用户名: 密码: 验证码:
卫星重力梯度数据处理理论与方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了利用卫星重力梯度观测数据恢复地球重力场的理论、方法和实用解算模型。作者在文中所做的主要工作和创新点有:
     (1)研究了卫星重力梯度测量的相关基础理论。论述了卫星重力梯度测量的基本原理;给出了卫星重力梯度张量在不同曲线坐标系中的表述及其相互转换关系。
     (2)研究了地球引力位、引力矢量和引力张量的球谐展开表示、轨道根数表示;建立了卫星重力梯度观测量的轨道面观测方程和球面观测方程,并推导得到了广义球谐函数及其相关积分的非奇异计算公式。给出了卫星重力梯度张量的球面调和分析和球谐综合公式,并对球面调和分析方法和球谐综合方法进行了模拟试算。
     (3)深入研究并建立了利用卫星重力梯度张量构建地球重力场模型的广义轮胎调和分析方法。针对重力梯度张量数据,重点研究了球面到轮胎面的映射关系,球面上傅立叶分析与调和分析的关系,完善了轮胎调和分析方法,得到了能够处理重力矢量、重力梯度张量数据的广义轮胎调和分析方法。
     (4)提出并建立了基于卫星重力梯度张量的点质量调和分析方法,进一步完善了点质量模型理论。巧妙运用球极坐标系关于计算点和流动点的微分运算关系,建立了基于重力梯度张量分量的全球点质量模型,研究并提出利用分块循环矩阵分解大型线性方程组的方法,解决了全球点质量模型构建中大型线性方程组的稳定解算瓶颈问题,给出了最小二乘解。通过点质量的球谐展开,得到了点质量调和分析方法的实用公式;提出了分频段点质量调和分析方法。
     (5)提出了线质量调和分析方法,有效克服了单层点质量调和分析方法和分频段点质量调和分析方法的不足。
     (6)研究并完善了基于重力梯度张量的最小二乘复数配置调和分析方法。完整的给出了重力梯度张量之间的协方差函数、重力梯度张量与引力位系数之间的协方差函数;通过扰动引力梯度观测数据为等经差规则格网数据的情况下,引力位与扰动引力梯度之间的协方差矩阵具有分块Toeplitz循环阵的结构,有效的利用FFT变换技术将其降阶;在复数配置的基础上,进一步建立了基于重力梯度张量的最小二乘矢量、张量配置调和分析方法。
     (7)建立了利用重力梯度张量不变量来求解位系数的理论与方法,该方法能够有效的克服卫星姿态误差带来的影响。分别研究了球近似下的不变量观测方程和顾及J2项不变量观测方程及其相应的解算方法,最后运用广义轮胎调和分析方法等空域法进行了模拟试验,进一步验证了利用梯度张量不变量法的有效性和可行性。
This dissertation mainly performs research in the theory, methods and applied computation models of determining global gravity model from observations of satellite gravity gradients. The central ideas and new standpoints are lists as follows:
     (1) With theories pertinent to satellite gradiometry, the principles of satellite gradiometry are dissertated in detail. Besides, the different expressions of satellite gravity gradients tensor in several curvilinear coordinate systems and the transformation methods between any two of them are given.
     (2) The establishment of the observation equations both in orbit plane and spherical are based on the spherical harmonic and orbital element expressions of the earth potential, gravitation vector and gravitation tensor, which also makes great contributions to generalized spherical harmonics and non-singular formulae of correlated integrals. Then, the harmonic analysis and spherical harmonic synthesis formulae are obtained, and simulations are made.
     (3) Generalized torus harmonic analysis is established based on the satellite gravity gradient tensor. With the support of gravity gradient data, the mapping relations from sphere to torus and that between Fourier analysis and harmonic analysis on sphere are emphasized. The torus harmonic analysis is modified, thus the generalized torus harmonic analysis which could deal with the gravitational vector and gradient tensor is obtained.
     (4) The point mass harmonic analysis which is put forward and established based on satellite gravity gradient tensor improves the theory of point mass model. Through the special differential coefficient operation relation between the calculated point and the fluxional points in spheric polar coordinate system, global point mass model is established based on satellite gravitation gradient tensor components. The way of partitioned recurrence matrices which is put forward to divide huge linear equations solves the bottleneck problem in the stability solution of global point mass model. And then the least square solution is attained. The applied formula of point mass harmonic analysis is obtained with the spherical harmonic expressions of point mass. Besides, spectrum-based point mass harmonic analysis is also discussed.
     (5)Line mass harmonic analysis, which could effectively overcome the disadvantages of spectrum-based point mass harmonic analysis and point mass harmonic analysis, is brought forward.
     (6)Further research is made to modify the complex LSC harmonic analysis based on gravity gradient tensor. Complete covariance of gravity gradient tensors and that of tensors and gravity potential coefficients are presented. With the observational data of gravity gradient which are in grid form with the same longitude interval, covariance of gravitational potential and disturbed gravity gradient has partitioned Toeplitz recurrence structure, and then FFT is used to reduce its degree. With the support of complex collocation, the vector and tensor LSC harmonic analysis which is based on gravity gradient tensor is further discussed.
     (7)The theory on the determination of the gravity model based on gravity gradient tensor invariant is established, which could overcome the bias caused by satellite attitude errors effectively. Furthermore, observational equations and the solutions of invariants both in sphere approximation and considering J2 item are discussed in detail. Finally, simulation experiments of space-wise such as generalized torus harmonic analysis are made to validate the efficiency and feasibility of gradient tensor invariants.
引文
[1]安德林AJ著.空间大地测量与地球动力学.胡国理,李军,苏华译.北京:解放军出版社,1991.
    [2]边少锋.大地测量边值问题数值解法与地球重力场逼近[D].武汉:武汉测绘科技大学,1992.
    [3]边少锋,纪兵.重力梯度仪的发展及其应用[J].地球物理学进展,2006,21(2):660-664.
