leukemia.1998,12:1565-1572.
    8. Nagashima S, et al. Stable transduction of the interleukin-2 gene into human natural killer cell lines and their phenotypic and functional characterization in vitro and in vivo. Blood.1998,91:3850-3861.
    9. Tam YK, et al. Immunotherapy of malignant melanoma in a SCID mouse model using the highly cytotoxic natural killer cell line NK-92. J. Hematother.1999,8:281-290.
    10. Rykova EY, Laktionov PP, Vlassov VV Activation of spleen lymphocytes by plasmid DNA. Vaccine.1999 Mar 5;17(9-10):1193-200.
    11. Ai Yu YAO, Hai Yang TANG, Yun WANG, Inhibition of the activating signals in NK92 cells by recombinant GST-sHLA-Glct chain. Cell Research (2004) 14,155-160.
    12. Lu CC, Chen JK. Resveratrol enhances perforin expression and NK cell cytotoxicity through NKG2D-dependent pathways.J Cell Physiol.2010 May;223(2):343-51.
    1. Ando K, Moriyama T, Guidotti LG, et al. Mechanisms of class I restricted immunopathology. A transgenic mouse model of fulminant hepatitis. J Exp Med,1993, 178:1541-1554.
    2. Moriyama T, Guilhot S, Klopchin K, et al. Immunobiology and pathogenesis of hepatocellular injury in hepatitis B virus transgenic mice. Science,1990,248:361-364.
    3. Ding JW, Ning Q, Liu MF, et al. Fulminant hepatic failure in murine hepatitis virus strain 3 infection:tissue-specific expression of a novel fgl2 prothrombinase. J Virol, 1997,71:9223-9230.
    4. Ning Q, Brown D, Parodo J, et al. Ribavirin inhibits viral-induced macrophage production of TNF, IL-1, the procoagulant fgl2 prothrombinase and preserves Thl cytokine production but inhibits Th2 cytokine response. J Immunol,1998,160: 3487-3493.
    5. Zhu CL, Yan WM, Zhu F, et al. Fibrinogen-like protein 2 fibroleukin expression and its correlation with disease progression in murine hepatitis virus type 3-induced fulminant hepatitis and in patients with severe viral hepatitis B. World J Gastroenterol.2005 Nov 28;11(44):6936-40.
    6. Zhu CL, Sun Y, Luo XP, et al. Novel mfgl2 Antisense Plasmid Inhibits Murine fgl2 Expression and Ameliorates Murine Hepatitis Virus Type 3-Induced Fulminant Hepatitis in BALB/cJ Mice. Hum Gene Ther.17:589-600.
    7. Gao S, Wang M, Ye H. Dual interference of novel gene mfgl2 and mTNFRl ameliorates murine hepatitis virus type 3-induced fulminant hepatitis in BALB/cJ mice. Hum Gene Ther.2010 Mar 10. [Epub ahead of print]
    8. Levy GA, MacPhee PJ, Fung LS, et al. The effect of mouse heaptitis virus infection on the microcirculation of the liver. Hepatology,1983,3:964-973.
    9. Li C, Fung LS, Chung S, et al. Monoclonal antiprothrombinase (3D4.3) prevents mortality from murine hepatitis virus (MHV-3) infection. J Exp Med,1992,176(3): 689-697.
    10. Fingerote RJ, Abecassis M, Phillips MJ, et al. Loss of resistance to murine hepatitis virus strain 3 infection after treatment with corticosteroids is associated with induction of macrophage procoagulant activity. J Virol,1996,70(7):4275-4282.
    11. Zhang G, Budker V, Wolff JA. High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther,1999,10(10): 1735-1737.
    12. Pawlotsky J.M. Molecular diagnosis of viral hepatitis. Gastroenterology.2002,122, 1554-1568.
    13. Cheng VC, Lo CM, Lau GK. Current issues and treatment of fulminant hepatic failure including transplantation in Hong Kong and the Far East. Semin Liver Dis.2003,23, 239-250.
    14. Higuchi H, Gores GJ. Mechanisms of liver injury:an overview. Curr Mol Med.2003, 3,483-490.
    15. Nakamoto Y, Kaneko S. Mechanisms of viral hepatitis induced liver injury. Curr Mol Med 2003,3,537-544.
    16. Bass, BL. Double-Stranded RNA as a Template for Gene Silencing. Cell,2000,101, 235-238.
    17. Dave RS, Pomerantz RJ. RNA interference:on the road to an alternate therapeutic strategy! Rev Med Virol.2003,13,373-385.
