用户名: 密码: 验证码:
黑龙江省主要大豆抗源对胞囊线虫的抗病特性及线虫防治体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆起源于中国,我国种植大豆已有5000年历史。我国大豆栽培区域概括为北方春大豆区,黄淮海春夏大豆区和南方多熟制大豆区。大豆胞囊线虫(Heterodera glycinesIchinohe,Soybean Cyst Nematode,简称SCN)病害是世界大豆生产上的重要病害。1899年俄国科学家雅切夫斯基在我国东北首次发现了大豆根线虫(即大豆胞囊线虫)。直到1915年日本首次公开报道了该病害,而后朝鲜(1936年)、美国(1954年)、埃及(1968年)、原苏联(1978年)、哥伦比亚(1983年)、印度尼西亚(1984年)、加拿大、巴西、阿根廷等国家相继报道该线虫的发生和危害。在我国,SCN主要分布于东北和黄淮海2个大豆主产区;东北大豆主产区的黑龙江省、吉林省、辽宁省、内蒙古自治区及黄淮海大豆主产区的山东、河北、山西、安徽、河南、北京等省市。尤其东北地区多年连作大豆的干旱、盐碱地发生严重,黑龙江省是我国北方春大豆重要产区,大豆胞囊线虫病是大豆生产上的主要病害之一。由于大豆连作面积扩大和时间的延长,大豆胞囊线虫病在黑龙江省有蔓延趋势。目前黑龙江省SCN发生面积达66.7万hm~2以上,是仅次于大豆花叶病毒病的第二大病害。大豆受其危害后,轻者减产20%-30%,严重的减产达到70%-80%,并且每年都有大面积地块绝产。
     目前选育抗病品种是最广泛应用的防治措施。本研究立足于提高黑龙江省大豆产量、降低大豆胞囊线虫对黑龙江省大豆生产带来的危害,在黑龙江省大豆胞囊线虫生理小种分布;抗病基因对大豆胞囊线虫3号生理小种的选择作用;黑龙江省主要大豆抗源对胞囊线虫抗性遗传;大豆抗胞囊线虫的分子标记辅助证明;抗感SCN3号生理小种的大豆品种及后代受SCN侵染后根尖超微结构变化,大豆胞囊线虫防治技术体系6个方面进行研究。取得以下研究进展:
     1.大豆胞囊线虫3号生理小种仍然是黑龙江省大豆胞囊线虫的优势小种,大庆市和安达市由原来SCN3号生理小种分别变为4号和14号生理小种,表明黑龙江省SCN生理小种稳中有变;绘制了黑龙江省大豆胞囊线虫分布图,明确了黑龙江省SCN生理小种的类型和分布,为抗线育种及抗线品种合理布局提供依据。
     2.在盆栽条件下,强迫SCN3号生理小种的群体在抗病品种上繁殖10代,应用Golden等使用的一套鉴别寄主进行鉴定。原来为3号生理小种的线虫群体,经在抗病品种抗线1号、抗线2号、抗线3号、抗线4号、抗线5号上连续选择10代之后,变为6号小种;经在灰皮支黑豆上选择之后变为10号小种;经在Peking上选择之后变为14号小种,经在哈尔滨小黑豆上选择变为15号小种。上述鉴定结果说明,原大豆胞囊线虫生理小种群体,经过在抗病品种上连续强迫繁殖后,形成新的生理小种,并使原抗病品种变为感染品种,认为在生产上采用轮作方式是保持抗线品种抗性稳定性的有效途径。
     3.合丰25×抗线4号正反交组合的F_2群体抗感分离遗传分析表明,抗线4号对胞囊线虫3号生理小种的抗性受三对隐性等位基因控制;大豆对大豆胞囊线虫3号生理小种抗性的遗传不存在细胞质效应;在抗线育种中选育兼抗品种难度大,但通过分子标记辅助选择来进行基因聚合选育兼抗品种是可行的途径。该结果为抗SCN育种提供了遗传基础,有利地指导了抗SCN育种工作。
     4.抗病品系哈98-4598在Satt082位点上具有与抗病亲本抗线4号不同的等位变异,这可能是由于两者具有不同的抗病基因,在Satt082位点上,感病亲本合丰25与感病后代材料3(合丰25×抗线4号F_2)、材料12(合丰25×抗线4号F_3)均有相同的第三个等位变异位点,母体效应在这两种材料中表现更为显著;在Satt309位点上,存在两个等位变异,供试材料1、3、5、9、10、11和12存在第一等位变异位点,供试材料2、3、4、7、8、11存在第二个等位变异位点,而3、11号材料同时存在两个等位变异位点;根据两个位点上的5个等位变异的聚类结果表明,在合丰25×抗线4号正反应组合中,抗线4号与7、8号抗病后代聚为一类,感病亲本合丰25与感病材料3被聚为一类,则将抗感材料分开。其它后代材料则聚为一类,即聚类结果没有将抗感材料分开,这可能是由于本研究采用的引物数量较少,未能充分揭示供试材料间的遗传变异,也可能是这些杂交后代仍存在对SCN3生理小种的抗性分离。
     5.在黑龙江省内首次报道了大豆抗感SCN亲本(抗:抗线4号和哈98-4598;感:合丰25)受SCN3号生理小种侵染后根尖细胞超微结构变化存在明显差异,这些抗感亲本被大豆胞囊线虫3号生理小种侵入后的细胞和组织病理学反应,揭示了大豆抗感胞囊线虫的机制;大豆杂交后代受SCN3号生理小种侵染后根尖细胞超微结构,不同组合及同一组合个体间存在明显差异,合丰25×抗线4组合F_1代的表现,说明大豆对大豆胞囊线虫3号生理小种的抗性遗传可能主要受细胞核控制与细胞质无关,这与SCN抗性遗传合丰25×抗线4号正反交F_1代结果表现没有细胞质效应相一致;但是,合丰25×哈98-4598正反交组合F_1代表现趋向母本反应与细胞质效应有关;这一结果尚未见报道,受SCN侵染后根尖,在感病品种合丰25形成明显增长的合胞体,而在抗病品种抗线4号合胞体细胞较小,退化中空,细胞质降解,细胞质膜与细胞壁发生分离,细胞器稀少,抗病品种不能为侵入的线虫提供养分,使其发育不良或死亡,这是大豆对大豆胞囊线虫的抗病机制之一。