    [4]晃定波,宁津生,邱卫根.整体大地测量的虚拟点质量模型[J].武汉测绘科技大学学报,1992,17(2):1-7
    [5]陈俊勇.现代低轨卫星对地球重力场探测的实践和进展[J].测绘科学,2002,27(1):8-10.
    [6]陈俊勇.地球重力场、重力、重力梯度在三维直角坐标系中的表达式[J].武汉大学学报·信息科学版,2004,29(5):377-379.
    [7]陈俊勇.国际地球参考框架2000(ITRF2000)的定义及其参数[J].武汉大学学报·信息科学版,2005,30(9):753-756.
    [8]陈俊勇.重力卫星五年运行对求定地球重力场模型的进展和展望[J].地球科学进展,2006,21(7):661-666.
    [9]党诵诗.物理大地测量的数学基础[M].北京:测绘出版社,1988.
    [10]郭金运.由星载GPS数据进行CHAMP卫星定轨和地球重力场模型解算[D].山东:山东科技大学,2004.
    [11]郭俊义.物理大地测量学基础[M].武汉:武汉测绘大学出报社,1994.
    [12]黄维彬.近代平差理论及其应用[M].北京:解放军出版社,1992.
    [13]黄谟涛.潜地战略导弹扰动引力计算与研究[D].郑州:解放军测绘学院,1992.
    [14]黄漠涛,管铮,翟国君,欧阳永忠.全球重力场模型研究的过去、现在与未来[A].见:第十届海洋测绘综合性学术研讨会论文集[C].北京:中国测绘学会,2000.
    [15]黄谟涛.扰动质量赋值模式结构优化及序贯解法[J].测绘学报,1994,23(2):81-89.
    [16]黄谟涛,管铮.扰动质点模型构制与检验[J].武汉测绘科技大学学报,1994,19(4):304-309.
    [17]胡明城,鲁福.现代大地测量学(下册)[M].北京:测绘出版社,1994.
    [18]胡明城.空间大地测量的最新进展(四)[J].测绘科学,2002,27(2):49-51.
    [19]胡明城.现代大地测量学的理论及其应用[M].北京:测绘出版社,2003.
    [20]纪兵.卫星重力梯度测量相关技术研究[D].郑州:信息工程大学测绘学院,2005.
    [21]将增荣,曾泳泓,余品能.快速算法[M].长沙:国防科技大学出版社,1993.
    [22]李建成.物理大地测量中的谱方法[D].武汉:武汉测绘科技大学,1993.
    [23]李建成,陈俊勇,宁津生,晁定波.联合Topex/Poseidon、ERS2和GEOSat卫星测高资料确定中国南海重力异常[J].测绘学报,2001,30(3):197-201
    [24]李建成,陈俊勇,宁津生,晁定波.地球重力场逼近理论与中国2000似大地水准面的确定[M].武汉:武汉大学出版社,2002.
    [25]李开泰,黄艾香.张量分析及其应用[M].西安:西安交通大学出版社,1984.
    [26]李克行,彭冬菊,黄珹,冯初刚GOCE卫星重力计划及其应用[J].天文学进展,2005,23(1):29-39.
    [27]李迎春.利用卫星重力梯度测量数据恢复地球重力场的理论与方法[D].郑州:信息工程大学测绘学院,2004.
    [28]李照稳.顾及频谱特性点质量模型研究[D].郑州:信息工程大学测绘学院,2004.
    [29]刘林.航天器轨道理论[M].北京:国防工业出版社,2000.
    [30]刘尚余,重力梯度卫星轨道与地球重力场模型精度的研究[D],武汉:中科院测地所,1992
    [31]陆洋,许厚泽.中国大陆超高阶局部重力场模型IGG97L[J].地壳形变和地震,1998(增刊),1-7.
    [32]陆仲连.球谐函数[M].北京:解放军出版社,1988.
    [33]陆仲连.地球重力场理论与方法[M].北京:解放军出版社,1996.
    [34]陆仲连,吴晓平.人造地球卫星与地球重力场[M].北京:测绘出版社,1994.
    [35]陆仲连,吴晓平等编著.弹道导弹重力学[M].北京:八一出版社,1993.
    [36]罗佳.利用卫星跟踪卫星确定地球重力场的理论与方法[D].武汉:武汉大学,2003.
    [37]罗志才.利用卫星重力梯度数据确定地球重力场的理论与方法[D].武汉测绘科技大学,1996.
    [38]罗志才,晁定波,宁津生.重力梯度张量的球谐分析[J].武汉测绘科技大学学报,1997,22(4):346-349.
    [39]孟嘉春,蔡喜楣.卫星重力梯度测量及其应用前景探讨[J].地球物理学报,1991,34(3):369-376.
    [40]孟嘉春,刘尚余.卫星重力梯度测量与地球引力场的精度研究[J].地球物理学报,1993,36(6):725-739..
    [41]宁津生.地球重力场模型及其应用[J].冶金测绘,1994,3(2):1-8.
    [42]宁津生,罗志才,晁定波.卫星重力梯度测量的研究现状及其在物理大地测量中的应用前景[J].武汉大学学报·信息科学版,1996,21(4):309-314.
    [43]宁津生,罗志才.卫星跟踪卫星技术的进展及其应用前景[J].测绘科学,2000,25(4):1-4.
    [44]宁津生.跟踪世界发展动态、致力地球重力场研究[J].武汉大学学报·信息科学版,2001,26(6):471-474.
    [45]宁津生.卫星重力探测技术与地球重力场研究[J].大地测量与地球动力学,2002a,22(1):1-5.
    [46]宁津生,罗志才,陈永奇.卫星重力梯度数据用于精化地球重力场的研究[J].中国工程科学,2002b,4(7):23-28.
    [47]宁津生,丘卫根,陶本藻.地球重力场模型理论[M].武汉:武汉测绘科技大学出版社,1990.