    18. Stevenson M. Therapeutic potential of RNA interference. N Engl J Med.2004,351, 1772-1777.
    19. Higuchi H, Gores GJ. Mechanisms of liver injury:an overview. Curr Mol Med.2003, 3,483-490.
    20. Nakamoto Y, Kaneko S. Mechanisms of viral hepatitis induced liver injury. Curr Mol Med 2003,3,537-544.
    1. Bertoletti A, FerrariC. Kinetics of the immune response during HBV and HCV infection. Hepatology,2003,38:4-13.
    2. Thimme R, Wieland S, Steiger C, Ghrayeb J, Reimann KA, Purcell RH, Chisad FV. CD8+T cells mediate Viral Clearance and disease pathogenesis during acute hepatitis B virus infection. Iournal Of Virology,2003,77:68-76.
    3. Chisari FV, Ferrari C. Hepatitis B virus immunopathogenesis. Annual Review Of Immunology.1995,13:29-60.
    4. Nelson DR. The Immunopathogenesis of hepatits C Virus infection. Clinics in Liver Disease.2001,5:931-953.
    5. Chang KM. Immunopathogenesis Of hepatitis C virus infection. Clinics in Liver Disease.2003; 7:89-105.
    6. Wagner M, Trauner M. Transcriptional regulation of hepatobilliary transport systems in health and disease:implications for a rational approach to the treatment of intrahepatic cholestasis. Annals of Hepatology 2005,4:77-99.
    7. Geier A, Dietrich CG, Voigt S, Ananthanarayanan M, Lammert F, Schmitz A, Trauner M, et al. Cytokine-dependent regulation of hepatic organic anion transporter gene transactivators in mouse liver. American Journal of Physiology Gastrointestinal & Liver Physiology 2005:289.
    8. Higuchi H, Bronk SF, Takikawa Y, Werneburg N, Takimotor, El-Deiry W, Gores GJ. The bile acid glycochenodeoxycholate induces trail-receptor2/DR5 expression and apoptosis. Journal of Biological Chemistry:2001; 276:38610-38618.
    9. Faubion WA, Guicciardi ME, Miyoshi H, Bronk SF, Robert PJ, Svingen PA, Kaufmann SH, et al. Toxic bile salts induce rodent hepatocyte appptosis via direct action of Fas. Journal of Clinical Investigation.1999; 103:137-145.
    10.徐焕宾,龚燕萍,储以微,张进平,蒋正刚,熊思东.CXCL16在小鼠免疫性肝损伤中的作用和意义.中华肝脏病杂志,2005,13(4):282-285.
    11.潘红英.浙江医学.2000,22(11):702-704.
    12.张英剑,王萍,王湖荣,等.抗IL-18单克隆抗体对小鼠免疫性肝损伤的作用研究.胃肠病学和肝病学杂志,2005,14(1):50-52.
    13. Levy GA, Liu M, DingJ, et al. Molecular and functional analysisof the human prothrombinase gene (HFGL2) and its role in viral hepatitis. Am J Pathol,2000,156(4):1217-1225
    14. Kilgore NE, Ford MI, Margot CD, Jones DS, Reichardt P, Evavold BD. Defining the parameters necessary for T-cell recognition of ligands that vary in potency lmmunologic Research 2004; 29:29-40.
    15. Wang S, Chen L. T lymphocyte co-signaling pathways of the B7-CD28 family. Cellular & Molecular Immunology 2004d:37-42.
    16. Chandok MR, Farber DL. Signaling control of memory T cell generation and function. Seminars in Immunology 2004; 16:285-293.
    17. Rehermann B, Nascimbeni M. Immunology of hepatitis B Virus and hepatits C virus infection. Nature Reviews. Immunology.2005; 5:215-229.
    18.王洪,周吉军,夏杰,王宇明.慢性HBV感染患者抗原特异性CTL的肝损伤作用.广东医学,2006,27(5):671-673.
    19. Grakoui A, Shonkry NH, Woollard DJ, Han JH, Hanson HL, Ghrayeb J, Murthy KK, et al. HCV persistence and immune evasion in the absence of memory T cell help. Science 2003; 302:659-662.
    20. Khakoo SI, ThiO CL, Martin MP, Brooks CR, Gao X, Astemborski J, Cheng J, et al. HLA and NK cell inhibitory receptor genes in resolving hepatitls B virus infection. Science 2004; 305:872,874.