     6.综合前人和本研究结果,在黑龙江省首先提出了大豆胞囊线虫防治技术体系
     (1)将大豆、胞囊线虫及自然环境视为一体,进行生态调控,改善大豆生长发育的生态环境,生长季节按需灌溉,改良土壤,培肥地力,进行土壤耕暄,深松,为大豆生长发育创造一个良好的耕层,建立轮作体系,其中,采用拮抗植物,例如万寿菊做为轮作植物,能有效抑制大豆胞囊线虫的发生,减轻危害。避免大豆重迎茬种植,使大豆生产进入良性生态循环。
     (2)掌握大豆胞囊线虫的发生规律和危害特点,采取播种时将杀线剂与肥料一同施入土壤。为了减少对环境的污染,应选择低毒杀线剂或种衣剂,并适当减少使用剂量,在大豆初花期采取叶面施肥(惠满丰活性液肥等)缓解胞囊线虫危害,以保证大豆植株健康生长。
     (3)充分利用天敌微生物,组装联合调控技术,实现以菌治虫的生物调控,人为增加豆田有益菌的数量,这些菌可寄生到胞囊上,被寄生的胞囊不能正常孵化,目前应用的主要有豆丰1号(厚垣轮枝菌)5kg/667m~2和大豆根保菌剂,防治效果60%左右,降低大豆产量损失15%以上。
     (4)选用抗线品种,抗病品种的应用是防治大豆胞囊线虫病的最经济有效措施之一。建议在黑龙江省安达地区主要推广抗线2号、抗线3号、抗线4号,在嫩江地区推广嫩丰15号。在抗线育种中应选育水平抗性和多抗品种,以防止抗病品种抗性丧失。
Soybean originated in China which has 5,000 years' history of soybean cultivation. Generally speaking, soybean cultivation area in China could be normally distinguished the Northen spring soybean area, Huang-Huai-Hai spring - summer soybean area and southern multiple cropping soybean area in China. Soybean Cyst Nematode ( SCN) , Heterodera glycines Ichinohe, is the major diseases of soybean production worldwide. In 1899, Russian scientist Jaczevski found soybean root nematode (Heterodera glycines )in the northeast of China. In 1915 , the disease was firstly reported in Janpan, followed by North Korea (1936), the United States (1954), Egypt (1968), the former Soviet Union (1978), Colombia (1983), Indonesia (1984), Canada, Brazil, Argentina and other countries have reported the occurrence of the nematodes and hazards. In our country, SCN is mainly distributed in the Northeast and Huanghuaihai soybean-producing areas; Heilongjiang, Jilin, Liaoning, Inner Mongolia Autonomous Region in the Northeast soybean-producing area and Shandong, Hebei, Shanxi, Anhui , Henan, Beijing and other provinces and cities in the Huang-Huai-Hai soybean-producing area,especially for the northeastern region. To Heilongjiang Province-China's major northern soybean producing areas, Soybean Cyst Nematode is one of the major diseases in Soybean production. Due to the expansion and extension of time for continuous cropping of soybean, the trend of Soybean Cyst Nematode has spreaded in Heilongjiang Province . At present, 667000 ha of soybean production area suffered with SCN, which is just next to soybean mosaic virus disease as the second-largest. SCN could cause 20% -30% yield reduction normally, 70% -80% yield loss some circumstance and enven worse, production lost on large-scale could be found every year.