    [48]宁津生,李建成,晁定波.WDM94360阶地球重力场模型研究[J],武汉测绘科技大学学报,1994,19(4).
    [49]宁津生,罗佳,汪海洪.地球外部引力场引起卫星间距离变化的数值模拟研究[J].武汉大学学报(信息科学版),2003,28:13-17
    [50]申文斌.引力位虚拟压缩恢复法[J].武汉大学学报·信息科学版,2004,29(8):720-724.
    [51]沈云中.应用CHAMP卫星星历精化地球重力场模型的研究[D].武汉:中国科学院测量与地球物理研究所,2000.
    [52]沈云中,Grafarend EW,许厚泽.引力向量与引力张量的三维笛卡尔坐标表示式[J].同济大学学报,2003,31(1):48-51.
    [53]沈云中,许厚泽.卫-卫跟踪重力卫星测量模式的模拟与精度分析[M].大地测量与地球动力学进展.武汉:湖北科学技术出版社,2004,211-218
    [54]沈云中.应用CHAMP卫星星历精化地球重力场的正则化算法与模拟结果[J].测绘学报,2003,32(1):11-14
    [55]石磐.利用局部重力数据改进重力场模型[J].测绘学报,1994,23(4).
    [56]石磐,夏哲仁,孙中苗等.高分辨率地球重力场模型DQM99[J].北京,中国工程科学,1999,1(3):51—55.
    [57]石磐,王兴涛.利用CHAMP卫星数据反演地球重力场[A].见:朱耀仲等主编.大地测量与地球动力学进展[C].武汉:湖北科学技术出版社,2004,219-224
    [58]孙文科.低轨道人造卫星(CHAMP、GRACE、GOCE)与高精度地球重力场[J].大地测量与地球动力学,2002,22(1):92-100.
    [59]汪海洪,罗志才,罗佳,郭利民.多分辨率最小二乘配置法初探[J].大地测量与地球动力学,2006,26(1):115-118.
    [60]汪海洪,罗志才,罗佳,邹贤才,黄东武.数据分辨率对最小二乘配置解的影响[J].大地测量与地球动力学,2006,26(4):45-48.
    [61]王庆宾.动力法反演地球重力场模型研究[D].郑州:信息工程大学测绘学院,2009.
    [62]王兴涛,石磐SST-LL主要有效载荷测量精度需求分析[A].见:朱耀仲等主编.大地测量与地球动力学进展[C].武汉:湖北科学技术出版社,2004,258-264
    [63]王兴涛,夏哲仁.SST恢复重力场研究报告[R].西安测绘研究所,2005.
    [64]王正涛.卫星跟踪卫星测量确定地球重力场的理论与方法[D].武汉:武汉大学测绘学院,2005.
    [65]王振杰.测量中不适定问题的正则化解法[M].北京:科学出版社,2006.
    [66]吴晓平.局部重力场的点质量模型[J].测绘学报,1984,13(4):249-258
    [67]吴晓平,陆仲连.卫星重力梯度向下延拓的最佳积分核谱组合解[J].测绘学报,1992,21(2)
    [68]吴星.地球重力场调和分析方法研究[D].郑州:信息工程大学测绘学院,2005.
    [69]吴星,张传定,赵德军.广义球谐函数积分计算方法的改进[J].测绘学院学报,2004.
    [70]吴星,张传定.一类球谐函数与三角函数乘积积分的计算[J].测绘科学,2004,28(6):54-57.
    [71]吴星,刘雁雨.多种超高阶次缔合勒让德函数计算方法的比较[J].测绘科学技术学报,2006,
    [72]吴星,张传定,叶修松,韩智超.卫星重力梯度数据的模拟研究[J].测绘科学技术学报,2008,25(6):391-395.
    [73]吴星,张传定,赵东明.卫星重力梯度分量的广义轮胎调和分析方法[J].测绘学报,2009,38(2):101-107.
    [74]夏哲仁,林丽,石磐.360阶地球重力场模型DQM94A及其精度分析[J].地球物理学报,1995,38(6).
    [75]夏哲仁,石磐,李迎春.高分辨率区域重力场模型DQM2000[J].武汉大学学报·信息科学版,2003,28(SI):125-128.
    [76]夏哲仁.重力测量与地球重力场[M].西安:西安地图出版社,2005
    [77]许才军,申文斌,晁定波.地球物理大地测量学原理与方法[M].武汉:武汉大学出版社,2006.
    [78]许厚泽.利用局部重力资料改善高阶地球重力场模型[J].动力大地测量学进展,地震出版社,1991
    [79]许厚泽.卫星重力研究:21世纪大地测量研究的新热点[J].测绘科学,2001,26(3):1-3.
    [80]许厚泽,陆仲连,等.中国地球重力场与大地水准面[M].北京,解放军出版社,1997.
    [81]许厚泽,陆洋.中国大陆360阶局部重力场模型1GG93E[A].中国地球物理学会第九届年会报告,长沙,1993.
    [82]许厚泽,沈云中.利用CHAMP卫星星历恢复引力位模型的模拟研究[J].武汉大学学报·信息科学版,2002,26(6):483-486.
    [83]许厚泽,朱灼文.地球外部重力场的虚拟单层密度表示[J].中国科学·B辑,1984,6:575-580.
    [84]肖云.基于卫星跟踪卫星数据恢复地球重力场的研究[D].郑州:信息工程大学测绘学院,2006.
    [85]徐天河.利用CHAMP卫星轨道和加速度计数据推求地球重力场模型[D].郑州:信息工程大学测绘学院,2004.
    [86]徐仲,张凯院,陆全TOEPLITZ矩阵类的快速算法[M].西安:西北工业大学出版社,2001:31-33.
    [87]徐新禹.最小二乘法求解卫星重力梯度边值问题[D].武汉:武汉大学测绘学院,2004.