    21. Crotta S, Sdlla A, Wack A, D'Andrea A, Nuti S, D'OrO U, Mosca M, et al. Inhibition of natural killer cells through engagement Of CD81 by the major hepatitis C virus envelope protein. Journal of Experimental Medicine 2002; 195:35-41.
    22. Tseng CT, Klimpel GR. Binding Of the hepatitis C Virus envelope protein E2 to CD81 inhibits natural killer cell functions. Journal Of Experimental Medidne 2002; 195:43-49.
    23. O'Connor GM, Hart OM, Gardiner CM. Putting the natural killer cell in its place. Immunology 2006; 117:1-10.
    24. Orange JS, Ballas ZK. Natural killer cells in human health and disease. Clinical Immunology 2006; 118:1-10.
    25.陈悦,宁琴,王宝菊,等.重型乙型肝炎患者肝组织中人纤维介素基因的表达及意义.中华医学杂志,2003.83(6):446-450
    26.朱帆,宁琴,陈悦,等.重型乙型肝炎患者肝组织中人纤维介素基因的检测及其临床转归关系的探讨.中华肝脏病杂志,2004,7:385-388.
    27. Chuanlong Zhu, Yi Sun, Xiaoping Luo, et al.Novel mfgl2 anti-sense plasmid inhibits murine fgl2 expression and ameliorates murine hepatitis virus type 3-induced fulminant hepatitis in BALB/cJ mice. Human Gene Therapy,2006,17:589-600.
    28. Ning Q, Liu M, Kongkham P, Lai M M, Marsden P A, Tseng J, Pereira B Belyavskyi M, Leibowitz J, Phillips M J, Levy G. The nucleocapsid protein of murine hepatitis virus type 3 induces transcription of the novel fgl2 prothrombinase gene. J Biol Chem,1999,274(15):9930-9936.
    29. Ning Q, Lakatoo S, Liu M, Yang W, Wang Z, Phillips MJ, Levy G.Induction of prothrombinase fgl2 by the nucleocapsid proteinof virulent mouse hepatitis virus is dependent on host hepatic nuclear factor-4 alpha. J Biol Chem,2003,278(18) 15541 ~ 15549)
    30.韩梅芳,习东,罗小平.乙型肝炎病毒蛋白对纤维介素基因的激活作用.中国生物化学与分子生物学报,2006,22(1):49-54
    31. Ashton-Rickardt PG The granule pathway of programmed cell death. Critical Reviews in Immunology 2005; 25:161-182.
    32. Russell JH, Ley TJ. Lymphocyte-mediated cytotoxicity. Annual Review of Immunology 2002; 20:323-370.
    33. Kam CM, Hudig D, Powers JC. Granzymes (Lymphocyte serine proteases): characterization with natural and synthetic substrates and inhibitors. Biochimica et BiophysicaActa.2000; 1477:307,323.
    34. Beresford PJ, Zhang D, Oh DY, Fan Z, Greef EL, Russo ML, Jaju M, et al. Granzyme A activates an endoplasmic reticulum-associated caspase-independent nuclease to induce single-stranded DNA nicks. Journal of Biological Chemistry 2001; 276: 43285-43293.
    35. Pham CT, Ley TJ. Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proceedings of the National Academy of Sciences of the United States of America 1999; 96:8627-8632.
    36. Simon MM, Hausmann M, Tran T, Ebnet K, Tschopp J, ThaHla R, Mullbacher A. In vitro-and ex vivo-derived cytolytic leukocytes from granzyme A x B double knockout mice are defective in granule-mediated apoptosis but not lysis of target cells. Journal of Experimental Medicine 1997; 186:1781-1786.
    37. Johnson H, Scorrano L, Korsmeyer SJ, Ley TJ. Cell death induced by granzymeC. Blood 2003; 101:3093-3101.
    38. Kell JM, Waterhouse NJ, Cretney E, Browne KA, Ellis S, Trapani JA, Smyth MJ. Granzyme M mediates a novel form of perforin-dependent cell death. Journal of Biological Chemistry 2004; 279:22236-22242.
    39. Vermijlen D, Luo D, Froelich CJ, MedemaJP, Kummer JA, Willems E, Braet F, et al. Hepatic natural killer cells exclusively kill splenic/blood natural killer-resistant tumor cells by the perforin/granzyme pathway. Journal of Leukocyte Biology.2002; 72: 668-676.
    40. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell.2001; 104:487-501.