     At present, breeding for disease-resistant varieties is the most widely used prevention and control strategy. This study will be based on the following 6 aspects: enhancing and reducing the damage on the production of soybean in Heilongjiang Province, which brought by soybean cyst nematode and soybean cyst nematode races distribution in Heilongjiang Province; the selecting function for resistance gene to Soybean Cyst Nematode race 3 ; the inheritance of resistance of the main soybean resistance resource to cyst nematode in Heilongjiang Province ; the molecular marker-assisted proof for the resistance of soybean to cyst nematode; ultrastructural changes in the root tip of resistant and susceptable soybean varieties and their progenies after the SCN race 3 infection as well as soybean cyst nematode control system. The study obtained the following process:
     1. The dominante race of SCN is still race 3 in Heilongjiang Province. But the SCN race 3 changed into race 4 and 14 in Daqing City and Anda City, indicating some changes happened in Heilongjiang. A distribution map of soybean cyst nematode in Heilongjiang was drawn , which made clear the style and distribution of SCN race in Heilongjiang, and provide the basis for soybean breeding for SCN resistance species and the rational distribution of resistant cultivars.
     2. Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, populations were selected on eight soybean [Glycine max (L.) Merr.] cultivars in SCN race 3 infested soil. This was done to isolate any populations within SCN race 3 field populations which could reproduce successfully on soybean cultivars with SCN race 3 resistance. The populations were selected by growing the soybean cultivars in infested soil for 20 days, then plant roots were cleaned with water and moved to the soil without SCN .After 10 generations of selection, each soil sample was tested for SCN race type. The race designation of the SCN population changed from Race 3 to Race 6 when resistant Kangxian 1, 2, 3, 4, 5 were grown, and from Race 3 to 10, 14 ,15 when Huipizhiheidou ,Peking and Harbinxiaoheidou were grown respectively. The results indicated that the original soybean cyst nematode race groups form the new race after continuous forced selecting on disease-resistant varieties,and changed the original disease-resistant varieties into susceptible varieties. Adopting rotation mode in production is saw as the effective way for maintaining the stability of resistant varieties.
     3. Genetic analysis of SCN resistance segregation in F_2 of Hefeng 25×Kangxian 4 reciprocal cross shown that the resistance for Kangxian 4 to SCN 3 is controlled by three pairs of recessive alleles. The cytoplasmic effect did not exist in the genetic resistance for soybean to SCN 3. Soybean breeding for multiresistant to SCN is very difficult, but molecular marker-assisted selection is a feasible way which could help to pyramid multigenes from different resistant sources. The results provided genetic base for SCN resistance breeding, and the guidance of SCN resistance breeding.
     4. Resistant soybean line Ha98-4598 has different allele variation on Satt082 from resistance Kangxian 4,this may be due to two different resistance genes. On the Satt082, Susceptible parent Hefeng 25 and its susceptible progeny material 3(Hefeng 25×Kangxian 4 )F2、material 12(Hefeng 25×Kangxian 4) F3 have the third allele variation locus, maternal effect shows more significant in these two materials. There are two allelic variations existed on the Satt309, the test materials 1,3,5,9,10,11 and 12 have the first allelic variation locus,the test material 2,3,4,7,8 ,11 have the second allelic variation locus, while the test materials 3,11 exist two allelic variation points at the same time. According to the clustering analysis results of 5 allele variation on the two loci, in the Hefeng 25×Kangxian 4 reciprocal cross, Kangxian 4 and resistant offspring 7,8 were in the same class, susceptible parent Hefeng 25 and susceptible material 3 were in another class, so the materials could be separated into resistance and susceptable. Other materials in the progeny are clustered in one class, that is the result of clustering did not separate the susceptible and resistant materials, which may be caused by the small number of primers and failed to fully reveal the genetic variation of test material, and may also for the reason of these progeny materials still existing on SCN3 resistance segregation.
     5. It is firstly reported that the significant differences of root tip cells ultrastructure changes existed after resistante and susceptible soybean parents were infected by SCN in Heilongjiang Province (resistance: Kangxian 4 and Ha 98-4598;susceptible: Hefeng 25 ).The materials infected by SCN3,which invasive cells and histopathological response to soybean cyst nematode race 3,shown soybean cyst nematode resistance mechanism , Soybean hybrids infected by SCN 3,root tip cells ultrastructure, and the same cross and different crosses individuals existed significant differences . (Hefeng 25×Kangxian 4) F_1 shown that the genetic resistance of soybean to soybean cyst nematode race 3 may mainly be controlled by nucleus and has nothing to do with the cytoplasm. This result is confirmed with the result of SCN inheritance of resistance of (Hefeng25xKangxian4)reciprocal hybrid F_1 which shown no cytoplasmic effect. However, F_1 of (Hefeng 25×Ha 98-4598) shown the trend to parent reaction,which is relative to cytoplasmic effect. The root tip infected by SCN,and formed obvious growing syncytial in infected varieties Hefeng 25,while smaller cells,degradation hollow cytoplasmic degradation,cell membrane and cell wall separation,less cell path;Resistant varieties Kangxian 4 can not provide nutrients to invasive nematode and make them dysplasia or death,this is one of resistance mechanism of soybean to soybean cyst nematode.