    [88]徐新禹.利用卫星重力梯度及卫星跟踪卫星数据确定地球重力场的研究[D].武汉:武汉大学测绘学院,2008.
    [89]于锦海.物理大地测量边值问题的理论[D].武汉:中国科学院测量与地球物理研究所,1992.
    [90]于锦海,朱灼文.非线性固定重力边值问题[J].中国科学B辑,1994,24(3):294-302.
    [91]于锦海,赵东明.引力梯度不变量与相关边界条件[J].中国科学D辑,2009a,待刊中。
    [92]于锦海.引力梯度张量的非奇异计算[J].地球物理学进展,2009b,待刊中。
    [93]叶叔华,黄诚.天文地球动力学[M].青岛:山东科学技术出版社,2002.
    [94]叶其孝,沈永欢主编.实用数学手册(第2版)[M].北京:科学出版社,2006
    [95]张昌达.三颗测量地球引力场的卫星——GHAMP、GRACE、GOCE[J]物探与化探,2005,29(5):377-382.
    [96]张传定.卫星重力测量——基础、模型化方法与数据处理算法[D].郑州:信息工程大学测绘学院,2000.
    [97]张传定.地球重力场模型化理论与方法研究[R].武汉:中国科学院测量与地球物理研究所,2004.
    [98]张传定,吴晓平,陆仲连.全张量重力梯度数据的谱表示[J].测绘学报,2000,29(4):297-304.
    [99]张传定,许厚泽,吴星.地球重力场调和分析中的“轮胎”问题[A].见:朱耀仲,孙和平.大地 测量与地球动力学进展[C].湖北:科学技术出版社,2004.302-314.
    [100]张传定,陆仲连,吴晓平.广义球谐函数及其在梯度边值问题中的应用[J].测绘学报,1998,27(3):252-258.
    [101]张传定,吴晓平.非心摄动引力的快速计算方法研究[J].武汉大学信息科学版,2003,28(SI):87-90.
    [102]章传银,胡建国,党亚民,常晓涛.多种跟踪组合卫星重力场恢复方法初探[J].武汉大学学报(信息科学版),2003,28:137-141
    [103]章传银,郭春喜,陈俊勇.EGM2008地球重力场模型在中国大陆适用性分析[J].测绘学报,2009,38(4):283-289.
    [104]张皞.快速逼近弹道扰动引力的算法研究[D].郑州:信息工程大学测绘学院,2007.
    [105]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004.
    [106]赵东明.弹道导弹扰动引力快速逼近的算法研究[D].郑州:信息工程大学测绘学院,2001.
    [107]赵东明.卫星跟踪卫星任务的引力谱分析和状态估计方法[D].郑州:信息工程大学测绘学院,2004.
    [108]周方,刘尚余.重力梯度场球谐谱分析的研究[J].紫金山天文台台刊,2000,19(2):154-157.
    [109]周旭华.卫星重力及其应用研究[D].武汉:中国科学院测量与地球物理研究所,2005.
    [110]朱长青.计算方法及其在测绘中的应用[M].北京:测绘出版社,1997.
    [111]朱灼文,于锦海.超定大地边值问题的准解[J].中国科学B辑,No.1,1992.
    [112]邹贤才.卫星轨道理论与地球重力场模型的确定[D].武汉:武汉大学,2007.
    [113]邹正波,罗志才,邢乐林,等.卫星重力梯度恢复地球重力场的时域法研究[J].大地测量与地球动力学,2007,27(3):44-49.
    [114]Seeber G著,赖锡安,游新兆,刑灿飞等译.卫星大地测量学[M].武汉:地震出版社,1998.
    [115]Heiskanen W A and H Moritz著,卢福康,胡国理译.物理大地测量学[M].北京:测绘出版社,1979.
    [116]Mortiz H著,宁津生等译.高等物理大地测量学[M].北京:测绘出版社,1984.
    [117]Albertella A, Sacerdote F, Sanso F(1992). From harmonic to Fourier analysis on the sphere. In:Holota P, Vermeer M(eds), Proc. of the 1st Continental Workshop on the Geoid in Europe, Prague, May,1992, 364-375.
    [118]Albertella A, F. Migliaccio F. Sanso (2001). Data gaps in finite-dimensional boundary value problems for satellite gradiometry, J. Geodesy,75,641-646.
    [119]Albertella, A., F. Sanso, N. Sneeuw (1999). Band-limited functions on a bounded spherical domain: the Slepian problem on the sphere, J. Geodesy,73,436-447.
    [120]Alkhatib H, W.D. Schuh(2007). Integration of the Monte Carlo covariance estimation strategy into tailored solution procedures for large-scale least squares problems [J]. J Geod,81:53-66.
    [121]Antunes C, R. Pail, J.Catalao(2003). Point mass method applied to the regional gravimetric determination of the geoid[J], Stud Geophys Geod,47,495-509.
    [122]Arabelos, D., C.C. Tscherning (1990). Simulation of Regional Gravity Field Recovery Gravity from Satellite Gravity Gradiometer Data Using Collocation and FFT, Bulletin Geodesique,64:363-382.
    [123]Arabelos, D., C.C. Tscherning (1995). Regional recovery of the gravity field from satellite gravity gradiometer and gravity vector data using collocation, J. Geophys. Res.,100(B11):22,009-22,016.
    [124]Arabelos D.N., C.C. Tscherning(2003). Error-covariances of the Estimates of Spherical Harmonic Coefficients Computed by LSC, Using Second-order Radial Derivative Functional Associated with Realistic GOCE Orbits [J]. J Geod,83:419-430.
    [125]Balmino G. Efficient Propagation of Error Covariance Matrices of Gravitational Models:Application to GRACE and GOCE [J/OL]. J Geod, DOI 10.1007/s00190-009-0317-2.