    41. Chen G, Goeddel DV. TNF-R1 signaling:a beautiful pathwa. Science.2002; 296: 1634-1635.
    42. Zender L, Hutker S, Mundt B, Waltemathe M, Klein C, Trautwein C, Malek NP, et al. NFkappaB-mediated upregulation of bcl-xl restrains TRAIL-mediated apoptosis in murine viral hepatitis. Hepatology,2005,41:280-288.
    43. Li S, Zhao Y, He X, Kim TH, Kuharsky DK, Rabinowch H, Chen J, et al. Relief of extrinsic pathway inhibition by the Bid-dependent mitochondrial release of Smac in Fas-mediated hepatocyte apoptosis. Journal of Biological Chemistry 2002; 277: 26912-26920.
    44. Bots M, Kolfschoten IG, Bres SA, Rademaker MT, de Roo GM, Kruse M, Franken KL, et al. SPI-CI and SPL6 cooperate in the protection from effector cell-mediated cytotoxicity. Blood 2005; 105:1153-1161.
    45. Bird PI. Regulation of pro-apoptotic leucocyte granule serine proteinases by intracellular serpins. Immunology & Cell Biology 1999; 77:47-57.
    46. Barrie MB, Stout HW, Abougergi MS, Miller BC, Thiele DL. Antiviral cytokines induce hepatic expression of the granzyme B inhibitors, proteinase inhibitor 9 and serine proteinase inhibitors 6. Journal of Immunology 2004; 172:6453-6459.
    47. Zheng SJ, Wang P, Tsabary G, Chen YH. Critical roles of TRAIL in hepatic cell death and hepatic inflammation. Journal of Clinical Investigation 2004; 113:58-64.
    48. Zhang HG, Xie J, Xu I, Yang P, Xu X, Sun S, Wang Y, et al. Hepatic DR5 induces apoptosis and limits adenovirus gene therapy product expression in the liver. Journal of Virology 2002; 76:5692-5700.
    49. Tay CH, Welsh RM. Distinct Organ-dependent mechanisms for the control of murine cytomegalovirus infection by natural killer cells. Journal of Virology 1997; 71:267-275.
    50. Abougergi MS, Gidner SJ, Spady DK, Miller BC, Thiele DL. Fas and TNFRl, but not cytolytic granule-dependent mechanisms, mediate clearance of murine liver adenovial infection. Hepatology 2005; 41:97-105.
    51. Chirmule N, Moscioni AD, Qian Y, Qian R, Chen Y, Wilson JM. Fas-Fas ligand interactions play a maior role in effector functions of cytotoxic T lymphocytes after adenovirus vector-mediated gene transfer. Human Gene Therapy 1999; 10:259-269.
    52. Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, et al. Lethal effect of the anti-Fas antibody in mice. Nature 1993; 364:806- 809.
    53. Chirmule N, Moffent J, Dhagat P, Tazelaar J, Wilson JM. Adenoviral vector-mediated gene therapy in the mouse lung:no role of Fas-Fas ligand interactions for elimination of transgene expression in bronchioepthelial cells. Human Gene Therapy 1999; 10: 2839-2846.
    54.游上游,张楚瑜,黄巍.NK细胞影响T细胞向腺病毒感染的小鼠肝脏聚集的研究.中华微生物学和免疫学杂志,2002,221(1):45-48.
    55.屠毅,张立煌.NKT细胞在病毒性肝炎中的作用.国外医学·流行病学传染病学分,2005,32(4):211-214.
    56. Mcllroy D, Theodorou I, Ratziu V, Vidaud D, pellet P, Debre P, Poynard T. Fas promoter polymorphisms correlate with activity grade in hepatitis C pathients. European Journal of Gastroenterology & Hepatology,2005,10:1081-1088.
    57. Dissono, Haouzi D, Desagher S, Loesch K, Hahne M, Kremer EJ, Jacquet C, et al. Impaired clearance of virus-infected hepatocytes intransgenic mice expressing the hepatitis C virus polyprotein. Gastroenterology 2004; 126:859-872.
    58. Hahn YS. Subversion of immune responses by hepatitis C virus:immunomodulatory strategies beyond evasion?. Current Opinion inmmunology 2003; 15:443-449.
    59. Lee SH, Kim YK, Kim CS, Seol SK, Kim J, Cho S, Song YL, et al. E2 of hepatitis C virus inhibits apoptosis. Journal of Immunology 2005; 175:8226-8235.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700