     6. Intergrated and the results of this study and former research conducted by other scientists, the soybean cyst nematode control system is firstly proposed in Heilongjiang Province:
     (1) Insist on making the soybean cyst nematode and the natural environment as an integral whole part, adopting ecological control, improving soybean growth and ecological environment, enhance the system of irrigating and draining, improving the soil fertility, soil tillage and deep tillage in order to create a good tilth for soybean growth and development, establish crop rotation system to avoid soybean continuous cropping cultivation, so that soybean production into the benign ecological cycle.
     (2)According to the occurrence rules and characteristics of soybean cyst nematode, due to the soybean high planting density and large area, Pharmacy irrigation is not feasible. Therefore,put the nemacide with fertilizers into soil together when planting so that kill the larvae hatch. In order to reduce the pollution of the environment , a low toxic nemacide or seed coating should be selected, and reduce the dose appropriately. Applying the leave fertilizer (huimanfeng liquid fertilizer et.al)during the early flowering period to ensure healthy growth of soybean plants.
     (3) Make full use of natural microorganisms, assemble joint control technology, realize the biological control of making bacteria to control pest, artificially increase the number of soybean fields. These bacteria can be parasitic on the cyst, which can not hatch normally. The current applications mainly contain Doufeng No. 1 (thick fungi Verticillium Tanzania) 5kg/667m~2 and soybean root-holding-bactoria agents. All these can get about 60% of control effect, and reducing soybean yield loss of more than 15%.
     (4)The selection of SCN-resistant soybean varieties. The application of disease-resistant varieties is one the most of cost-effective measures for controlling the Soybean Cyst Nematode. Our suggestion to Heilongjiang Province: planting kangxian 2, 3, 4 in Anda area in and Nenfeng 15 in Nenjiang area. In resistant breeding for SCN, level resistance and multi-resistant varieties should be used to protect soybean resistance for the future .
引文
1.陈品三,齐军山,王寿华,胡起.2001.我国大豆胞囊线虫生理分化动态的鉴定和监测研究.植物病理学报,31(4):336-341
    2.陈品三,张东升,陈森玉.1987.大豆胞囊线虫(H.glycines)7号生理小种的研究初报.中国农业科学,20(2):94
    3.大豆种质抗孢囊线虫鉴定研究协作组.1993.大豆种质资源对大豆胞囊线虫1、3和4号生理小种的抗性鉴定.大豆科学,12:91-99
    4.董丽民,许艳丽,李春杰.2008.黑龙江省大豆胞囊线虫胞囊密度和生理小种鉴定.中国油料作物学报,3(1):108-111
    5.段玉玺,于佰双,许艳丽.2007.东北地区大豆主要病虫害和优质大豆品质.刘丽君主编.中国东北优质大豆.黑龙江科学技术出版社,344-349
    6.段玉玺,周博,陈立杰.2008.抗大豆胞囊线虫3号生理小种(SCN3)核心种质代表性分析.大豆科学,27(3):366-372
    7.段玉玺主编.2006.大豆胞囊线虫病及其防治.金盾出版社
    8.方宣钧,王敬强,宛煜嵩.2002.我国应县小黑豆对SCN4号生理小种抗性的SSR及ISSR分子标记研究.农业生物技术学报,10(1).81-85
    9.方宣钧,吴为人,唐纪良.2001.编著.作物DNA标记辅助育种.科学出版社,7-8
    10.盖钧镒,王建康.1998.利用回交或F_(2、3)家系鉴定数量性状主基因-多基因混合遗传模型.作物学报,24:402-409