    [126]Barthelmes F, R.Dietrich, R. Lehmann(1991). Representation of the global gravity field by point masses on optimized positions based on recent spherical harmonics expansions [R]. Presented at the XX general assembly of the IUGG, Vienna
    [127]Baur O, N. Sneeuw, E.W. Grafarend (2008). Methodology and use of tensor invariants for satellite gravity gradiometry [J]. J Geod,82(4-5):279-293.
    [128]Baur O, E.W. Grafarend (2006). High-performance GOCE gravity field recovery from gravity gradient tensor invariants and kinematic orbit information. In:Flury J, Rummel R,Reigber C, Rothacher M, Boedecker G, Schreiber U (eds) Observation of the Earth system from space. Springer, Heidelberg,239-253.
    [129]Belikov MV(1991). Spherical harmonic analysis and synthesis with the use of column-wise recurrence relations [J]. Mamuscr Geod,16:384-410.
    [130]Belikov MV, K.A. Taybatorov(1992). An efficient algorithm for computing the Eearth's gravitational potential and its derivatives at satellite altitudes [J]. Mamuscr Geod,17:104-116.
    [131]Bjerhammar A (1963). A new theory of gravimetric geodesy. Royal Institute of Technology, Division of Geodesy, Stockhohm.
    [132]Biancale R,et.al.(2000). A new global Eearth's gravity field model from satellite oribit perturbations: GRIM5-S1, Geophysical Research Letters,27:3611-3615.
    [133]Bouman, J., R. Koop, C.C. Tscherning, and P. Visser (2004). Calibration of GOCE SGG data using high-low SST, terrestrial gravity data, and global gravity field models, J. Geodesy,78(1-2),124-137,. DOI 10.1007/s00190-004-383-5.
    [134]Colombo, O.L.(1981). Numerical methods for harmonic analysis on the sphere [R]. Rep 310, The Ohio State University, Columbus, Ohio.
    [135]Colombo, O.L.(1987). The global mapping of the gravity field with an orbiting full-tensor gradiometer: an error analysis [M]. IUGG, Vancouver,250-266.
    [136]Colombo, O.L.(1989). Advanced techniques for high-resolution mapping of the gravitational field, in Theory of Satellite Geodesy and Gravity Field Determination, F.Sanso and R. Rummel, editors, Springer-Verlag, N. Y
    [137]Ditmar, P., and J. Kusche (2003). Computation of spherical harmonic coefficients from gravity gradiometry data to be acquired by the GOCE satellite:regularization issues, Journal of Geodesy 77: 465-477.
    [138]ESA (1999). Gravity Field and Steady-State Ocean Circulation Mission, ESA SP-1233(1), Report for mission selection of the four candidate earth explorer missions, ESA Publications Division, pp.217, July 1999.
    [139]EGG-C (2006) GOCE High Level Processing Facility GOCE Standards, GO-TN-HPF-GS-0111.
    [140]Foldvary, L., D. Svehla, C. Gerlach et al(2004). Gravity model TUM-25p based on the energy balance approach and kinematic CHAMP orbits[A]. In:Reigber C., et al. eds. Earth Observation with CHAMP results from three years in orbit[C]. Berlin:Springer,13-18
    [141]Forste, C., F.Flechtner, R.,Schmidt, et al(2005). A new high resolution global gravity field model derived from combination of GRACE and CHAMP mission altimetry/gravimetry surface gravity data[A]. European Geosciences Union General Assembly 2005, Vienna, Austria, Apr.2005
    [142]Freeden W, T. Gervens, and M. Schreiner(1994). Tensor spherical harmonics and tensor spherical splines [J]. Manuscr Geod,19:70-100.
    [143]Gerlach C, N Sneeuw, P Visser, D Svehla(2003a). CHAMP gravity field recovery using the energy balance approach[J]. Advances in Geosciences,1:73-80
    [144]Glaser R., E.J. Sherry(1972). Relationship of gravity gradients to spherical harmonics, Jet Propulsion Laboratory. California Institute of Technology, Pasadena.
    [145]Gleason, D.M (1985). Partial sums of Legendre series via Chenshaw summation [J]. Manuscr Geod, 10:115-130.
    [146]Haris, J.W., H. Stocker(1998). Handbook of mathematics and computational science [M]. Springer, Berlin Heidelberg New York.
    [147]Heiskanen WA, H. Mortiz(1967).Physical geodesy [M]. WH Freeman, San Francisco.
    [148]Holmes SA, WE Featherstone(2002). A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions [J]. J Geod,76:279-299.
    [149]Holmes SA, WE Featherstone (2002). SHORT NOTE:Extending simplified high-degree synthesis methods to second latitudinal derivatives of geopotential [J]. J Geod,76:447-450.
    [150]Holota P(1989). Boundary value problems and invariants of the gravitational tensor in satellite gradiometry. In:Sanso F, Rummel R(eds) Theory of satellite geodesy and gravity field determination, Lecture Notes Earth Sciences, Springer, Heidelberg,25:447-457.
    [151]Hwang C (1993). Fast algorithm for formation of normal equations in a least-squares spherical harmonic analysis by FFT [J]. Manuscr. Geod.,18:46-52.
    [152]Ilk KH, T Mayer-Gurr, M Feuchtinger(2004). Gravity field recovery by analysis of short arcs of CHAMP[A]. In:Reigber C., et al. eds. Earth Observation with CHAMP results from three years in orbit[C], Berlin:Springer,127-132
    [153]Kaula WM(1966). Theory of satellite geodesy [M]. Blaisdell Publishing Company, Waltham, Massachusetts, Toronto, London.
    [154]Kern M. (2004). A comparison of data weighting methods for the combination of satellite and local gravity data. Proceedings of the V. Hotine-Marussi symposium. ed. F. Sanso. IAG Proceedings Vol. 127. Springer Verlag,137-144.
    [155]Kern M., R. Haagmans. (2004). Determination of gravity gradients from terrestrial gravity data for calibration and validation of gradiometric GOCE data. Submitted for publication in the proceedings of the GGSM2004, Aug.30-Sept.3,2004, Porto, Portugal.
    [156]Kern M, T. Preimesberger, M. Allesch, R.Pail, J.Bouman, R.Koop (2005). Outlier detection algorithms and their performance in GOCE gravity field processing. Journal of Geodesy,78, DOI 10.1007/s00190-004-0419-9.
    [157]Kern M., K.P. Schwarz, N. Sneeuw. (2003). A study on the combination of satellite, airborne and terrestrial gravity data, Journal of Geodesy,77(3-4),217-225.
    [158]Kless R, Koop R, P. Visser, J.van den IJssel(2000a). Efficient gravity field recovery form GOCE gravity gradients observations [J].Journal of Geodesy,74:561-571.
    [159]Klees R., R.Koop, P. Visser, J.van den Ussel, R. Rummel(2000b). Data analysis for the GOCE mission, in:Geodesy Beyond 2000:The Challenges of the First Decade, KP Schwarz(eds)., IAG symposium 121,68-74, Springer
    [160]Klees R., P. Ditmar(2001). The performance of the time-wise semi-analytical inversion of satellite gravity gradients, in:Vistas for Geodesy in the New Millennium, Adam and Schwarz(eds), IAG symposium 125, pp.253-258, Springer
    [161]Klees R., R. Koop, R.Van Geemert, P.N.A.M. Visser(2002). GOCE Gravity field recovery using massive parallel computing, in:Gravity, Geoid and Geodynamics 2000, F Sanso(eds)., IAG symposium 123, pp.109-116, Springer
    [162]Koch, K.R., J.Kusche. (2002). Regularization of geopotential determination from satellite data by variance components, Journal of Geodesy,76(5):259-68.
    [163]Koop R (1992). Global Gravity Field Modelling Using Satellite Gravity Gradiometry [R]. Netherlands Geodetic Commission, New Series, No 38.
    [164]Kotsakis C(2008). Least-squares Collocation with Covariance-matching Constrains [J/OL]. J Goed, DOI 10.1007/s00190-007-0133-5.
    [165]Krarup T (1969). A Contribution to the Foundation of Physical Geodesy[R]. Reprot of the Danish Geodetic Institute, Copenhagen.
    [166]Kusche J, R Klees (2002). Regularization of the gravity field estimation from satellite gravity gradients, J. Geodesy,76,359-368.
    [167]Kusche J., K.H. Ilk, S. Rudolph (2000). Impact of terrestrial data on future satellite gravity field solutions, in:Towards an Integrated Global Geodetic Observing System (IGGOS), R. Rummel, H. Drewes, W. Bosch, H. Hornik (eds.), IAG symposium 120, pp.189-192, Springer.
    [168]Kusche J, S Rudolph (2002). Satellite gravity anomaly recovery using multigrid methods, in:Gravity, Geoid and Geodynamics 2000, F Sanso (ed.), IAG symposium,123, pp.91-96, Springer.
    [169]Lehmann R(1995). Gravity field approximation using point masses in free depths [J]. Bulletin 1 of IAG,129-140.
    [170]Martinec Z(2004). Green's Function Solution to Spherical Gradiometric Boundary-Value Problems. Journal of Geodesy,77:41-49
    [171]Meissl P(1971). A study of covariance functions relate to the Earth's disturbing potential. OSU Report 151, Department of Geodetic Science, The Ohio State University, Columbus.
    [172]Migliaccio F., F. Sacerdote, F. Sanso(1989). The Boundery value problem approach to the data reduction for a spaceborne gradiometer mission, In:Proceedings of the Symposium no.103 "Gravity, Gradionmetry and Gravimetry", R. Rummel, R. Hipkins(eds), General Meeting IAG, Edinburgh, 8-10 August, Spring Verlag, pp.67-77
    [173]Moritz H(1980). Advanced physical geodesy [M], Abacus press, England.
    [174]Lemoine FG, SC Kenyon, JK Factor, et al(1998). The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96. NASA GSFC, Greenbelt, Maryland, July 1998.
    [175]Lerch FJ, et al(1979). Gravity model improvement using GEOS 3 (GEM9 AND 10), Journal of Geophysical Research,84:3897-3915.
    [176]Lerch FJ, et al(1982). Gravity model development from LAGEOS, Geophysical Research Letter,9(11): 1263-1266.
    [177]Lerch FJ, et al(1993). New error calibration tests for gravity models using subset solutions with independent data:Applied to GEM-T3, Geophysical Research Letter,20(2):249-252.
    [178]Lerch FJ, et al (1994). Geopotential models of the Earth from satellite tracking, altimeter and surface gravity observations:GEM-T3 and GEM-T3S, Journal of Geophysical Research,99:2815-2839.
    [179]Lonkhuyzen M. Van, Klees R., J. Bouman(2002). Regularization for the gravity field recovery from GOCE observations, in:Gravity, Geoid and Geodynamics 2000, F Sanso(eds), IAG symposium, 123, pp.117-122, Springer
    [180]Metzler B. and R. Pail(2005). GOCE Data Processing:The Spherical Cap Regularization Approach Stud. Geophys. Geod.49:441-462
    [181]Migliaccio F., M. Reguzzoni, F. Sanso(2004). Space-wise approach to satellite gravity field determination in the presence of colored noise. Journal of Geodesy,78(4-5):304-313
    [182]Moritz H(1980.). Advanced Physical Geodesy, Abacus Press, England.
    [183]Nan Yu, J. M., L. Romans, Maleki (2002). Quantum Gravity Gradiometer Sensor for Earth Science Applications[D], Earth Science Technology Conference, Pasadena, CA, June 11-13
    [184]Needham RE.(1970). The formation and evaluation of detailed geopotential models based on point masses [R], Reports of the Department of Geodetic Science, OSU. Report No.149,
    [185]Oberndorfer, H., J. Muller, (2002):GOCE closed-loop simulation, Journal of Geodynamics,33(1/2): 53-63.