    11.李莹,李原萍,张昕艳.1996.大豆品种对胞囊线虫4号生理小种抗性遗传研究.大豆科学,15(3):191-196
    12.李云辉,李肖白,田中艳.1998.连续种植大豆抗线品种迫线虫生理小种变异研究.大豆科学,17(4):370-372
    13.刘汉起,商绍刚,甄鸿杰.1995.黑龙江省大豆胞囊线虫(Heterodera glyicines)生理小种分布的研究.大豆科学,14(4):330-333
    14.刘杰.2005.大豆胞囊线虫相关基因的克隆研究.东北农业大学博士学位论文
    15.刘维志,洪权春,段玉玺.1994.大豆品种对大豆胞囊线虫的抗病性特性研究.辽宁农业科学,3:15-16
    16.刘维志,洪权春,刘晔.1996.中国小黑豆对大豆胞囊线虫3号生理小种的抗性遗传研究.沈阳农业大学学报,27(1):31-34
    17.刘维志,刘晔,段玉玺.1993.抗病品种对大豆胞囊线虫1号生理小种的选择作用.植物保护学报, 20:135-137
    18.刘维志,刘晔,段玉玺.1998.抗病基因对大豆胞囊线虫1号生理小种的选择作用.大豆科学,17(2):154-156
    19.刘维志主编.2000.植物病原线虫学.中国农业出版社
    20.刘学义,宛煜嵩,王珍.2003.大豆重组自交系Jinf的构建及主要农艺性状和SSR基因型分析.分子植物育种,1(2):157-177
    21.卢为国,盖钧镒.2004.大豆对胞囊线虫抗性遗传与分子标记研究进展.大豆科学,23(1):53-65
    22.卢为国,盖钧镒,李卫东.2006.大豆对胞囊线虫(Heterodera glycines Ichinohe)1号和4号生理小种抗性的遗传分析.作物学报,32(5):650-655
    23.吕蓓,方宣钧.2003.大豆孢囊线虫4号生理小种侵染大豆根系诱导表达的cDNA分析.分子植物育种,1(2):193-200
    24.马书君.1996.黑龙江省安达地区大豆胞囊线虫生理小种动态监测.大豆科学,15(3):254-257
    25.蒙忻,刘学义,方宣钧.2003.利用大豆分子连锁图定位大豆胞囊线虫4号生理小种抗性QTL.分子植物育种,1(1):6-21
    26.彭德良.1998.大豆胞囊线虫病发生危害、生理小种及抗性鉴定研究进展。第三届全国青年植物保护科技工作者学术研讨会.植物保护21世纪展望
    27.齐军山,李长松,李林.2000.大豆胞囊线虫生理小种及其鉴定技术.中国油料作物学报,22(4):71-74
    28.任小俊,马俊奎,章彦.2003.应用ISSR标记分析灰布支黑豆与晋豆23的F_3群体的遗传多样性.分子植物育种,1(5/6):629-632
    29.阮维斌,王敬国,张福锁.2002.根际微生态系统中的大豆胞囊线虫.植物病理学报,8(3):200-205
    30.司兆胜,许艳丽,李兆林.2004.不同茬口种植的大豆品种根渗出物对大豆孢囊线虫卵孵化的影响.中国油料作物学报,26(3):62-66
    31.宋书宏,苏黎,蔺瑞明.2000.大豆抗胞囊线虫病新品种选育及遗传机制研究.中国油料学报,22(1):73-75
    32.宛煜嵩,王珍.2004.中国大豆孢囊线虫抗性研究进展.分子植物育种,(2)5:609-619
    33.王建康,盖钧镒.1997.利用杂种F_2世代鉴定数量性状主基因-多基混合遗传模型并估计其遗传效应.遗传学报,24:432-440
    34.王建康.1996.数量性状主基因-多基因混合遗传模型的鉴别和遗传参数估计的研究.南京农业大学博士学位论文
    35.王树峰,李卫东,刘世涛.2004.应县小黑豆对大豆胞囊线虫(SCN)1号生理小种的抗性遗传分析.河南农业科学,5期:40-42
    36.王永军,盖钧镒,邢邯.2000.大豆抗感SCN基因的一个RAPD标记.大豆科学,19(4):293-298
    37.王新国,徐汉虹,赵新清.2001.四种菊科植物α-三连噻吩的含量测定及杀虫活性研究.华南农业大学学报,22(3):26-28
    38.王衍桐,彭德良,陈受宜.2000.灰布支黑豆对大豆胞囊线虫(Heterodera glycines)14号小种的抗性遗传.遗传学报,27(2):146-150
    39.王志,李莹.1990.大豆抗胞囊线虫4号生理小种的遗传和转育.山西农业科学,(6):4-6
    40.王 惠,于佰双,段玉玺.2007.大豆胞囊线虫抗性基因的SSR标记研究.大豆科学,26(2):204-212
    41.吴海燕.2003.大豆与大豆胞囊线虫相关研究.沈阳农业大学博士学位论文
    42.吴海燕,远方,陈立杰.2001.大豆胞囊线虫病与大豆抗胞囊线虫机制的研究.大豆科学,20:(4):285-289
    43.吴和礼,姚振纯,李秀兰.1989.大豆抗胞囊线虫新种质材料的选育.大豆科学,8(3):2274-232
    44.吴明才,肖昌珍.1999.世界大豆线虫病研究概述.湖北农业科学,1:38-40
    45.邢邯.1998.大豆对大豆胞囊线虫1号生理小种抗性的鉴定遗传与选育研究.南京农业大学博士学位论文
    46.徐巧珍,常戎镇.2007.第五章,中国栽培大豆种质资源.王连铮,郭庆元主编.现代中国大豆.金盾出版社,(4),170
    47.许艳丽,温广月.2005.大豆主要病虫害研究概况-Ⅰ大豆线虫病.大豆通报,1:5-7
    48.薛庆喜,马书君.1991.大豆F_2群体对胞囊线虫3号优势生理小种抗性遗传.中国油料,(2):32-33
    49.颜清上,陈品三,王连铮.1997.中国小黑豆抗源对大豆胞囊线虫4号生理小种抗性机制研究.植物病理学报,27(1):37-41
    50.颜清上.1995.中国黑豆抗源对大豆胞囊线虫4号生理小种抗病机制的研究.中国农业科学院博士学位论文
    51.于佰双,王家军,崔丽伟.1999.连种抗线大豆品种(系)对大豆胞囊线虫的选择作用.黑龙江农业科学,3:4-6
    52.余子林,马振泉.2007.大豆病虫害及其防治.王连铮,郭庆元主编.现代中国大豆.金盾出版社,708-710
    53.袁翠平,常汝镇,邱丽娟.2006.大豆胞囊线虫抗性基因定位与克隆研究进展.植物学通报,23(1).14-22
    54.张国栋.1994.美国大豆胞囊线虫生理小种及大豆品种抗性遗传育种研究进展.大豆科学, 13:252-260
    55.张军,杨庆凯.2001.大豆接种SCN3后根部酚类化合物含量动态分析.中国油料作物学报,23(4):44-47.