    [186]Pail R., G. Plank, W.-D.Schuh(2001). Spatially restricted data distribution on the sphere:the method of orthonormalized functions and applications, J. Geodesy,75:44-56
    [187]Pail R., G. Plank (2002). Assessment of three numerical solution strategies for gravity field recovery from GOCE satellite gravity gradiometry implemented on a parallel platform, J. Geodesy,76,462-474.
    [188]Pail R., M. Wermuth(2003). GOCE SGG and SST quick-look gravity field analysis, Advances in GEOSciences,1:5-9
    [189]Pail R., G. Plank(2004). GOCE gravity field processing strategy. Stud. Geophys. Geod.48:289-309
    [190]Pavilis NK, SA Holmes,SC Kenyon, JK Factor(2008). An Earth Gravitational Mode to Degree 2160: EGM2008, presented at the 2008 General Assembly of the European Geosciences Union, Vienna, Austria, April 13-18,2008.
    [191]Preimesberger T., R. Pail(2003). GOCE quick-look gravity solution:application of the semianalytic approach in the case of data caps and non-repeat orbits. Stud. Geophys. Geod,47:435-453
    [192]Rapp, RH(1978). A global 1°×1° anomaly field combing satellite Geos-3 altimeter and terrestrial anomaly data, OSU Report No.278.
    [193]Rapp, RH(1981). The earth's gravity field to degree and 180 using Seasat altimeter data, terrestrial gravity data and other data[R]. OSU report, No.322.
    [194]Rapp, RH, JY Cruz(1986). The representation of the Earth's gravitational potential in the spherical harmonic expansion to degree 250[R]. OSU report, No.372.
    [195]Rapp, RH.(1990), NK Pavlis. The development and analysis of geopotential coefficient models to spherical harmonic degree 360 [J]. Journal of Geophysical Research,95:885-911.
    [196]Rapp, RH, et al (1991). The Ohio state 1991 geopotential and sea surface topography harmonic coefficients models[R]. OSU report, No.410.
    [197]Reguzzoni M, N. Tselfes(2009). Optimal Multi-step Collocation:Application to the Space-wise Approach for GOCE Data Analysis [J/OL]. Journal of Goedesy, DOI 10.1007/s00190-008-0225-x.
    [198]Reigber C, G Balmino, P Schwintzer, et al (2002). A high quality global gravity field model from CHAMP GPS tracking data and Accelerometry (EIGEN-1S)[J]. Geophysical Research Letters,29(14): 371-374.
    [199]Reigber C, P. Schwintzer, Neumayer, et al (2003). The CHAMP-only Earth gravity field model EIGEN-2[J]. Advances in Space Research,31(8):1883-1888.
    [200]Reigber C, R. Schmidt, F. Flechtner, et al (2003). First GFZ GRACE gravity field model EIGEN-GRACE01S, http://op.gfz.potsdam.de/grace/results.
    [201]Reigber C., H Jochmann, J Wuensch et al.(2004a). Earth gravity field and seasonal variability from CHAMP[A]. In:Reigber C et al. eds. Earth observation with CHAMP results from three years in orbit[C]. Berlin:Springer,25-30
    [202]Reigber C., R Schmidt, F Flechtner et al.(2004b). An Earth gravity field model complete to degree and order 150 from GRACE:EIGEN-GRACE[J]. Journal of geodynamics,39(1):1-10
    [203]Ricardi LJ, ML. Burrows(1972). Recurrence Technique for Expanding a Function in Spherical Harmonics [J]. IEEE Transactions on computers,583-585.
    [204]Rudolph S., J. Kusche, K.H. Ilk (2002):Investigations on the polar gap problem in ESA's gravity field and steady-state ocean circulation explorer mission (GOCE), Journal of Geodynamics,33(1/2):65-74.
    [205]Rummel R, Uniquely and Overdetermined Geodetic Boundary Value Problems by Least Aquares, Bulletin Geodesique,1989,63,1-33
    [206]Rummel R, O.L. Colombo (1985). Gravity field determination from satellite gradiometry [J]. Bull Geod,57:233-246.
    [207]Rummel R (1986). Satellite gradiometry. In:Sunkel H(ed) Mathematical and Numerical Techniques in Physical Geodesy. Lect Notes Earth Sci., Springer, Heidelberg, Vol 7,317-363
    [208]Rummel R.,M. Van, Gelderen(1992a). Spectral Analsis of the Full Gravity Tensor, Geophys J.Int,111: 159-169
    [209]Rummel R, M. van Gelderen, R.Koop, et al (1993). Spherical harmonic analysis of satellite gradiometry[R]. Netherlands Geodetic Commission, New Series, No 39.
    [210]Rummel R., M. Van, Gelderen (1995). Meissl Scheme-spectral Characteristics of Physical Geodesy, Manuscripta geodetica,20:379-385
    [211]Rummel R(1997). Spherical spectral properties of the Earth's gravitational potential and its first and second derivatives. In:Sanso F, Rummel R (eds) Geodetic Boundary Value Problems in View of the One Centimeter Geoid,Lecture Notes in Earth Sciences,65,359-404.
    [212]Rummel R, M. van Gelderen, R. Koop, E. Schrama, F. Sanso, M. Brovelli, F. Migliaccio, F. Sacerdote (1993). Spherical harmonic analysis of satellite gradiometry, Neth Geod Comm, Publications on Geodesy, no.39, Delft.
    [213]Sacerdote F, F. Sanso (1989). Some problems related to satellite gradiometry [J]. Bull Geod, 63:405-415.
    [214]Sanso F, C.C. Tscherning(2003). Fast Spherical Collocation:Theory and Examples [J]. J Geod, 77:101-112.
    [215]Schuh W.-D.(1996). Tailored Numerical Solution Strategies for the Global Determination of the Earth's Gravity Field Mitteilungen der geodatischen Institute der TU Graz,Folge 81
    [216]Schuh W.-D., R. Pail, G. Plank(2001). Assessment of different numerical solution strategies for gravity field recovery. In:Drinkwater M(eds)., Proc Int GOCE User Workshop,23-24, April, ESTEC, European Space Agency, Noordwijk, WPP-188, pp87-95
    [217]Schrama E.J.O(1990). Gravity Field Error Analysis:Applications of GPS Receivers and Gradiometers on Low Orbiting Platforms, NASA TM-100769, GSFC Greenbelt MD.20771
    [218]Schrama E.J.O(1991). Gravity field error analysis:applications of global positioning system receivers and gradiometers on low orbiting platforms [J]. Journal of Geophysical Research,96(B12): 20041-20051.
    [219]Schrama, E.J.O. (2003). Error Characteristics Estimated from Champ, GRACE and GOCE Derived Geoids and from Satellite Altimetry Derived Mean Dynamic Topography, Space Science Reviews 108,1-2,179-193.
    [220]Sneeuw NJ (1992). Representation coefficients and their use in satellite geodesy [J]. Manuscr Geod, 17:117-123.
    [221]Sneeuw NJ (1994). Global spherical harmonic analysis by least-squares and numerical quadrature methods in historical perspective [J]. Geophys. J. Int.,118:707-716.
    [222]Sneeuw NJ, R. Bun(1996). Global spherical harmonic computation by two-dimensional Fourier methods [J]. J Geod,70:224-232.
    [223]Sneeuw N(2000). A semi-analytical approach to gravity field analysis from satellite observation [D]. University of Munchen.
    [224]Sneeuw, N., M. van Gelderen (1997). The polar gap, in:Geodetic Boundary Value Problems in View of the One Centimeter Geoid, F Sanso and R Rummel (eds.), Lecture Notes in Earth Sciences 65, pp. 559-568.
    [225]Sneeuw, N., J. van den IJssel, R. Koop, P. Visser, and C. Gerlach (2002). Validation of fast pre-mission error analysis of the GOCE gradiometry mission by a full gravity field recovery simulation Journal of Geodynamics,33(1/2):43-52.
    [226]Sneeuw, N.(2003). Space-wise, time-wise, torus and Rosborough representation in gravity field modeling, Space Science Reviews 108(1-2):37-46
    [227]Sunkel, H. (ed.) (2000). From Eotvos to mGal, Final Report, ESA/ESTEC contract No. 13392/98/NL/GD.
    [228]Sunkel, H. (ed.) (2002). From Eotvos to mGal+, Final Report, ESA/ESTEC contract No. 14287/00/NL/DC.
    [229]Thong, N.C.(1989). Simulation of Gradiometry Using the Sphercial Harmonic Models of the Gravitational Field, Manuscripta Geodaetica,14:404-417.
    [230]Tscherning CC (2001). Computation of Spherical Harmonic Coeffients and Their Error Eestimate Using Least-squares Collocation [J]. J Geod,75:12-18.
    [231]Vajda P, P. Vanicek(1999). Truncated geoid and gravity inversion for one point-mass anomaly [J], J Geod,73:58-66
    [232]van Geemert R, R.Koop, R.Klees, Visser PNAM. Application of paralle computing to gravity field recovery from satellite gravity gradiometric data. In:Brebbia CA, Ingber M, Power H (eds) Applications of high-performance computing in engineering VI. WIT Press, Southampton,103-112.
    [233]Vermeer, M.(1990). Observable Quantities in Satellite Gradiometry, Bulletin Gesdesique,64,347-361.
    [234]Visser, P.N.A.M. (1999). Gravity field determination with GOCE and GRACE, Adv. Space Res.,23(4): 771-776.
    [235]Visser, P.N.A.M., N. Sneeuw, and C. Gerlach (2003). Energy integral method for gravity field determination from satellite orbit coordinates, J. Geod.,77(3-4):207-216.
    [236]Visser P.N.A.M., J. van den IJssel, R. Koop, and R. Klees (2000a). Efficient Gravity Field Recovery from GOCE Gravity Gradient Observations, J. Geodesy,74(7-8):561-571.
    [237]Visser P.N.A.M., J. van den IJssel(2000b). GPS-based precise orbit determination of the very low Earth-orbiting gravity mission GOCE [J]. J. Geodesy,,74(7-8):590-602.
    [238]Visser, P.N.A.M., and E.J.O. Schrama (2005), Space-borne gravimetry:how to decouple the different gravity field constituents?, in IAG International Symposium Gravity, Geoid and Space Missions GGSM2004, August 30-September 3,2004, Porto, Portugal, Accepted.
    [239]Weightman J A(1965). Gravity, geodesy and artificial satellites [C]. A unified analytical approach. Proc. Symp. On The Use of Artificial Satellites for Geodesy. Athen.
    [240]Wenzel, H. G.(1982). Geoid Computation by Least Squares Spectral Combination Using Integral Kernels. Proceedings of Symposium No.46" Geoid Definition and Determination", General Meeting of IAG, Tokyo,438-453
    [241]Wenzel G(1998). Ultra high degree geopotential models GPM98A and GPM98B (abstract).2nd Joint meeting of the International Gravity Commission and the International Geoid Commission, Trieste (Italy),23.
    [242]Wolff M(1969). Direct measurement of the Earth's gravity potential using a satellite pair[J]. Journal of Geophysical reaearch,14:5295-5300
    [243]Zhang Chuan-ding, Wu Xing, Zhao Dong-ming(2004). Torus harmonic analysis method of the earth's gravity field [A]. The Proceedings of the China Association for science and technology (Vol.1, No.1) [C]. Beijing:Science Press,621-629.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700