    56.朱艳,陈立杰,段玉玺.2007.不同耕作方式对大豆胞囊线虫群体数量的影响.大豆科学,26(2):208-212
    57.赵经荣,盖钧镒,邢邯.1990.大豆品种对胞囊线虫的抗性差异与产量及胞囊量消长间关系的研究,大豆育种应用基础和技术研究进展.盖钧镒主编.江苏科技出版社,p187-193
    58.Acedo,J.R.,V.H.Dropkin,and V.D.Luedders.1984.Nematode population attrition and histopathology of Heterodera glycines-soybean association.Journal of Nematology,16:48-57
    59.Anand,S.C.,Rao-Arelli A.P.1989.Genetic analysis of soybean Genotypes resistant to soybean cyst nematode races[J].Crop Sci,29:1181-1184
    60.Anand S.C.,S.B.Sharma.1996.Genetic relationships for resistance to Heterodera glycines reace 3 and 5 in soybean[J].Journal of Nematology,28(2):223-237
    61.Anand,S.C.,and G.S.Brar.1981a.New races of cyst nematodes.Soybean Gencties Newsletter,8:87-89
    62.Anand,S.C,and S.R.Koenning.1986.Tolerance of soybean to heterodera glycines.Journal of Nematology,18:195-199
    63.Anand,S.C.1981b.Development of cyst nematode on different soybean varieties.Soybean Genetics Newsletter,8:84-85.
    64.Barker,K.D.,R.D.Riggs,D.Widick.1983.Cyst nematode screening methods,indexes and their uses.Soybean Genetics Neweletter,10:17-20
    65.Blum,U.1996,Allelopathic interactions involving phenolic acids[J].Journal of Nematology,28(3):259-267
    66.Brown A.H.D.1989.The case for core collections,In:Brown A H D,Frankel O H,Marshall R D,et al.The use of plant genetic resources.Cambridge,England,Cambridge Univ Press,136-156
    67.Botstein D,White R L,Skolnick M.1980.Construction of a genetic linkage map in man using restriction fragment length polymorphisms.Am J Hum Genet,32:314-331
    68.Caldwell,B.E.,C.A.Brim,and J.P.Ross.1960.Inheritance of resistance of soybeans to the cyst nematode,Heterodema glycines,Agronomy Journal,52:633-636
    69.Concibido V.C.,N.D.Young.D.A.Lange et al.1997.Targeted compaiative genome analysis and qualitative mapping of a major partial-resistance gene to the soybean cyst nematode.Theor.Appl.Genet.,93:234-241
    70.Concibido V C,B W Diers,P R Arelli.2004.A decade of QTL mapping for cyst nematode resistance in soybean.Crop Sci,44: 1121-1132.
    71.Cook,R.1979.Nature and inheritance of nematode resistance in cereals.Journal of Nematology 6: 165-174
    72.Dong K .E,Charles H.Opperman.1997.Genetic amalysis of parasitism in the soybean cyst nematode Heterodera glycines.Genetics,146:11311-11318
    73.Donkin,S.G,MA.Eiteman,and P.L.williams.1995.Toxicity of glucosinolates and their enzymatic decomposition products to Caenorhabditis elegans.Journal of Nematology,27(3): 258-259
    74.Dropkin,V.H.1985.Concept of race in soybean cyst nematode,In r.shibles(ed.) World soybean Reserarch conferenceⅢ:Proceedings,PP532-540
    75.Ellenby,C.1945.The influence of crucifers and mustard oil on the emergence of larvae of the potato root eel worm Heterodera rostochiensis wollenweber.Annals of Applied Biology,32: 67-70
    76.Endo,B.Y.1964.Penetration and development of Heterodera glycines in soybean roots and related anatomical changes.Phytopathology 54: 79-88
    77.Endo,B.Y.1965.Histopathological responses of resistant and susceptible soybean varieties and backcross progeny to entry and development of Heterodera glycines.Phytopathology 55: 375-381
    78.Frankel,O.H.,Brown A.H.D.1984.Current plant genetic resources a critical appraisal.In: Genetics: New Fronetiers(Vol.IV).New Delhi,India: Oxford and IBH Publishing,112—145
    79.Gipson,I.,K.S.Kim,and R.D.Riggs.1971.An ultrastructural study of syncytium development in soybean roots infected with Heterodera glycines.Phytopathology 61: 347-353
    80.Golden,A.M.,J.M.Epps,R.D.Riggs.1970.Terminology amnd identity of infraspecific forms of the soybean cyst nematode (Heterodera glycines).Planht disease Reporter,54: 544-546
    81.Halbrandt,J.M.,S.A.Leuis,E.R.shipe.1992.A technique for evaluating Heterodera glycines development in susceptible and resistant soybean.J.of Nematol.,24(l): 84-91
    82.Hancock J.A.,EG Hancock,C.E.Cavines et al.,1987.Genetics of resistance in sobyean to "race x" of soybean cyst nematode.Crop Sci.,27: 704-707
    83.Hershman,D.E.,and P.R.Bachi.1995.Effect of wheat residue and tillage on Heterodera glycines and yield of double crop soybean in Ketucky[J].Plant Disease,79: 631-633
    84.Huang,J.S.,K.R.Barker.1991.Glycdollin I in soybean-cyst nematode interaction .Spatial and temporal distribution on root of resistant and susceptible soybeans.Plant physiol.,96: 1302-1307
    85.Hussey,R.S..1989.Disease;inducing secretions of plant-parasitic nematodes,Annu.Rev.Phytopathol.,27, 123-141
    86.Inagaki,H.1979.Race status of five Japanese population of Heterodera glycines.Japanese Journal of Nematology,9: 1-4
    87.Koenning S R.2000.Density-dependent yield of Heterodera glycines resistant and susceptible cultivars.Supplement to the Journal of Nematology,32(4S): 502-507.
    88.Kim,D.G.,R.D.Riggs,R.t.Robbima,et al.1997.Distribution of races of Heterodera glycines in the central united states.Journal of Nematology,29(2): 173-179
    89.Kim,Y.H.,R.D.Riggs,K.S.Kim.1987.Structural changes associated with resistance of soybean to Heterodera glycines.Nematologica,19(2): 177-187.
    90.Koenning,S.R.,S.C.Anand and GO.Myers.1992.An alterrative method for evaluating soybean tolerance to Heterodera glyines in fields plots.Journal of Nematology,24: 177-182
    91.Leudders V.D.1987.A recessive gene for a zero cyst phenotype in soybean.Crop Sci.27: 604-605
    92.Li Weidong,S.C.Anand K.W.Matson.1989.Linkage for resistance to race 5 and 3 of the soybean cyst nematode (Heterodera glycines) in the cross PI437654×Tracy M.Soybean Genetic newsletter,16: 165-176
    93.Luedders,V.D.1985.Selection and inbreeding of Heterodera glycines on Glycine max.Journal of nematology,1985,17: 400-404
    94.Luedders,V.D.et al.1989.Attempt to select a cyst nematode population on soybean plant introduction 437654.Journal of Nematology,21(2).- 264-267
    95.Matson,A.L.,L.F.Willams.1965.Evidence of genes for resistance to the soybean cyst nematode.crop Sci,22: 581-590
    96.Meksem,K.,Pantazopoulosp,Njitiv N.2001.Forrest resistance to the soybean cyst nematode is bigenic -.saturation mapping of the Rhg 1 and Rhg4 loci.Theor appl Genet,103: 710-717
    97.Meksem K,T.W.Doubler.et al.1999.Clustering among loci underlying soybean resistance to Fusarium solani,SDS and SCN in near- isogenic lines.Theor.Appl.Genet.99:: 1131-1142
    98.Mudge J.,P.B.Cregan,J.P.Kenworthy et al.1997.Two microssatellite markers that flank the majoy soybean cyst nematode resistance locus.Crop Sci.,37: 1611-1615
    99.Myers,G.D.,Anand,S.C.1991.Inheritance of resistance and genetic relationship among soybean plant introduction to race of soybean cyst nematode.Euphytica,55: 197-201
    100.Niblack,T.L.and S.Y.Chen.2004.Cropping systems and crop management practices [M]//Schmitt,D.R,J.A.Wrather,and R.D.Riggs.editors.Biology and Management of Soybean Cyst Nematode.2~(nd) ed.181-206.Marceline,Mo Schmitt and Associates of Marceline
    101.Prabhu R.R.,V.N.Njiti,B.Bell-johnson et al.1999.Selecting Soybean cultivars for dual resistance to soybean cyst nematode and sudden death syndrome using two DNA markers.Crop Sci.,39: 982-987
    102.Price,M.C.E.Caviness,and R.P.Riggs.1987.Hybridization of races of Heterodera glycines.Journal of Nematology,100: 114-118
    103.Qiu B.X.,D.A.sleper,A.P.Rao Arelli.1997.Genetic and molecular characterization of resistance to Heterodera glycines race isolates1 、 3,and 5 in Peking.Euphytica,96: 225-231
    104.Rao.Arelli A.P.,J.A.Wrather,S.CAnand.1992a.Genetic Diversity among isolates of Heterodera glycines and Source of reistance in soybean.Plant disease,76: 894-896
    105.Rao-Arelli A.P.Anand S.C.,Myers GO.1989.Partial dominance of susceptibility in soybean to soybean cyst nematode race 3 、 4 and 5.Crop Sci.,29: 1562-1564
    106.Rao-Arelli A.P.1994.Inheritance of resistance to Heterodera glycines race 3 in soybgean accessions.Plant Diseases,78: 890-900
    107.Rao-Arelli A.P.Sam C Anand,Wraner J.1992b.Soybean resistance to soybean cyst nematode race 3 is conditioned by an additional dominant gene.Crop Sci.,32: 862-864
    108.Rao-Arelli A.P.,Anand S.C.1987.An improved method of evaluation of resistance to race 14 of soybean cyst nematode.Soybean Genmetics Newsletter,24: 237-239
    109.Rao-Arelli A.P.,S.C.Anand.1986.Genetics of resistance to 3 of soybean cyst nematode in Glycine max plant introductions.Agronomy Abstract.,79
    110.Rao-Arelli A.P.,S.C.anand,J.A.Wrather.1996.Genetic relationships for resistance to Heterodera glycines race 3 and 5 in soybean .Journal of Nematology,28(2):: 233-237
    111.Rao-Arelli A.P.,S.CAnand.1988.Genetic ralationships among soybean plant introductions for reistance to race 3of soybean cyst nematode.Crop Sci.,28: 650-652
    112.Riggs,R.D.,K.S.Kim,and I.Gipson.1973.Ultrastructural changes in Peking soybeans infected with Heterodera glycines.Phytopathology 63: 76-84
    113.Riggs,R.D.,and D.P.Schmitt.1988.Complete characterization of the race scheme for heterodera glycines.Journal of Nematology,20: 392-395
    114.Riggs,R.D.,D.P.Schmitt,and GR.Noel.1988.Variability in race tests with Heterodera glycines.Journal of Nematology,20: 565-572
    115.Riggs.R.D.et al.1988.Complete characterization of the race scheme for Heterodera glycines.Journal of Nematology,20(3): 392-395
    116.Ross,J.P.1958.Host-parasite relationship of the soybean cyst nematode in resistant soybean roots.Phytopathology 48: 13-29
    117.Ross,J.P.1957.Resistance of Soybean to the Soybean cyst nematode as determined by a double row method.Plant disease Report,41: 923-924
    118.Schmitt.D.P.and R.D.Riggs.1991.Influence of selected plant species on hatching of eggs and development of juveniles of Heterodera glycines.Journal of Nematology,23(1): 1-6
    119.Sikora,E.J.,GR.Noel.1996.Hatch and emergence of Heteroder glycines in root leachate from resistant and susceptible soybean cultivars.Journal of Nematology,28(4): 501-509
    120.Sipes,B.S.,D.P.Schmitt and K.R.Barker.1992.Fitness components and selection of bioltypes of Heterodera glycines.Journal of Nematology,23: 415-424
    121.Sortland,M.E.,and D.H.MacDonald,1987.Effect of crop and weed species on development of a Minnesota population of Heterodera glycines race 5 after one to three growing periods.Plant Disease,71(1): 23-27
    122.Tautz,D.1989.Hypervariability of simple sequences as a general source of polymorphic DNA markers.Nucleic Acids Res.17:: 6463-6471
    123.Thomas.J.D.,C.E.Caviness,R.D.Riggs,and E.E.Hartwig.1975.Inheritance of reaction to race 4 of soybean cyst nemortode.Crop Science,15: 208-210
    124.Wyss,U.,C.Stender,and H.Lehman.1984.Ultrastructure of feeding sites of the cyst nematode Heterodera schachtii Schmidt in roots of susceptible and resistant Raphanus sativus L.vat.oleiformis Pers.cultivars.Physiological Plant Pathology 25: 21-37
    125.Williams J G,Kubelik A R,Livak K J,et al.1990.DNA polymorphisms amplified by arbitrary primers are useful as genetic makers.Nucleic Acids Res,25 (18): 6531
    126.Welsh J,Mcclelland M.1990.Fingerprinting genomes using PCR with arbitrary primers.Nucleic Acids Res,25 (18): 7213
    127.Young,L.D.and T.C.Kilen.1994.Genetic relationships among plant introductions for resistance to soybean cyst nematode race 5.Crop Sciece ,34: 936-939
    128.Yu,M.H.,and A.E.Steele.1980.Host-parasite interaction of resistant sugarbeet and Heterodera schachtii.Journal of Nematology 13: 206-212
    129.Yue Pin,David A.Sleper.A.P.Rao-Arelli.2000.Genetic analysis of resistance to soybean cyst nematode in PI438489B.Euphytica,116: 181-186
    130.Zietkiewicz E,Rafalsk IA,Labuda D.1994.Genome fingerprinting by simple sequence repeat (SSR) anchored polymerase chain reaction amplification.Genomics,20: 176-183
    131.Zebeau M,Vos P.1993.Selective restriction fragment amplification: a general method for DNA fingerprinting.European Patent Application number 92402629, Publication number 0534858A1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700